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0. Introduction

Let X be ann-dimensional projective algebraic manifold, ahde an ample line
bundle overX. For a given pointr € X, Demailly ([De]) has introduced the
Seshadri number(L, x) of L atx as a way to measure the ‘local positivity’ bfat
x. To be precise, lef: Y — X be the blow-up ofX atx. Thens(L, x) is defined
as the supremum of all positive numbersuch that théR-divisor classf*L — ¢E
is nef onY (cf. [De] for other equivalent definitions ef(L, x)). This number is
useful in the investigation of generation of jetsvaty sections oKy + L, where
K x denotes the canonical line bundleXf In fact, Demailly proved the following.

PROPOSITION 0.1 ([De, Prop. 6.8]K e(L,x) > n + s, thenH(X, Kx + L)
generates alb-jets atx. If inf,cx e(L, x) > 2n, thenKx + L is very ample

Hence, it is valuable to have lower bounds on Seshadri numbers. Upper bounds
of Seshadri numbers are also interesting, as such bounds often give interesting
geometric informations. An example is the existence of irreducible cufvesXx
passing through the pointand with bounded. - C/mult, (C) (cf. [De, Sect. 6]).
HereL - C denotes the degree ffoverC, and mult (C) denotes the multiplicity of
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C atx. A quite general, but somewhat weak, lower bound is obtained by [EKL] for
sufficiently general points of arbitrary projective manifolds and ample line bundles.
Better lower bounds are known for surfaces by [EL].

In [La], Lazarsfeld studied the case of principally polarized Abelian varieties
and related the Seshadri constants of the theta divisor to metric invariants to get
an interesting lower bound. Lazarsfeld used ‘symplectic blow-up’ ([GS], [MP]),
which is a lifting of the flat Kahler metric to the blow-up of one pointdf. In this
paper, we will study the case of compact quotients of the unit bdll'irand give
upper and lower bounds on the Seshadri numbers in terms of metric invariants.
The lower bound is obtained by a variation of Lazarsfeld’s method. In our case,
we construct ‘symplectic blow-up’ of the Poincaré metric. Our upper bound of the
Seshadri number is obtained by using a convexity-type argument.

It should be mentioned that our methods depend heavily on the radial symmetry
of the Poincaré metric, and do not seem to generalize easily to compact quotients
of other bounded symmetric domains.

1. Statement of Results

Let B" = {z = (z1,...,2,) € C" | |z] < 1} be the unit ball inC", where
|z1? = 2171 + - - + 2.2,. B" is equipped with the Poincaré metric whose Kahler
form is given by

dz Adz ZdzAzdz
-1 :
@ (1— 22 T |z|2)2)

where we used the notations

de A Gz =) dz A Gz,

i=1

n n
Zdz:ZZ,-dzj, de=ZdeEk-
j=1

k=1

The Ricci form ofw is —(n + Dw. For any two pointg, z/ € B", we denote by
d(z, 7') the Poincaré distance between them.

LetI' ¢ PU(, n) be a discrete torsion-free cocompact subgroup Xne-
B" /T be the associated smooth compact quotient. It is well-knowrtlginvari-
ant under PUL, n) and thus descends to a Kahler form Xnwhich we denote by
the same symbol. Such &X, w) is called a compact complex hyperbolic space.
For a given pointt € X, choose an inverse imagg € B” of x. The injectivity
radius ofX atx is defined to be, = % MIiN, cr,y xox0 d (X0, ¥ X0).

Denote also byi(-, -) the distance function oX with respect taw. Then the
diameterD, of X atx is defined to beD, = max.cx d(x, y).
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Then the injectivity radiupy and diameteiDy of (X, w) are given bypy =
min.cx o, andDy := max.cx D, respectively. It is easy to see that one always has
or < D, and thus als@y < Dy. Forx € X, lete(Ky, x) be the Seshadri number
of Kx atx as defined in Section 0, and letKy) := inf,cx ¢(Kx, x). Our main
result in this paper is the following

THEOREM 1.1.Let (X, w) be ann-dimensional compact complex hyperbolic
space.
(i) Then for any poink € X, we have

(n + 1) sinkP(p,) < e(Kx, x) < (n + 1) sinf?(D,).
(i) In particular, we have
(n + 1) sinkf(p,) < e(Kx) < (n + 1) sinf?(Dy).

Combining Theorem 1.1 with Proposition 0.1 of Demailly, we immediately
have

COROLLARY 1.2.Let(X, w) be as in Theorert.1.1f py > sinh™t /2n/(n + 1),
then2Ky is very ample. In particular, for any givel, there exists a finite etale
coverX’ so that2K x: is very ample

We remark that our upper bound combined with [EKL] gives a uniform lower
bound of the diameteby. But this is weaker than the one obtained using Gauss—
Bonnet.

2. Proof of the Lower Bound

In this section, we are going to prove the lower boundsfd y, x). The idea is to
produce a lift ofw to the blow-up of B at the origin with sufficient positivity along
the exceptional divisor by carrying out the Guillemin—Sternberg construction using
the Poincaré radius.

For a pointz € B", let |z]p = d(z,0) be the Poincaré distance pffrom the
origin 0. We have the well-known relations

1+ |z|
=1lo
1
IzZP=1-— = tantf|z|p.
coslt |z|p

For a number > 0, we define B(c) := {z € B" | |z]p < ¢}. Using the notations
in Section 1, we have

LEMMA 2.1. Let¢ (r) be a positive real-valued smooth function of a positive real
variable r, such thatp (r)r is monotone increasing. Lét> 0 be a small positive
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number such thalp (|z])z| < 1for z € B"(8§)\{0}. Defined: B"(5)\{0} — B" by
®(z) = ¢(|z])z. Then

O*w = v —1cosH(|®(2)|p)p?dz A dZ +
99
|z]
+cost(|®(2)]p)(@* + ¢°¢'|z)]Z dz A z dZ.

Moreover, it is a Kahler form oB” (8)\{0}.

Proof. First we remark that it follows from the arguments in [MP, Sect. 5.1] that
®*w is a Kahler form on B(8)\{0}. Writing ®;(z) = ¢(|z])zi, 1 < i < n, and
usingd¢ = (¢'/2|z|)(z dz + z dz), we have

+v/—1[cosi(|®(2)|p)

D A AdD; = ) (¢ dzi + 2 dp) A (¢ dZi + Z; dp)
i=1 i=1
= ¢?’dz AdT +pzdz Adp + P dp Az T
= ¢2dZ/\dE+q|>ZZdZ/\ZdZ;

= ¢z (¢ dz; + z; dp) A Ppzi(¢ dzx + 71 dp)

= (¢* +¢%¢'1z)Zdz Az dZ.
Now one can us€l — [®(z)|2)~1 = cosH(|®(z)|p) to conclude Lemma 2.1.

Let V c P"~1 x B" be the blow-up of B at the origin 0, and lat: V — P"~1
andg:V — B" be the natural maps. Let be the Fubini—Study (1,1)-form on
P"~! normalized so thaf, o0 = 27 for a complex lineP* c P"~*. The pull-
back of the Euclidean coordinates. .., z, by g define holomorphic functions
on V, which we denote by the same letters. I®t= 1(0) be the exceptional
divisor in V. We will skip the proof of the following lemma, which can be checked
directly using standard local coordinates Wnsayus, . .., u, satisfyingz; = u1,

Zp = Uiy, ..., 2, = uil,, €tc. (Also see [GS, Sect. 4].)

LEMMA 2.2. The expressior/—1(1/|z|?)z dz A z dZ defines a smoottt, 1)-form
on V whose restriction to a differential form af is zero, and

ot =m<dzAdZ_ zdz/\zd2>
2|2 |24
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ForO<c <1, letV(c) = B~1(B"(c)).

LEMMA 2.3. For a fixed numbei > 0, choose a small numbér> 0 and¢(r)
as in Lemma2.1 such that the associated map(z): B"(§)\{0} — B”" satisfies
|<I>(z)|% =A%+ |z|§, for z € B"(8)\{0} (cf. the proof below for the explicit expres-
sion of ¢ (r)). Then the Kahler forng*®*w on V(§)\ E extends to a continuous
semi-positivg 1, 1)-form onV (§) whose restriction tc& is equal to(sintf A)a*o.

Proof. To satisfy|®(z)|2 = A2 + |z|%, one choose® (r) given by, for suffi-
ciently smallr,

rPpr)? =1~

cosit \/ 32+ 1 (log 1£)?
By taking derivatives of both sides, one can easily see that

sinhA

—_—— < +00.
A CcOSIF A

lim (¢* + rg¢') =

Puttingr = |z|, we can thus regancf¢? and¢? + r¢¢’ as continuous functions on
V(8). Then by Lemma 2.1, we have

VT cosR(®] )22 <dz/\d' Zdz/\zd2> n

ré

+v/=1cosR(|®|p)(¢? + rop) x

x(1+r%¢ cosl?(|<1>lp>>M

The first term is just cog|®|p)r2p?a*o. Since|d(z)|p converges to. asz —
0, the first term converges to c@sh(1 — (1/ costt A))a*c = sintf ra*o. From
Lemma 2.2 and the boundednesspéf+ r¢¢’, the second term restricted Bis
zero. This finishes the proof of Lemma 2.3.

Now we are ready to get the desired lifting of Poincaré metrig to

PROPOSITION 2.4Fix a numberx > 0. Given any small numbey > 0, there
exists a semi-positive closed rgal 1)-form ¢ on V, which is smooth ofv \ E and
is continuous orE, such thatt = g*w on V\V (A(1 + n)) andt = sint? ra*c
OnE.

Proof. By choosing a sufficiently small = §(A,n) > 0, it is clear that one
can defined: B"\{0} — B" such that®(z) = z for |z]p > AL+ ), |P@E)|p
depends only on the value @ p, and it is a monotone increasing smooth function
of |z| p; moreover® (z) takes the form in Lemma 2.1 witld (2)|3 = A2+ |z|3 for
|z|p < é. By Lemma 2.38*®*w on V\ E can be extended to the desiredn V,
which gives Proposition 2.4.

166581 .tex; 23/08/1999; 9:11; p.5

https://doi.org/10.1023/A:1001074801110 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001074801110

208 JUN-MUK HWANG AND WING-KEUNG TO

Now that we have the lifting of, the proof of the lower bound far(Ky, x)
given below is just a direct translation of the proof in [La], replacing ‘Abelian
varieties’ by ‘ball quotients’.

PROPOSITION 2.5For any pointx € X, we haves (K, x) > (n + 1) sint?(py).

Proof. Let f:Y — X be the blow-up ofX at x and E be the exceptional
divisor. For any numbek satisfying 0< A < p,, we want to show that thR-
divisor classf*Ky — (n 4+ 1)(sinf? 1)E is nef. Fixy > 0 so that\(1 + 3n) <
0x- Using the covering projection map, we have a Kéhler isometric embedding of
B"(A(1+ 3n)) into X sending O tax. Forv < A(1 + 3n), V(v) can be viewed
as being embedded i as a neighborhood df. From Proposition 2.4, we get a
semi-positive closed redll, 1) -form ¢ on Y agreeing withw off V(A (1 + 2n))
and with sinf Aa*o on E. Since the class of restricted toE itself is equal to
—(1/27)0 and Ky = ((n + 1)/27)w on X as Kahler classeg(n + 1)/27)t
represents’*Ky — (n + 1)(sint? A)E (cf. [La]) and the required nefness follows
easily.

3. Proof of the Upper Bound

Let (X, w) be as in Theorem 1.1. We are going to prove the upper bound for
e(Ky, x) stated in Theorem 1.1.

First we recall the following definitions in [De, Sect. 2]. For any poing X,
we denote byC(Ky, x) the class of singular Hermitian metrics &f; which are

C> on X\{x} and of clasd.} . on X. Also we let

C*(Kx,x) :={h € C(Kx, x) | c1(Kx,h) > 0}. (3.1)
Here 2rc1(Kx, h) denotes the curvaturg, 1)-current of2 on X. In terms of a
holomorphic trivializationK x|y ~ U x C over an open coordinate neighborhood
U of x, suppose is given by a functiony;, satisfyingh (v, v) = e 2/ |v|%, v €
Kx|y. Then itis well known that the Lelong number

v(Yy, x) = liminf M

i 3.2
= loglz — x| (.2

is independent of the choice of the trivialization K%, i.e. v(y;,, x) depends only
onh andx. By [De, Thm 6.4 and Rem. 6.64(Kx, x) is also given by

e(Kx,x) = sup vy, x). (3.3)

heCt(Kx,x)

We denote byig the smooth Hermitian metric ok'y induced by the Poincaré
metric w (so that Zc1(Kx, hg) = (n + Dw). For any pointx € X andh €
C(Kx, x), we letg;, be the unique function oX (possibly singular at) satisfying

h=hoe® on X. (3.4)
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Sincehg is smooth, it follows from (3.3) that we also have

e(Kx,x)= sup v(¢p, x). (3.5)

heCt(Kx,x)

Now we fix a pointx € X, and we fix amt € C*(Kyx, x). Without loss of
generality, we will assume tha,(y) — —oo asy — x (otherwisep (¢, x) < 0).
Denote byr: B” — X the covering projection map sending the origin Gtdhen
we define a functiom,: B" — R U {—o0} given by

wi(2) = 2¢,(7(2)) — (n + 1) log(L — |z]?)
for z € B"\m {x} (3.6)

andu, (z) = —oofor z € 7 ~{x}. Using (3.4), itis easy to check thef—19du;, =
21 - w*c1(Ky, h) > 0 on B'\w~1{x}, and thusu, is a plurisubharmonic function
on B (here one may regard, as extended from Bz ~{x}). Also, it is easy to
see from (3.6) that

U(Mh,O) = 2V(¢h,)€). (37)

DEFINITION 3.1. A real-valued functiory defined on a subset ¢ C” is said to
beradially symmetric about the origifl if f(z) depends only ofz| for all z € S,
i.e. f(z) = F(|z]? for some functionF: R — R.

Now we define another functiom; given by

wy(z) = rr|1ax up(w) for z € B". (3.8)

lwl=z|
We shall need some simple propertiegfgiven in the following lemma.

LEMMA 3.2. (i) u} takes values of® U {—oo}, anduj (z) = —oo only atz = 0.

(ii) w; is radially symmetric about (cf. Definition3.1).

(i) w; is a plurisubharmonic function oB”.

(iv) w; is locally Lipschitz orB"\{0}, i.e. for any compact subs&t C B"\{0},
there exists a constafty > Osuch thaiu} (z)—puj(z')| < Cglz—z/|forz,z’ € K.
In particular, i}, is bounded on compact subset$6f {0}.

(V) v(uy, 0) = v(up, 0).

Proof. (i) follows easily from the facts that, € €*(B"\n ~*{x}) andu,(z) —
—o0 asz approaches the discrete set!{x}. (i) follows trivially from (3.8). Next
we observe that; (z) = maxyeym) wr(Uz), whereU (n) denotes the set of x
n unitary matrices. It is well known that if the supremum of an (infinite) set of
plurisubharmonic functions is an upper semi-continuous function {and), then
it is automatically plurisubharmonic (cf., e.g., [H, pp. 16]). Thus, by (i), in order
to prove (iii), it suffices to check that; is upper semi-continuous or' BFor any
c € R, letzg € B" be a point such that;(zg) < c¢. Thenu;(z) < c for all
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z satisfying|z| = |zo|. Write m~1{x} as{x;};c;, wherel is a (countable) index
set. For eachi € I, choose an open neighborhodd of x; such thatu, < ¢
on U;. Together with the smoothness @f on B"\ | J,., U, it follows that there
existse > 0 such thatu,(z) < ¢ (and henceuj(z) < ¢) for all z satisfying
lzol — & < |z| < |zol + €. Thusuj is upper semi-continuous on'Bwhich then
leads to (iii). Next we proceed to prove (iv). Obviously we just have to consider
compact subsets of the forky, , := {z € B"|a < |z] < b}, whereO<a < b < 1.
As in the proof of (iii), it is clear that one can choose open neighborhdgds
of x;, i € I, such that the values gf; on K, ;, depend only on those ¢f, on
K.\ U;c; Vi- Then the Lipschitzness ¢f}; on K, , follows easily from that of
mr on K, 5\ U, Vi, and (iv) follows. To prove (v), we first observe that (3.8)
implies easily that(u;,0) < v(u,, 0). Also the usual convexity properties of
plurisubharmonic functions imply that, (z) < v(us, 0)-log |z|+O(2) near 0 (cf.,
e.g., [De, Proof of Lemma 2.8]). Together with (3.8), one also seesfh@) <
v(up, 0) - log|z| + O(1) near O, which then implies(u;, 0) > v(uy, 0), and (v)
follows. Thus we have finished the proof of Lemma 3.2.

Next we construct smooth plurisubharmonic approximationg;oés follows.
Fix a nonnegative function € C5°(C") such that; is radially symmetric about O
with fc,, n(¢)dr(¢) = 1. Herex denotes the standard Lebesque measur&”on
Then forr > 0, we define

W,z (2) ::/(C wy(z = TN (&) dr(g). (3.9)

Itis clear that for any O< r < 1, there existsp > 0 (depending om and supn))
such that for O< 7 < 10, pj, , is well-defined on{z € B | |z|? < r}. Moreover,
we have

LEMMA 3.3. (i) For eacht > 0O, uj . is @ smooth and plurisubharmonic function,
and forz € B", uy . (z) - u;(z) ast — 0.

(i) Eachu; . is radially symmetric aboud.

(iii) w; . converges uniformly tp; on compact subsets Bf'\{0} ast — 0.

Proof. (i) is well known and can be found, for example, in [H, pp. 45]. (i)
follows easily from the radial symmetry @f; and, about 0. Finally, (iii) can be
checked easily using (3.9) and Lemma 3.2(iv).

Let F,(r): (0, 1) — R be the function such that!(z) = F,(z|?) for B"\{0}
(cf. Definition 3.1 and Lemma 3.2(i), (ii)). Similarly, far > 0, we letF;, . (r) be
the function such that;  (z) = Fy:(1z]?) (cf. Lemma 3.3(ii)). LetD, be as in
Theorem 1.1. We have

PROPOSITION 3.4. (ifor eacht > O, F}, , is a smooth function. Moreove, ,
converges uniformly t@;, on compact subsets @, 1) ast — 0.
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(i) There existsy > 0 such that for alle satisfying0 < ¢ < 1, there exists
7, > 0 (depending ore) such that for0 < v < t,, there exists . satisfying
ro < r... < tanrf(D,) such that

1

— &

((n + 1) costt(D,) + ¢). (3.10)

|Fy . (re )] < 1

Proof. (i) Follows easily from the corresponding statements g, u; in
Lemma 3.3 (i), (iii). Next we proceed to prove (ii). Recall thigt € C*(X\{x})
and¢y,(y) — —oo asy — x. It follows that¢, attains maximum at some point
x* € X\{x}. By definition of D, we necessarily have(B"(D,)) = X. Thus there
existsz* € B"(D,)\{0} such thatr (z*) = x*. Write r* = |z*|%. Then we have

0 < r* = tanif|z*|p < tantf(D,) (3.11)
(cf. Section 2). Sincdg¢, (x*) = 0, it follows that, in terms of Euclidean coordin-

ates of B (with z* identified withx*), there existsf; = 81(¢) > 0 such that for
0 <68 <61, |don(z)| < elz*|/8if |z — z*| < 8/|z*|. Then we have

0< dp(x) — (7 () < % it 12— 2| < (3.12)

)
|z
Now defineg; (z) := maX =, ¢»((w)) for z € B" as in (3.8), so that by (3.6)
and (3.8), we have

wi(z) = 2¢7(z) — (n + 1) log(1 — |z|>) for z € B". (3.13)
By definition, ¢;; is radially symmetric about 0. Thus by (3.12), we also have, for
O0<d8<é

* * 88 H % 8

0< n(x™) — ¢,(2) < B it |zl =127 < Bk (3.14)

This implies that, for O< § < §; andzy, z, € B”
* * 88 H * .
|9 (z1) — ¢ (z2)| < 7 it |zl =12 < R 1,2 (3.15)

(and in particular, if |z;|? — |z*|? |< 8, i = 1, 2). Next, using ddr log(1 — r) =
—(1/(1—r)) and the mean-value theorem, one sees that there &xistg,(¢) > 0
such that

[log(1 — |z1/%) — log(1 — |z2/?)]

1 e
< 2 _1z20)? 3.16
<1_ o + 2(n+1)> [ 1z1]° — |z2|* | (3.16)
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if | 1212 — |2*12 |< 82, i = 1, 2. Now choose
r* r*
o= > 0 and § =min (81, 32, E) >0 (3.17)

(thus onlys depends om ). Then it is clear that there exists > 0 (depending on
¢ and suppn)) such that for any O< t < ., { € suppn) andz € B" satisfying
| 1212 — 1z*|? 1< 8(1 — &), one has

llz—teP= "7 I<8, I —tgP—1*PI< 8
and
|z —1elP =" — P I< 8
which, together with (3.9), (3.13), (3.15) and (3.16), imply that

|- (@) — 1y (2]

< | gz —18) — pup@* —t)In(g) da(z)

(Cn
%) 1 3
<2 — 1 ) da
< gt )<1— B 2(n+1>> )/,,’7“) ©
n+1
=(———=+¢])6. 3.18
(1_ |Z*|2 ) ( )
Then (3.18) implies that, for & T < 7, and 0< r* — r < 6(1 — &), one has
. n+1
|Fyo(r) — Fr.(r*)| < (1— p= +s) 3. (3.19)

By the mean-value theorem, one sees from (3.19) that fer:O< ., there exists
r... satisfying O< r* — r,, < 8(1 — ¢) (and thus < r,, < tantf(D,) by (3.11)
and (3.17)) and such that

, 1 n+1
IF] (o)l < —( —i—s)

1—e\1-—r*
1 n+1

< +e), 3.20
1—8(1—tanr?(Dx) ) (3.20)

which leads to (3.10). Thus we have finished the proof of Proposition 3.4.
We shall also need the following.

PROPOSITION 3.5For ¢ > 0, let f:{z € C" | 0 < |z]?> < ¢} — R be a smooth
plurisubharmonic function which is radially symmetric about the origjmand let
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F(r): (0, c)—R be the associated smooth function such tfiat) = F(|z|?) for
0 < |z|? < ¢ ( cf. Definition3.1). Then for any number, satisfying0 < r, < ¢,

we have

f(z) > Alog|z|]>+ B for 0 < |z|> <r,, (3.21)
where

A=r.F'(r,) and B = F(r,) —r.F'(r,)logr,. (3.22)

Proof. Let f(z) and F(z) be as above. A simple calculation shows that for
O<|z]°<c

ik z
< f— ) = (F'(1z1%) - 8 + F"(12P)Ziz))1<i. j<n- (3:23)
9207 ) 1¢i j<n

Moreover, the matriXz;z;)1<; j<. is of rank one with eigenvalues R/? of multi-
plicity n — 1 and 1 respectively. Sincgis plurisubharmonic, the matrix in (3.23)
is positive semi-definite, which implies

F'(r)+rF'(r)>0, O<r<ec. (3.24)
Next we make another change of variable giversby logr, and letG(s) be the
function such that"(r) = G(logr) for 0 < r < ¢. Using the chain rule, (3.24)
implies that

G'(s) >0, —oo<s <loge. (3.25)
Consider the function

H(s) :=G(s) — (As + B), —oo<s <logc, (3.26)

whereA, B are the constants in (3.22). Then one can easily check that (3.22) and
(3.25) are equivalent to the following conditions

H'(s) >0, —oo<s<logc
and

H(logr,) = H'(logr,) = 0. (3.27)
SinceH"(s) > 0, H'(s) is increasing on-co < s < logr,. But H'(logr,) = 0.
Thus,H'(s) < 0for —c0 < s < logr,. Together with the conditio# (logr,) = 0,

it follows that H(s) > 0 for —oco < s < logr,, which leads to (3.21). Thus, we
have finished the proof of Proposition 3.5.
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Finally we are ready to complete the proof of Theorem 1.1.

Proof of Theoreml.1. First we remark that Theorem 1.1(ii) is a direct con-
sequence of Theorem 1.1(i). In view of Proposition 2.5, it remains to prove the
upper bound fore(Ky, x) in Theorem 1.1(i). Fix a poink € X, and leth €
CH(Kx,x). Letey, pn, i1, Wy <> Fr, Fir b€ the associated functions as construc-
ted earlier. By Proposition 3.4(ii), there exists > 0 such that for O< ¢ < 1,
there exists, > 0 such that for O< t < ., there exists, . satisfyingr, <
r.. < tantf(D,) and such that (3.10) holds. In view of Lemma 3.3, we can apply
Proposition 3.5 to the functiong;, ., F; . to conclude that for 0< ¢ < 1 and
O<t<r1,

wh (@) = Aceloglz|® + B, if 0 < z]* < ro, (3.28)

where

Are = rt,gF}Lr(rt)g) and

(3.29)
Br,s = Fh,r(rr,s) - rr,sF}:’t(rr,s) Iogrr,s-

By Lemma 3.2(iv),F, is bounded on the intervah, < r < tanif(D,). Hence,
by Proposition 3.4(i), there exists > 0 such that the functiong&Fj, ;}o-. <.+ are
uniformly bounded on the intervah < r < tant?(D,). Together with (3.10), it
follows that there exists a constaBt > 0 such that

|B; .| < B* for 0<e < %, 0 <t < min{t,, t*}. (3.30)

Combining (3.10), (3.28), (3.29) and (3.30), one has, for @ < 3,0 < 7 <
min{r,, 7*} and O< |z|? < 1o

W . (2) N B*
loglz|2 =~ """ |loglz/

@D, 4 1) cos(Dy) + ) + —2-

- 3.31
1—¢ [log|z|?| (3.31)

By first lettingz — O (and using Lemma 3.3(i)) and then letting~> 0O, it follows
that for 0< |z|? < 1o

*

wp(z)

0g [P < (n 4 1) sink(D,) +

S 3.32
|log|z|?| (3:32)

By (3.7), Lemma 3.2(v) and taking liminf on both sides of (3.32yas 0, one
easily gets(¢y,, x) < (n + 1) sinl?(D,). Finally by varyingh € €t (K, x) and
using (3.5), one gets(Kx, x) < (n + 1) sint?(D,), and this finishes the proof of
Theorem 1.1.
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