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0. Introduction

LetX be ann-dimensional projective algebraic manifold, andL be an ample line
bundle overX. For a given pointx ∈ X, Demailly ([De]) has introduced the
Seshadri numberε(L, x) of L atx as a way to measure the ‘local positivity’ ofL at
x. To be precise, letf : Y → X be the blow-up ofX at x. Thenε(L, x) is defined
as the supremum of all positive numbersε such that theR-divisor classf ∗L− εE
is nef onY (cf. [De] for other equivalent definitions ofε(L, x)). This number is
useful in the investigation of generation of jets atx by sections ofKX + L, where
KX denotes the canonical line bundle ofX. In fact, Demailly proved the following.

PROPOSITION 0.1 ([De, Prop. 6.8]).If ε(L, x) > n + s, thenH 0(X,KX + L)
generates alls-jets atx. If infx∈X ε(L, x) > 2n, thenKX + L is very ample.

Hence, it is valuable to have lower bounds on Seshadri numbers. Upper bounds
of Seshadri numbers are also interesting, as such bounds often give interesting
geometric informations. An example is the existence of irreducible curvesC ⊂ X
passing through the pointx and with boundedL · C/multx(C) (cf. [De, Sect. 6]).
HereL·C denotes the degree ofL overC, and multx(C) denotes the multiplicity of
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C atx. A quite general, but somewhat weak, lower bound is obtained by [EKL] for
sufficiently general points of arbitrary projective manifolds and ample line bundles.
Better lower bounds are known for surfaces by [EL].

In [La], Lazarsfeld studied the case of principally polarized Abelian varieties
and related the Seshadri constants of the theta divisor to metric invariants to get
an interesting lower bound. Lazarsfeld used ‘symplectic blow-up’ ([GS], [MP]),
which is a lifting of the flat Kähler metric to the blow-up of one point inCn. In this
paper, we will study the case of compact quotients of the unit ball inCn, and give
upper and lower bounds on the Seshadri numbers in terms of metric invariants.
The lower bound is obtained by a variation of Lazarsfeld’s method. In our case,
we construct ‘symplectic blow-up’ of the Poincaré metric. Our upper bound of the
Seshadri number is obtained by using a convexity-type argument.

It should be mentioned that our methods depend heavily on the radial symmetry
of the Poincaré metric, and do not seem to generalize easily to compact quotients
of other bounded symmetric domains.

1. Statement of Results

Let Bn = {z = (z1, . . . , zn) ∈ Cn | |z| < 1} be the unit ball inCn, where
|z|2 = z1z1 + · · · + znzn. Bn is equipped with the Poincaré metric whose Kähler
form is given by

ω = √−1

(
dz ∧ dz

1− |z|2 +
z dz ∧ z dz

(1− |z|2)2
)
,

where we used the notations

dz ∧ dz =
n∑
i=1

dzi ∧ dzi,

z dz =
n∑
j=1

zj dzj , z dz =
n∑
k=1

zk dzk.

The Ricci form ofω is −(n + 1)ω. For any two pointsz, z′ ∈ Bn, we denote by
d(z, z′) the Poincaré distance between them.

Let 0 ⊂ PU(1, n) be a discrete torsion-free cocompact subgroup andX =
Bn/0 be the associated smooth compact quotient. It is well-known thatω is invari-
ant under PU(1, n) and thus descends to a Kähler form onX, which we denote by
the same symbol. Such an(X,ω) is called a compact complex hyperbolic space.
For a given pointx ∈ X, choose an inverse imagex0 ∈ Bn of x. The injectivity
radius ofX atx is defined to beρx = 1

2 minγ∈0,γ x06=x0 d(x0, γ x0).

Denote also byd(·, ·) the distance function onX with respect toω. Then the
diameterDx of X atx is defined to beDx = maxy∈X d(x, y).
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Then the injectivity radiusρX and diameterDX of (X,ω) are given byρX :=
minx∈X ρx andDX := maxx∈X Dx respectively. It is easy to see that one always has
ρx 6 Dx and thus alsoρX 6 DX. Forx ∈ X, let ε(KX, x) be the Seshadri number
of KX at x as defined in Section 0, and letε(KX) := infx∈X ε(KX, x). Our main
result in this paper is the following

THEOREM 1.1.Let (X,ω) be ann-dimensional compact complex hyperbolic
space.

(i) Then for any pointx ∈ X, we have

(n+ 1) sinh2(ρx) 6 ε(KX, x) 6 (n+ 1) sinh2(Dx).

(ii) In particular, we have

(n+ 1) sinh2(ρx) 6 ε(KX) 6 (n+ 1) sinh2(DX).

Combining Theorem 1.1 with Proposition 0.1 of Demailly, we immediately
have

COROLLARY 1.2.Let (X,ω) be as in Theorem1.1.If ρX > sinh−1√2n/(n+ 1),
then2KX is very ample. In particular, for any givenX, there exists a finite etale
coverX′ so that2KX′ is very ample.

We remark that our upper bound combined with [EKL] gives a uniform lower
bound of the diameterDX. But this is weaker than the one obtained using Gauss–
Bonnet.

2. Proof of the Lower Bound

In this section, we are going to prove the lower bound forε(KX, x). The idea is to
produce a lift ofω to the blow-up of Bn at the origin with sufficient positivity along
the exceptional divisor by carrying out the Guillemin–Sternberg construction using
the Poincaré radius.

For a pointz ∈ Bn, let |z|P = d(z,0) be the Poincaré distance ofz from the
origin 0. We have the well-known relations

|z|P = 1
2 log

1+ |z|
1− |z|,

|z|2 = 1− 1

cosh2 |z|P
= tanh2|z|P .

For a numberc > 0, we define Bn(c) := {z ∈ Bn | |z|P < c}. Using the notations
in Section 1, we have

LEMMA 2.1. Letφ(r) be a positive real-valued smooth function of a positive real
variable r, such thatφ(r)r is monotone increasing. Letδ > 0 be a small positive
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number such that|φ(|z|)z| < 1 for z ∈ Bn(δ)\{0}. Define8:Bn(δ)\{0} → Bn by
8(z) = φ(|z|)z. Then

8∗ω = √−1 cosh2(|8(z)|P )φ2 dz ∧ dz +

+√−1[cosh2(|8(z)|P )φφ
′

|z| +

+ cosh4(|8(z)|P )(φ4+ φ3φ′|z|)]z dz ∧ z dz.

Moreover, it is a Kähler form onBn(δ)\{0}.
Proof.First we remark that it follows from the arguments in [MP, Sect. 5.1] that

8∗ω is a Kähler form on Bn(δ)\{0}. Writing 8i(z) = φ(|z|)zi, 1 6 i 6 n, and
usingdφ = (φ′/2|z|)(z dz + z dz), we have

n∑
i=1

d8i ∧ d8i =
n∑
i=1

(φ dzi + zi dφ) ∧ (φ dzi + zi dφ)

= φ2 dz ∧ dz + φz dz ∧ dφ + φ dφ ∧ z dz

= φ2 dz ∧ dz + φφ
′

|z| z dz ∧ z dz;

n∑
j,k=1

8j d8j ∧8k d8k

=
n∑

j,k=1

φzj (φ dzj + zj dφ) ∧ φzk(φ dzk + zk dφ)

= (φ4+ φ3φ′|z|)zdz ∧ z dz.

Now one can use(1− |8(z)|2)−1 = cosh2(|8(z)|P ) to conclude Lemma 2.1.

Let V ⊂ Pn−1 × Bn be the blow-up of Bn at the origin 0, and letα:V → Pn−1

andβ:V → Bn be the natural maps. Letσ be the Fubini–Study (1,1)-form on
Pn−1 normalized so that

∫
P1 σ = 2π for a complex lineP1 ⊂ Pn−1. The pull-

back of the Euclidean coordinatesz1 . . . , zn by β define holomorphic functions
on V , which we denote by the same letters. LetE = β−1(0) be the exceptional
divisor inV . We will skip the proof of the following lemma, which can be checked
directly using standard local coordinates onV , sayu1, . . . , un satisfyingz1 = u1,
z2 = u1u2, . . . , zn = u1un, etc. (Also see [GS, Sect. 4].)

LEMMA 2.2. The expression
√−1(1/|z|2)z dz∧ zdz defines a smooth(1,1)-form

onV whose restriction to a differential form onE is zero, and

α∗σ = √−1

(
dz ∧ dz

|z|2 − z dz ∧ z dz

|z|4
)
.

166581.tex; 23/08/1999; 9:11; p.4

https://doi.org/10.1023/A:1001074801110 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001074801110


ON SESHADRI CONSTANTS OF CANONICAL BUNDLES 207

For 0< c < 1, letV (c) = β−1(Bn(c)).

LEMMA 2.3. For a fixed numberλ > 0, choose a small numberδ > 0 andφ(r)
as in Lemma2.1 such that the associated map8(z):Bn(δ)\{0} → Bn satisfies
|8(z)|2P = λ2+ |z|2P for z ∈ Bn(δ)\{0} (cf. the proof below for the explicit expres-
sion ofφ(r)). Then the Kähler formβ∗8∗ω on V (δ)\E extends to a continuous
semi-positive(1,1)-form onV (δ) whose restriction toE is equal to(sinh2 λ)α∗σ .

Proof. To satisfy|8(z)|2P = λ2 + |z|2P , one choosesφ(r) given by, for suffi-
ciently smallr,

r2φ(r)2 = 1− 1

cosh2
√
λ2+ 1

4

(
log 1+r

1−r
)2 .

By taking derivatives of both sides, one can easily see that

lim
r→0

(φ2+ rφφ′) = sinhλ

λ cosh3 λ
< +∞.

Puttingr = |z|, we can thus regardr2φ2 andφ2+ rφφ′ as continuous functions on
V (δ). Then by Lemma 2.1, we have

8∗ω = √−1 cosh2(|8|P )r2φ2

(
dz ∧ dz

r2
− z dz ∧ z dz

r4

)
+

+√−1 cosh2(|8|P )(φ2+ rφφ′)×

×(1+ r2φ2 cosh2(|8|P ))z dz ∧ z dz

r2
.

The first term is just cosh2(|8|P )r2φ2α∗σ . Since|8(z)|P converges toλ asz →
0, the first term converges to cosh2 λ(1− (1/ cosh2 λ))α∗σ = sinh2 λα∗σ . From
Lemma 2.2 and the boundedness ofφ2 + rφφ′, the second term restricted toE is
zero. This finishes the proof of Lemma 2.3.

Now we are ready to get the desired lifting of Poincaré metric toV .

PROPOSITION 2.4.Fix a numberλ > 0. Given any small numberη > 0, there
exists a semi-positive closed real(1,1)-form τ onV , which is smooth onV \E and
is continuous onE, such thatτ = β∗ω on V \V (λ(1+ η)) and τ = sinh2 λα∗σ
onE.

Proof. By choosing a sufficiently smallδ = δ(λ, η) > 0, it is clear that one
can define8:Bn\{0} → Bn such that8(z) = z for |z|P > λ(1 + η), |8(z)|P
depends only on the value of|z|P , and it is a monotone increasing smooth function
of |z|P ; moreover,8(z) takes the form in Lemma 2.1 with|8(z)|2P = λ2+|z|2P for
|z|P < δ. By Lemma 2.3,β∗8∗ω onV \E can be extended to the desiredτ onV ,
which gives Proposition 2.4.
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Now that we have the lifting ofω, the proof of the lower bound forε(KX, x)
given below is just a direct translation of the proof in [La], replacing ‘Abelian
varieties’ by ‘ball quotients’.

PROPOSITION 2.5.For any pointx ∈ X, we haveε(KX, x) > (n+ 1) sinh2(ρx).
Proof. Let f :Y → X be the blow-up ofX at x andE be the exceptional

divisor. For any numberλ satisfying 0< λ < ρx, we want to show that theR-
divisor classf ∗KX − (n + 1)(sinh2 λ)E is nef. Fixη > 0 so thatλ(1+ 3η) <
ρx. Using the covering projection map, we have a Kähler isometric embedding of
Bn(λ(1+ 3η)) into X sending 0 tox. For ν < λ(1+ 3η), V (ν) can be viewed
as being embedded inY as a neighborhood ofE. From Proposition 2.4, we get a
semi-positive closed real(1,1) -form τ on Y agreeing withω off V (λ(1+ 2η))
and with sinh2 λα∗σ on E. Since the class ofE restricted toE itself is equal to
−(1/2π)σ andKX = ((n + 1)/2π)ω on X as Kähler classes,((n + 1)/2π)τ
representsf ∗KX − (n + 1)(sinh2 λ)E (cf. [La]) and the required nefness follows
easily.

3. Proof of the Upper Bound

Let (X,ω) be as in Theorem 1.1. We are going to prove the upper bound for
ε(KX, x) stated in Theorem 1.1.

First we recall the following definitions in [De, Sect. 2]. For any pointx ∈ X,
we denote byC(KX, x) the class of singular Hermitian metrics ofKX which are
C∞ onX\{x} and of classL1

loc onX. Also we let

C+(KX, x) := {h ∈ C(KX, x) | c1(KX, h) > 0}. (3.1)

Here 2πc1(KX, h) denotes the curvature(1,1)-current ofh on X. In terms of a
holomorphic trivializationKX|U ∼ U × C over an open coordinate neighborhood
U of x, supposeh is given by a functionψh satisfyingh(v, v) = e−2ψh |v|2, v ∈
KX|U . Then it is well known that the Lelong number

ν(ψh, x) := lim inf
z→x

ψh(z)

log |z− x| (3.2)

is independent of the choice of the trivialization ofKX, i.e.ν(ψh, x) depends only
onh andx. By [De, Thm 6.4 and Rem. 6.6],ε(KX, x) is also given by

ε(KX, x) = sup
h∈C+(KX,x)

ν(ψh, x). (3.3)

We denote byh0 the smooth Hermitian metric onKX induced by the Poincaré
metric ω (so that 2πc1(KX, h0) = (n + 1)ω). For any pointx ∈ X and h ∈
C(KX, x), we letφh be the unique function onX (possibly singular atx) satisfying

h = h0 e−2φh on X. (3.4)
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Sinceh0 is smooth, it follows from (3.3) that we also have

ε(KX, x) = sup
h∈C+(KX,x)

ν(φh, x). (3.5)

Now we fix a pointx ∈ X, and we fix anh ∈ C+(KX, x). Without loss of
generality, we will assume thatφh(y)→−∞ asy → x (otherwise,ν(φh, x) 6 0).
Denote byπ :Bn→ X the covering projection map sending the origin 0 tox. Then
we define a functionµh:Bn→ R ∪ {−∞} given by

µh(z) = 2φh(π(z))− (n+ 1) log(1− |z|2)
for z ∈ Bn\π−1{x} (3.6)

andµh(z) = −∞ for z ∈ π−1{x}. Using (3.4), it is easy to check that
√−1∂∂µh =

2π · π∗c1(KX, h) > 0 on Bn\π−1{x}, and thusµh is a plurisubharmonic function
on Bn (here one may regardµh as extended from Bn\π−1{x}). Also, it is easy to
see from (3.6) that

ν(µh,0) = 2ν(φh, x). (3.7)

DEFINITION 3.1. A real-valued functionf defined on a subsetS ⊂ Cn is said to
beradially symmetric about the origin0 if f (z) depends only on|z| for all z ∈ S,
i.e.f (z) = F(|z|2) for some functionF :R→ R.

Now we define another functionµ∗h given by

µ∗h(z) = max
|w|=|z|

µh(w) for z ∈ Bn. (3.8)

We shall need some simple properties ofµ∗h given in the following lemma.

LEMMA 3.2. (i) µ∗h takes values onR ∪ {−∞}, andµ∗h(z) = −∞ only atz = 0.
(ii) µ∗h is radially symmetric about 0(cf. Definition3.1).
(iii) µ∗h is a plurisubharmonic function onBn.
(iv) µ∗h is locally Lipschitz onBn\{0}, i.e. for any compact subsetK ⊂ Bn\{0},

there exists a constantCK > 0such that|µ∗h(z)−µ∗h(z′)| 6 CK |z−z′| for z, z′ ∈ K.
In particular,µ∗h is bounded on compact subsets ofBn\{0}.

(v) ν(µ∗h,0) = ν(µh,0).
Proof.(i) follows easily from the facts thatµh ∈ C∞(Bn\π−1{x}) andµh(z)→

−∞ asz approaches the discrete setπ−1{x}. (ii) follows trivially from (3.8). Next
we observe thatµ∗h(z) = maxU∈U(n) µh(Uz), whereU(n) denotes the set ofn ×
n unitary matrices. It is well known that if the supremum of an (infinite) set of
plurisubharmonic functions is an upper semi-continuous function (and<∞), then
it is automatically plurisubharmonic (cf., e.g., [H, pp. 16]). Thus, by (i), in order
to prove (iii), it suffices to check thatµ∗h is upper semi-continuous on Bn. For any
c ∈ R, let z0 ∈ Bn be a point such thatµ∗h(z0) < c. Thenµ∗h(z) < c for all
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z satisfying |z| = |z0|. Write π−1{x} as {xi}i∈I , whereI is a (countable) index
set. For eachi ∈ I , choose an open neighborhoodUi of xi such thatµh < c

onUi. Together with the smoothness ofµh on Bn\⋃i∈I Ui, it follows that there
existsε > 0 such thatµh(z) < c (and henceµ∗h(z) < c) for all z satisfying
|z0| − ε < |z| < |z0| + ε. Thusµ∗h is upper semi-continuous on Bn, which then
leads to (iii). Next we proceed to prove (iv). Obviously we just have to consider
compact subsets of the formKa,b := {z ∈ Bn|a 6 |z| 6 b}, where 0< a < b < 1.
As in the proof of (iii), it is clear that one can choose open neighborhoodsVi
of xi , i ∈ I , such that the values ofµ∗h onKa,b depend only on those ofµh on
Ka,b\⋃i∈I Vi. Then the Lipschitzness ofµ∗h onKa,b follows easily from that of
µh on Ka,b\⋃i∈I Vi, and (iv) follows. To prove (v), we first observe that (3.8)
implies easily thatν(µ∗h,0) 6 ν(µh,0). Also the usual convexity properties of
plurisubharmonic functions imply thatµh(z) 6 ν(µh,0) · log |z|+O(1) near 0 (cf.,
e.g., [De, Proof of Lemma 2.8]). Together with (3.8), one also sees thatµ∗h(z) 6
ν(µh,0) · log |z| + O(1) near 0, which then impliesν(µ∗h,0) > ν(µh,0), and (v)
follows. Thus we have finished the proof of Lemma 3.2.

Next we construct smooth plurisubharmonic approximations ofµ∗h as follows.
Fix a nonnegative functionη ∈ C∞0 (Cn) such thatη is radially symmetric about 0
with

∫
Cn η(ζ )dλ(ζ ) = 1. Hereλ denotes the standard Lebesque measure onCn.

Then forτ > 0, we define

µ∗h,τ (z) :=
∫
Cn
µ∗h(z − τζ )η(ζ )dλ(ζ ). (3.9)

It is clear that for any 0< r < 1, there existsτ0 > 0 (depending onr and supp(η))
such that for 0< τ < τ0, µ∗h,τ is well-defined on{z ∈ Bn | |z|2 < r}. Moreover,
we have

LEMMA 3.3. (i) For eachτ > 0, µ∗h,τ is a smooth and plurisubharmonic function,
and forz ∈ Bn, µ∗h,τ (z)→ µ∗h(z) asτ → 0.

(ii) Eachµ∗h,τ is radially symmetric about0.
(iii) µ∗h,τ converges uniformly toµ∗h on compact subsets ofBn\{0} asτ → 0.
Proof. (i) is well known and can be found, for example, in [H, pp. 45]. (ii)

follows easily from the radial symmetry ofµ∗h andη about 0. Finally, (iii) can be
checked easily using (3.9) and Lemma 3.2(iv).

Let Fh(r): (0,1) → R be the function such thatµ∗h(z) = Fh(|z|2) for Bn\{0}
(cf. Definition 3.1 and Lemma 3.2(i), (ii)). Similarly, forτ > 0, we letFh,τ (r) be
the function such thatµ∗h,τ (z) = Fh,τ (|z|2) (cf. Lemma 3.3(ii)). LetDx be as in
Theorem 1.1. We have

PROPOSITION 3.4. (i)For eachτ > 0, Fh,τ is a smooth function. Moreover,Fh,τ
converges uniformly toFh on compact subsets of(0,1) asτ → 0.
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(ii) There existsr0 > 0 such that for allε satisfying0 < ε < 1, there exists
τε > 0 (depending onε) such that for0 < τ < τε, there existsrτ,ε satisfying
r0 < rτ,ε < tanh2(Dx) such that

|F ′h,τ (rτ,ε)| 6
1

1− ε ((n+ 1) cosh2(Dx)+ ε). (3.10)

Proof. (i) Follows easily from the corresponding statements forµ∗h,τ , µ
∗
h in

Lemma 3.3 (i), (iii). Next we proceed to prove (ii). Recall thatφh ∈ C∞(X\{x})
andφh(y) → −∞ asy → x. It follows thatφh attains maximum at some point
x∗ ∈ X\{x}. By definition ofDx , we necessarily haveπ(Bn(Dx)) = X. Thus there
existsz∗ ∈ Bn(Dx)\{0} such thatπ(z∗) = x∗. Write r∗ = |z∗|2. Then we have

0< r∗ = tanh2|z∗|P 6 tanh2(Dx) (3.11)

(cf. Section 2). Sincedφh(x∗) = 0, it follows that, in terms of Euclidean coordin-
ates of Bn (with z∗ identified withx∗), there existsδ1 = δ1(ε) > 0 such that for
0< δ < δ1, |dφh(z)| 6 ε|z∗|/8 if |z− z∗| 6 δ/|z∗|. Then we have

06 φh(x∗)− φh(π(z)) 6 εδ

8
if |z− z∗| 6 δ

|z∗| . (3.12)

Now defineφ∗h(z) := max|w|=|z| φh(π(w)) for z ∈ Bn as in (3.8), so that by (3.6)
and (3.8), we have

µ∗h(z) = 2φ∗h(z)− (n+ 1) log(1− |z|2) for z ∈ Bn. (3.13)

By definition,φ∗h is radially symmetric about 0. Thus by (3.12), we also have, for
0< δ < δ1

06 φh(x∗)− φ∗h(z) 6
εδ

8
if | |z| − |z∗| |6 δ

|z∗| . (3.14)

This implies that, for 0< δ < δ1 andz1, z2 ∈ Bn

|φ∗h(z1)− φ∗h(z2)| 6 εδ

4
if | |zi| − |z∗| |6 δ

|z∗| , i = 1,2 (3.15)

(and in particular, if| |zi|2 − |z∗|2 |6 δ, i = 1,2). Next, using d/dr log(1− r) =
−(1/(1−r)) and the mean-value theorem, one sees that there existsδ2 = δ2(ε) > 0
such that

| log(1− |z1|2)− log(1− |z2|2)|

6
(

1

1− |z∗|2 +
ε

2(n+ 1)

)
| |z1|2− |z2|2 | (3.16)
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if | |zi|2− |z∗|2 |6 δ2, i = 1,2. Now choose

r0 = r∗

2
> 0 and δ = min

(
δ1, δ2,

r∗

2

)
> 0 (3.17)

(thus onlyδ depends onε ). Then it is clear that there existsτε > 0 (depending on
ε and supp(η)) such that for any 0< τ < τε, ζ ∈ supp(η) andz ∈ Bn satisfying
| |z|2− |z∗|2 |6 δ(1− ε), one has

| |z − τζ |2− |z∗|2 |6 δ, | |z∗ − τζ |2− |z∗|2 |6 δ
and

| |z − τζ |2− |z∗ − τζ |2 |6 δ
which, together with (3.9), (3.13), (3.15) and (3.16), imply that

|µ∗h,τ (z)− µ∗h,τ (z∗)|

6
∫
Cn
|µ∗h(z− τζ )− µ∗h(z∗ − τζ )|η(ζ )dλ(ζ )

6
(

2 · εδ
4
+ (n+ 1)

(
1

1− |z∗|2 +
ε

2(n + 1)

)
δ

)∫
Cn
η(ζ )dλ(ζ )

=
(

n+ 1

1− |z∗|2 + ε
)
δ. (3.18)

Then (3.18) implies that, for 0< τ < τε and 06 r∗ − r 6 δ(1− ε), one has

|Fh,τ (r)− Fh,τ (r∗)| 6
(
n+ 1

1− r∗ + ε
)
δ. (3.19)

By the mean-value theorem, one sees from (3.19) that for 0< τ < τε, there exists
rτ,ε satisfying 0< r∗ − rτ,ε < δ(1− ε) (and thusr0 < rτ,ε < tanh2(Dx) by (3.11)
and (3.17)) and such that

|F ′h,τ (rτ,ε)| 6
1

1− ε
(
n+ 1

1− r∗ + ε
)

6 1

1− ε
(

n+ 1

1− tanh2(Dx)
+ ε

)
, (3.20)

which leads to (3.10). Thus we have finished the proof of Proposition 3.4.

We shall also need the following.

PROPOSITION 3.5.For c > 0, let f : {z ∈ Cn | 0 < |z|2 < c} → R be a smooth
plurisubharmonic function which is radially symmetric about the origin0, and let
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F(r): (0, c)→R be the associated smooth function such thatf (z) = F(|z|2) for
0 < |z|2 < c ( cf. Definition3.1). Then for any numberr∗ satisfying0 < r∗ < c ,
we have

f (z) > A log |z|2+ B for 0< |z|2 6 r∗, (3.21)

where

A = r∗F ′(r∗) and B = F(r∗)− r∗F ′(r∗) log r∗. (3.22)

Proof. Let f (z) andF(z) be as above. A simple calculation shows that for
0< |z|2 < c(

∂2f

∂zi∂zj

)
16i,j6n

= (F ′(|z|2) · δij + F ′′(|z|2)zizj )16i,j6n. (3.23)

Moreover, the matrix(zizj )16i,j6n is of rank one with eigenvalues 0,|z|2 of multi-
plicity n − 1 and 1 respectively. Sincef is plurisubharmonic, the matrix in (3.23)
is positive semi-definite, which implies

F ′(r)+ rF ′′(r) > 0, 0< r < c. (3.24)

Next we make another change of variable given bys = logr, and letG(s) be the
function such thatF(r) = G(log r) for 0 < r < c. Using the chain rule, (3.24)
implies that

G′′(s) > 0, −∞ < s < logc. (3.25)

Consider the function

H(s) := G(s) − (As + B), −∞ < s < logc, (3.26)

whereA, B are the constants in (3.22). Then one can easily check that (3.22) and
(3.25) are equivalent to the following conditions

H ′′(s) > 0, −∞ < s < logc

and

H(logr∗) = H ′(logr∗) = 0. (3.27)

SinceH ′′(s) > 0,H ′(s) is increasing on−∞ < s 6 logr∗. ButH ′(log r∗) = 0.
Thus,H ′(s) 6 0 for−∞ < s 6 logr∗. Together with the conditionH(logr∗) = 0,
it follows thatH(s) > 0 for −∞ < s 6 logr∗, which leads to (3.21). Thus, we
have finished the proof of Proposition 3.5.
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Finally we are ready to complete the proof of Theorem 1.1.

Proof of Theorem1.1. First we remark that Theorem 1.1(ii) is a direct con-
sequence of Theorem 1.1(i). In view of Proposition 2.5, it remains to prove the
upper bound forε(KX, x) in Theorem 1.1(i). Fix a pointx ∈ X, and leth ∈
C+(KX, x). Letφh, µh, µ∗h, µ

∗
h,τ , Fh, Fh,τ be the associated functions as construc-

ted earlier. By Proposition 3.4(ii), there existsr0 > 0 such that for 0< ε < 1,
there existsτε > 0 such that for 0< τ < τε, there existsrτ,ε satisfyingr0 <
rτ,ε < tanh2(Dx) and such that (3.10) holds. In view of Lemma 3.3, we can apply
Proposition 3.5 to the functionsµ∗h,τ , Fh,τ to conclude that for 0< ε < 1 and
0< τ < τε,

µ∗h,τ (z) > Aτ,ε log |z|2+ Bτ,ε if 0 < |z|2 < r0, (3.28)

where

Aτ,ε := rτ,εF ′h,τ (rτ,ε) and

Bτ,ε := Fh,τ (rτ,ε)− rτ,εF ′h,τ (rτ,ε) logrτ,ε.
(3.29)

By Lemma 3.2(iv),Fh is bounded on the intervalr0 6 r 6 tanh2(Dx). Hence,
by Proposition 3.4(i), there existsτ ∗ > 0 such that the functions{Fh,τ }0<τ<τ∗ are
uniformly bounded on the intervalr0 6 r 6 tanh2(Dx). Together with (3.10), it
follows that there exists a constantB∗ > 0 such that

|Bτ,ε| 6 B∗ for 0< ε < 1
2, 0< τ < min{τε, τ ∗}. (3.30)

Combining (3.10), (3.28), (3.29) and (3.30), one has, for 0< ε < 1
2, 0 < τ <

min{τε, τ ∗} and 0< |z|2 < r0
µ∗h,τ (z)
log |z|2 6 Aτ,ε + B∗

| log |z|2|

6 tanh2(Dx)

1− ε ((n+ 1) cosh2(Dx)+ ε)+ B∗

| log |z|2| . (3.31)

By first lettingτ → 0 (and using Lemma 3.3(i)) and then lettingε→ 0, it follows
that for 0< |z|2 < r0

µ∗h(z)
log |z|2 6 (n+ 1) sinh2(Dx)+ B∗

| log |z|2| . (3.32)

By (3.7), Lemma 3.2(v) and taking lim inf on both sides of (3.32) asz → 0, one
easily getsν(φh, x) 6 (n + 1) sinh2(Dx). Finally by varyingh ∈ C+(KX, x) and
using (3.5), one getsε(KX, x) 6 (n + 1) sinh2(Dx), and this finishes the proof of
Theorem 1.1.
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Algébriques d’Orsay, Ast´erisque218(1993), 177–186.

[GS] Guillemin, V. and Sternberg, S.: Birational equivalence in the symplectic category,Invent.
Math.97 (1989), 485–522.

[H] Hörmander, L.:An Introduction to Complex Analysis in Several Variables, North-Holland,
Amsterdam, 1973.

[La] Lazarsfeld, R.: Lengths of periods and Seshadri constants of Abelian varieties,Math. Res.
Lett.3 (1996), 439–447.

[MP] McDuff, D. and Polterovich, L.: Symplectic packings and algebraic geometry,Invent. Math.
115(1994), 405–429.

166581.tex; 23/08/1999; 9:11; p.13

https://doi.org/10.1023/A:1001074801110 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001074801110

