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It is proposed to establish, by elementary methods, a theorem
for matrices analogous to Fermat's Theorem in the Theory of
Numbers. In Jordan's Traite des Substitutions (Paris, 1870) pp. 127,
128, the order of any given linear substitution or matrix A with
reference to any prime number p is determined, but the result given
depends on the particular characteristic equation satisfied by the
matrix A, and a general result applicable to all matrices of n rows
and n columns does not seem to have been published hitherto.

(1) Fermat's Theorem in the Theory of Numbers is as follows:—
/ / p is a prime number and N is prime to p, then Np~1 — 1 is

divisible by p, i.e. NP^1 = 1 (modp).
To extend this to matrices we have to answer this question:—If

p is a prime number, and A is a matrix of order n with integral
elements, such that j A | is prime to p, what is the smallest value of q
which will always satisfy the congruence Aq = / (mod p) ? Here / is
the unit matrix, and the notation means (as in Turnbull and Aitken,
Theory of Canonical Matrices (London, 1932), 22) that every element
of the matrix (A9 — I) is either zero or a multiple of p. Hence Aq

must be of the form

pa12

pa22 + 1 p023

On expanding the determinant of this matrix, we get \A9\ = 1 + a
multiple of p, i.e. \Ag\~l (modp). If |̂ 41 = 0 (mod ^) , then
| A" | = 0 (mod p), and therefore no relation of the form A9 = I (mod p)
can exist.

(2) If A = pB + C, then A2 = p2 Bz + p (BG + CB) + C2, so that
A2 = C2 (mod p). Similarly Aq = Gq (mod p) and thus we need consider
only those matrices whose elements are all taken from the numbers
0, 1, 2 . . . . (p — 1). since any matrix with integral elements can be
put in the form pB + C where C is such a matrix.
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(3) The set of matrices of order n, whose elements are all taken from
the numbers 0, 1, 2 . . . . (p — 1), and which are such that their deter-
minants are prime to p, form a finite congruent group. The unit
matrix is the " identical " member of the group. The product of any
two members of the set is congruent (mod p) with some member of
the set. Every member has its reciprocal. In symbols, if A and B are
any two members of the set, there exist members C and D such that
AB = C (modp) and AD = I (modp). These properties are sufficient
to establish that the set of matrices form a group.

The order of this group is (pn— 1) (pn — p) {pn—p2) • • • • (pn—pn~1).
This is established in Burnside's Theory of Groups (Cambridge 1911),
§ 83, and may also be proved from first principles by the following
elementary method:—

Let ur be the vector given by the rth row of the matrix. Then
the n elements of u± may each consist of any of the p numbers
0, 1, 2 . . . . (p — 1), except that they may not all be zero since this
would make the matrix singular. There are therefore pn — 1 ways of
selecting this vector. When ux has been selected, u2 may be any of
the pn possible vectors except those which are congruent with &x ux

(modp) {kx = 0, 1, 2 . . . . (p — 1)}, since any of these vectors will make
all the minor determinants formed from the first two rows congruent
with 0 (modp) and therefore the matrix will be singular (modp), and
this will not be the case if u^ and u2 are linearly independent. There
are therefore pn — p ways of selecting u2. Similarly uz may be any
of the pn possible vectors except those which are congruent with
k-yiii + k2u2 (modp) {kt = 0, 1, . . . . (p — 1). k2 = 0, 1 . . . . (p — 1)} and
the numbers of ways of selecting u3 is therefore pn — p2. The same
argument applies to all the other rows, and the total number of
matrices, i.e. the order of the group, is therefore as stated above.

By an elementary proposition in the Theory of Groups the
number q which we are seeking must be a submultiple of the order of
the group.

(.4) By the Cayley-Hamilton Theorem (Turnbull and Aitken, page 43)
every matrix of order n satisfies an identity of the form

where pn=\A\. Removing or adding multiples of p this reduces to
the congruence An + X1 A

n~1+X2 An~- + +Xn-i A + pi = 0 (mod p)
where Xr = 0, 1,2 (p — 1), /x = 1, 2 (p - 1). Now if
(xn + Xi a;""1 + X2 x

n~2 + . . . . + \n_1 x + p) is a factor (mod p) of
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{xq — 1), the above congruence must give A" — I = 0 (mod2?), and
hence if q is such that (xn + \1x

n~i + \2x
n~2 + . . . . + /x) is a factor

(mod p) of xq — 1, no matter what values are given to the A's and /x,
then Aq — I = 0 (mod p) will be true for all matrices of order n with
integral elements.

(5) By Fermat's Theorem we know that (x + a) {a= 1, 2. . . . (p— 1)} is
a factor (mod p) of a;*""1— 1. Hence (x+a1)(x + a2){a1 = 1, 2, . . . . (p—1)>

a2 = 1, 2, . . . . (p — 1), ax=^a2} must be a factor (xaodp) of a;""1 — 1.
Hence (p — 1) must be a submultiple of the value of q for n = 2.

Consider next the cases where the expression x2 + \1x + p is
irreducible (mod p), i.e. cannot be factorised. This introduces the
conception of a Galois Field.

Let F (x) be an arbitrary rational integral function with integral
coefficients, and let P (x) be a rational integral function of degree n
irreducible modulo p (p being a prime number). If we divide F (x)
by P (x) we obtain a quotient Q {x) and a remainder which can be
written in the form / (x) + p. q (x) where / (x) is of the form
f(x)=ao + a1x + . . . . + cin-.xX'1'1, each at belonging to the series
0, 1, 2 (p - 1). Then F (x) =f{x)+p.q (x) +P(x).Q (x).

Then f(x) is called the residue of F (x), moduli p and P(x). and
we write F (x) s / ( « ) (modd^j, P (x)). Since each of the n a's may take
p values, there are pn possible residues. These residues form a field,
called a Galois Field, of order pn. [L. E. Dickson, Linear Groups
(Leipzig, 1901), §6.]

[Note. If P (x) is reducible (modp), or if p is not a prime, the
residues do not form a field, since at least two non-zero residues can
be found whose product is 0 (moddp, P(x)).]

(6) Let P(x) be the irreducible (modp) function x'^X^ xn~l

and let F (x) be xT, so that

xr = f (x) + p . q(x) + (n + Xn_1x+. . . + X1x
n~l+xn)(b0+b1x+ . . .+br_

Then/(cc) cannot be zero. For, if so, we get from the above identity,
since /x is prime to p, first that 60 = 0 (mod p) and hence that blt b2

are all = 0 (mod p) and finally that bT_n = 0 (mod p). But br_n must
be 1. Hence f (x) cannot be zero.

Since the number of residues is finite, it must be possible to find
two numbers r and s such that the residues of xr and x8 are the same.
Let s be the first number greater than r such that the residues of
xr and x' are the same.
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Then x* — xT = 0 (modd p, P (x))

xr(zs-T-l) = 0

Then, since xr ^ 0 ,,

x ' ~ T - 1 = 0

or, if s — r = e, xe =\ ,,

It follows that if t is any number x' and xt+e have the same residue,
so that the residues are periodic with period e. This period e is a
submultiple of pn — 1 (c/. Dickson, Linear Groups, §11). For as r
takes the values 0, 1, 2, . . . . , the residues of xT are 1, x, x2

There are pn — 1 non-zero residues altogether. We can form a
rectangular array of all these non-zero residues as follows:—

1 x x2 xe~1

Ux UXX U±X2 Ux Xe~1

u2 u2x u2x
2 u2 xe-1

where, if the power to which x is raised in the first row is greater
than (n — 1), it is understood that the residue (modd p, P (x)) is
taken, and where u^ is any non-zero residue not included in the first
row, u2 is any non-zero residue not included in the first two rows, and
so on. Then all the residues in any line are different from each other
and from those in preceding rows. Hence, as all the pn — .1 non-zero
residues must be included in the array, and there are e in each row,
pn — 1 is a multiple of e.

Also if xe = 1 (modd p, P (x)), then xke = 1 (modd p, P (x)). Hence
xv"~x — 1 = 0 {modd p, P (x)} for all irreducible P (x) of degree n, of
the form given. This is the same as saying that P (x) is a factor
(mod p) of x^"-1 — 1.

(7) Now let P(x), no longer irreducible, be of the form {x + a)n (mod p)
where a = 1, 2 . . . . {p — I). Then we have

x= — a + (x + a)
= {p - a) + (x + a) (mod p)

xp = (p — a)p + {x + a)v (modp),

since p is prime and therefore all the other terms are divisible by p.

Hence xp = (p — a) + (x + a)p (xnodp) by Fermat's Theorem.
Similarly, (x*)p = (p - a)* + (x + a)*' „
or XP'; = (p - a) +(x + a)*"-
Similarly xp" = (p — a) + (x + a)p1 ,, , and so on.
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Hence if pr is the lowest power of p which is greater than or equal to n

xv' = {p — a) {modd p, (x + a)"},
so that by Fermat's Theorem

xp
r(v~i) = i {modd p, (x + a)"},

that is (x + a)n is a factor, modulo p, of xpr^p-1) — 1.

(8) Now let P(x), of even degree n, be of the form (x2 -f- Ax + /x)"/2

(modp) where x2 + Xx + /x is irreducible (madp). Then, by paragraph
(6) above, x2 + Xx-\-yi, is a factor (mod p) of xp'~1 — l. So we can write

*J>=-I = i -i-(^2 + xx + fj.). Q(x) (modp),

where Q (x) is an integral function of x of degree p2 — 3. Therefore

(a^'-ijp' = i + (X2 + Xx + /*)p= . {Q {x)¥"- (mod p),

and so on. Hence, if ps is the lowest power of p which is equal to or
greater than \n,

(XP*-1)P'= 1 (moddp, P (x)).

That is, (xz + Xx +/x)n/2 is a factor (mod p) of x^-w - 1. The s
found here is evidently not greater than the r of the previous para-
graph, and therefore (x2 + Xx + /x)"'2 is a factor (mod p) of a;(*»"-"pr_ l.

Similarly, if P (x) is of the form (a;3 + Xt x
2 + A2 a; + /x)ra'3, (mod ^)

where x3+X1x
2+X2x+ix is irreducible (mod 2>), then P (x) must be a

factor (mod p) of â J>"~1)1)''— 1, and similar results can be obtained
when P (x) is a power of irreducible functions of higher degree.

(9) Combining these results we have:—

(a) if n = 2, P (x) may take the forms (mod p) of (i) (x + a)2, (ii)
(r + ax) (x + a2) {a1=j=a2}, or (iii) x2 + Xx + fx. (irreducible mod p).
In case (i) P (x) is a factor (mod p) of a;J>(:P~1) — 1 since p° < n ^ p,

(\i\ 3-P-1 — 1

(iii^ r(p-'-i) _ 1

Therefore in all three cases P (x) is a factor (mod p) of (XP(P--U — 1).

(6) If n = 3, P (:c) may take the forms (mod p) of (i) (x + a)3,
(ii) (z + a^2 (.r + a2), (iii) (z + a i ) (x + a2) (x + a3), (iv) (a; + aL)
(a;2 + Aa; + M), (V) x3 + X1x

2 + X2x-\- ft (irreducible).

In case (i) if p = 2 (so that p < n < p~) P {x) is a factor of
J-PMP-I) _ i j while for all other values of p (giving n ^ p), P (x) is a
factor of a;p(:P~1) — 1. In case (ii), since (x -f- ax)

2 is a factor of
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X P ( P - I ) _ 1 ; and (x + a2) is an independent factor of a:""1 — 1, P (x) must
be a factor of xv{v~Vl — 1. In case (iii), P (x) is a factor of xv~x — 1.
In case (iv), since (x + a) is a factor of xv~x — 1 and x2 + *-x + /x,
which does not contain (x + a), is a factor of xp'~x — 1, P (x) must be
a factor of x^'1 — 1. In case (v), P (x) is a factor of x»"~x — 1.

Hence, in all cases, P (x) is a factor of xplq* — 1 if p = 2, or of
XPI> — 1 if ^ is any other prime, where q3 is the L.C.M. of p2 — 1 and
p3 - 1, that is, q3 = [(p2 - 1) (p3 - l)]/(p - 1).

(c) Similar arguments show that, in general, when P (x) is of
the nth degree, it must be either irreducible, or made up of factors
which have appeared among the functions of lower degree, or be
a power of some irreducible function of lower degree, and in all
three cases P (x) must be a factor (mod p) of x1""9,, — 1, where pr is the
lowest power of p ^ n, and where qn is the L.C.M. of <?n-i a n d pn— 1.

(10) Hence we have this theorem :—
If p is a prime number, and A is a matrix of order n with integral

elements, such that \ A\ is prime to p, then Aq s I (mod p), where q — pr qn,
pr being the lowest power of p which is greater than or equal to n, and qn

being determined by the recurrence relation q1 = p — 1, qn = L CM. of
?„_! and (pn— 1).

This relation gives
q.2 = L.C.M. ol(p-l) and (p2 - 1) = p2 - 1

q3= ,, „ (P2— !) .» (P3 — 1) =

7 4 = ,, ,. Qs ». (P4 — 1) =

p -
(P4-I)(l

p -

(.

1

1

p* — 1) (p3— 1)
p — I)2• - 1) -

and so on.

(11) The foregoing argument does not establish that this value of q
is the lowest possible value satisfying the congruence Aq = I (mod p).
But, by enumerating all possible cases for low values of n and p, it-
is found that the value of q given above is the lowest value which
satisfies the congruence for these particular values. Thus for p = 2,
7i = 2, it is found that one matrix satisfies A = I (mod 2), some satisfy
A2 = I (mod 2) and the others satisfy A3 = I (mod 2) so that the
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lowest value of q which makes Aq = I (mod 2) for all matrices is q = 6.
This is also the value obtained from the above formula by putting
q = p (p2 — 1). Similarly for n = 2, p = 3, 5, 7 the values of q are
found to be 24, 120, 336 respectively; for n = 3, p = 2, 3, the values
of q are found to be 84 and 312 respectively; and for p — 2, n = 4, 5
the values of q are found to be 420 and 26040 respectively. The
same values of q are found from the formula.
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