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Presentations of

some classical groups

M.J. Wicks

The groups considered are A = GL(2, Z) , II = SL(2, Z) and

0 = PSL(2, Z) . A presentation of A is obtained for which the

word problem can be solved by a simple intrinsic algorithm. The

presentation is modified to display other features of A , and to

obtain related presentations of H and 0 . There is an

algorithm which solves the conjugacy problem of A .

The groups of the title share a common ancestry which relates them to

the (continuous) linear groups. They can be made to act as "motions", in

the plane or complex sphere, and this action can be analysed in a trans-

parently effective way. A resort to combinatorial methods (to solve the

word problem, for example) may thus be avoided. It is not surprising, and

especially since the groups have great importance in a variety of analytic

contexts, that their presentations have received little more than passing

attention. There is a brief systematic account in [2], §7.2.

There is an alternative heredity, from an ancestor that acts in a much

more complicated way. We refer to the automorphism group of a free group

(or rank two) of which A is a homomorphic image. A presentation which

derives from this context is implicit in [4]. The complete details are

given in the next section, together with a careful justification.

We then use Tietze transformations to get alternative presentations of

A . These transformations allow:

the elimination of a defining relation which is a consequence of
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others;

the elimination of a generator which can be expressed in terms of

other generators (with some consequential changes in the defining

relations);

the inverse of these, which introduce additional defining

relations and generators, respectively.

Presentations of II and 0 result in a direct way, and these in turn may

be further modified.

The conjugacy problem of A , which could be formulated as the linear

problem of unimodular similarity (for 2 x 2 unimodular matrices), is

solved group-theoretically in the final section. The finiteness of the

"class number" i s an easy consequence of the solution. An illustration of

th is interplay, at a much deeper level, between problems involving free

groups and diophantine questions, is to be found in [ / ] .

1. A presentation of A

We take A as the concrete group of 2 x 2 unimodular matrices and

assume, as we may, that A is generated by A , the 5-tuple whose

components (in order) are

A =

(-1 0
R =

1 II

0 1

s =

B =

0 -1

1 0

, T =

(By the usual abuse of language, we refer to A as a generating set of

A .)

We let A* be the abstract group with generating set

a = (a, b, r, s, t) and the following defining relations

2 2 2
r = s = t = 1 , re = sr , rt = ts ,

ra = cT r , sa = a~ s , rb = b~ r , sb = b~ 8 , ta = bt ,

ab~ = btv , a~ b = b~ ts , ba~ = ats , b~ a = a~ tv .

There is a great deal of redundancy. However, the aim is to
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f a c i l i t a t e computation and the superfluous re la t ions , in the form

displayed, should further th i s objective. The f i r s t step towards showing

that A and A* are isomorphic will be to establish a normal form for the

elements of A* (considered as words on a ) .

Let A = gp(f, 8, t) , the subgroup of A* with the indicated

generating se t , and note that A i s a dihedral group of order 8 . The

defining re la t ions show that for any W in gp(a, b) and d in A there

i s w' in gp(a, b) such that dw = w'd . I t follows that for any g in

A* there i s W in gp(a, b) and d in A such that g = wd . Further

reduction i s possible .

We l e t the a-length of g , denoted by \g\ , be the number of

occurrences of a and b , E = ±1 , in g . I t was implicit above that

\g\ = |u| . The a-length of W may be reduced in one of two ways: by

cancellation, which removes a t r i v i a l part such as a~ a ; or by

reduction, which uses a defining re la t ion to replace a part such as

ab~ by btr .

Iteration of the two processes - moving elements of A rightwards,

and decreasing a-length by cancellation or reduction - leads to a u in

gp(a, b) and d in A such that g = ud and u has the shortest

possible a-length. It is clear that u is freely reduced; but more than

that, u is in one of the subsemigroups Z = sgp(a, b) or

I' = sgp(a~ , b~ ) . We say that ud is in normal form. (Uniqueness will

be shown below.)

It will help to fix ideas in the subsequent argument if we introduce a

free group F freely generated by a 5-tuple X . The natural mappings of

X onto A and a , respectively, extend to homomorphisms )j and v of

F onto A and A* , respectively. Direct calculation shows that each

relator of A* , that is, each member of ker(v) , is taken by p into

I , the identity matrix. Hence, ker(v) is contained in ker(y) .

We now take an arbitrary g in ker(u) and let g be its image

under v . We suppose, without loss of generality, that g = ud , where

ud is in normal form and u is in £ . Then u, d are (canonical)

images of u , a" in F and there is an n in ker(v) such that
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gQ =
 urAQna . Since g and n. are both in ker(y) , it follows that

UQdQ is also. Hence, if U, D are the images of u , d tinder y , we

must have UD = I .

Consider now any U which corresponds in the obvious way to a u in

Z . Then U is a product of non-negative powers of A and & . An easy

induction proves that the elements of (the matrix) U are non-negative,

and that the greatest of them is at least \u\ . For any D ,

corresponding to an element of A , the absolute values of the elements of

UD are simply the elements of V in a (possibly) different arrangement.

Return now to the case where U, D are the images of u , dQ ,

respectively. It follows that |u| 2 1 and inspection shows that

U = D = I . Hence w and dQ are trivial and gQ is in ker(v) . This

completes the proof that A and A* are isomorphic. Note that we have

also shown that if ud is in normal form and ud = 1 , then both u and

d are trivial.

The isomorphism allows us to identify corresponding elements of A

and A* 5 and to dispense with the distinctive notation. We shall retain

the combinatorial point of view, but matrix considerations will be used

where convenient. We conclude this section by showing that the normal form

is unique.

Suppose then that u, u', d are such that ud = u' , where u is in

E and d in A • (There is no essential restriction in this

formulation.) Suppose u' is in I1 and let u" = («')" • Then u"ud

is in normal form and trivial, so u, u' , and d must be trivial.

Now let u' be in I and assume that u and u' are not identical.

With a different notation, this reduces to the case in which there are IL

and w in Z such that au-d = bu^ . Since det(aw1) = det[bu2) = 1 ,

we must have det(d) = 1 and d cannot be t • If d $ 1 , at least one

element of au,d would be negative. This is impossible, so d = 1 . We

would then have

1 = u, a bup = u. b teu = M 6 u'te ,
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where u' is in £' , and hence, the last element is in normal form. This

is impossible and there are no such u. , u~ .

2. Derived presentations

The first modification will be to a presentation of greater formal

simplicity. It is easily seen that rb = b~ r and sb = b~ 8 can be
eliminated. The same is true of the last three defining relations since

each may be obtained as a consequence (by conjugation) of db~ = btv .
Then 8 = trt , b = tat may be used to eliminate s, b and the defining
relations which remain become

r2 = (trt)2 = t2 = 1 , (tr)k = 1 ,

-1 -1 -1
ra = a r , trta - a trt , ata t = tar .

o

The relation (trt) = 1 may be eliminated, while the last relation in the

form r = a~ tataT t eliminates r . The relations ra ~ a" r and

trta = a~ trt are easily seen to be consequences of this new form for r ,
and the fact that r is an involution. The final presentation, in more
traditional form with relators in place of defining relations, is

(a, t; t2, {ata'1 tat)2, [ata~Xta)h) .

While we have not been able to show that this is irreducible, i t seems
unlikely that A is a two-relator group. In view of the calculations
which follow, i t is somewhat unexpected that the prime 3 does not appear
as an exponent, but i t may be noted that the second relator is of length
12 .

Another way of simplifying the original presentation is prompted by
the fact that there are non-trivial involutions (that i s , ones which are
not euclidean reflections). We introduce q = ar as a new generator.
This allows a to be eliminated with r retained. The defining relations
above, for the generating set (a, r, t) , then become

2 = r
2 = t2

? P
q(tr) = (tr) q , qrtrqt = tq .
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The last relation has the consequence {qt) = {n't) , so (rt) is in the

centre. Then the penultimate defining relation may be eliminated. If the

presentation (with a superfluous relation) is taken in the form

q
2 = r

2 = t2 = {tr)k = {qt)6 = 1 , (qt)3 = (r*)2 ,

we see A as the homomorphic image of a Coxeter group. There is an

alternative structure.

We start with dihedral groups of orders 8 and 12 , respectively,

and presentations

<r, t; r2, t2, (r*)U> , (q, k; q2, k2, (qk)6) .

The subgroups gp(i, {rt) ) and gp{k, {qk) ) are each four-groups, so we

may form the free product of the dihedral groups amalgamating these two

subgroups with the obvious isomorphism. The result is A .

3. Presentations of n and 6

The group II is the subgroup of A comprised of proper motions;

that i s , all those g for which det(<y) = 1 . For an element ud in

normal form the condition is equivalent to det(<f) = 1 , and hence, to the

fact that d is a power of tr . If we let p = tr , the set of elements

up , where u is in £ or £' and 0 £ m < h , is a normal form for

n .
Consider now the abstract group II* with generating set {a, b, p)

and defining relations

p = 1 , pa = b~ p , pb = a~ p , ab~ = bp .

It may be verified directly that the defining relations of 11* become

relations of II under the identity mapping of the generators. It is also

clear that the defining relations show that every element of II* is equal

to an element in the normal form described above. An argument similar to

that of Section 1 proves that II and II* are isomorphic. The distinctive

notation now lapses.

The relation b = p a~ p allows b to be eliminated. After some

further manipulation we obtain the following defining relations
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U 2 2 -1
p = 1 , ap = p a , apa = pa p ,

for the generating set (a, p) . A normal, form for this presentation is

similar to the earlier one, but u is now a member of one of

sgp(aE, pa~ep) , e = ±1 .

It may be noted that the final defining relation has the more familiar

form (ap) = 1 . There is a shortage of involutions in II , but the

introduction of a = ap allows a to be eliminated and the defining

relations become

c — p — 1 , op = p c •

One way of seeing II as a two-relator group (with the prime 3

concealed) i s to use the re la t ion p = b ab to eliminate p , and to

adopt the consequence b ab = ab~ a as a defining re la t ion . This

yields the formally simple presentation

—1 —1 ( —1 *\ h(a, b; aba bob , [ab a) > .

There is a rather full discussion of 0 in [3] so we may deal with it

here in summary fashion. It is only necessary to remark that presentations

can be obtained from those for II by the addition of the relation

2
p = 1 , or an equivalent.

4. The conjugacy problem

The algorithm which solves the word problem of A (in the original

presentation) can be extended to provide a solution of the conjugacy

problem. It seems likely that there will be similar solutions for the

other two groups, but we do not consider this in detail.

We need a more detailed syntactic classification of the elements of

A . As a start , we let £ be the set of non-trivial elements of E ; so

that Eo is a free semigroup without identity. The discussion will be

easier to follow if we use "=" to denote the relation of equality in the

semigroup. We let T be the centre of A - i t s only non-trivial member

is TS - and $ be the four-group composed of T and the coset tT .
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Let g be a given element of A and let ud , in normal form, be an

element in the conjugacy class of g which is of shortest a-length.

Conjugation by an involution allows us to assume that u , if i t is not

1 , is in E. . A further conjugation by t , if necessary, ensures that

the ini t ia l le t ter of u i s a .

If \u\ > 1 , the length condition entails that d is in $ . For

suppose not and let u = au ad , where o is a or b . There will be

a' , one of a or i , such that da = a'd . Then g is a conjugate

of u aa'd , and this goes either to u d by cancellation or, in an

obvious notation, to u o'd' by reduction. In either case, a shorter

conjugate of g would be obtained. (Note that though we have not

described an explicit algorithm for the calculation of ud for an

arbitrary word g , an appropriate procedure is easy to formulate.)

The cases for which |M| S I may be settled by inspection. If M i a

and d is in $ , we may include ud in the previous case. Every member

of E $ is of infinite order, while the ud which are left are not.

Thus, atr and ats are of orders 3 and 6 , respectively, and are

certainly not conjugate. For the involution ar we have

, - 1 , , - 1 , - 1 T . - 1 , , 2

sb arbs = sb ab rs = sb btr a = trs .
Similarly, it may be shown that as is a conjugate of t .

The cases where u = 1 remain. Of these, tr and i ts conjugate ts

are the only ones of order k . Then rs is in II , while t, r and i ts

conjugate s are not. We can illustrate the linear treatment by showing

that t and r are not conjugate.

Let the numbers m, n, x, y be such that

0 1

1 0

m n\ \m n\

y) [x y)

The fact that t and r have the same trace and determinant ensures that

the resulting system of equations simplifies to just two; namely, x = -m

and y = n . The condition that the conjugating matrix is unimodular leads

to the contradictory result that the numbers are integers for which
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2mn = ±1 .

We thus have a set F of exceptional representatives (for conjugacy)

consisting of 1, rs, tr, atr, ate, t , and r . An element of A of

finite order is conjugate to a unique member of F . The first five of

these are in II and the last tvo are not.

A more detailed analysis of conjugation allows us to restrict the

representatives of infinite order s t i l l more. Some further notation is

useful - essentially, to indicate conjugation by elements of A . Thus,

for any u in ZQ and d in A there is u* such that ud = du* and

\u\ = \u*\ • Of course, i t is implied that u* is in either Z or Z'

and by taking account of d we could specify u* more precisely in terms

of u • (For example, if u is u(a, b) and d = t , then

u* = u(b, a) .) However, the reader will easily supply the details without

a more refined notation. We use the same device in relations such as

du = u*d •

Let u.d. , i = 1, 2 , be a pair of conjugate elements in EQ$ .

Then there will be an element vd such that u-jLvd = vdu^dn • We show

first that d i s not in fo» .

Suppose d were in $r and iuv*d-.d = vu*dd2 , where u* is in

Z' . According as v is in Z or Z' , the left or the right side of the

relation is (essentially) in normal form. It is enough to consider the

first alternative as both cases are similar. Thus v is in Z and since

M* is not t r ivial , y cannot be t r ivial . If vui were to go to normal

form by cancellations only, then u* would be completely cancelled by a

part cf v • Length considerations show that this is impossible, since

U-.V* is in normal, form. On the other hand, a reduction would produce d'

in to» and when this had been moved (fully) to the right, the result would

be in normal form. But then the two sides of the relation that has been

obtained would be "identical", with d'dd- in $ and d~d not. This

contradiction completes the proof that d is not in $r .

With d in $ it is sufficient to consider the case in which v is

in I . For if v is in Z' , then V~ is in Z and so is the v* for

https://doi.org/10.1017/S0004972700024205 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024205


10 M.J. Wi cks

which do = v*d . Then the original relation is equivalent to one of the

same form in which v is replaced by v* and u, , u^ are interchanged.

With u-, v all in £ and d., d all in $ , the original relation
t- Is

goes to u-.v*d-.d = vutdd^ , where both sides are in normal form (modulo a

gloss for the elements of A ). It follows that d-.d = dd- , and since $

is the four-group, that d = d . We also have U..V* = vu* . The

consequences of this identity depend on whether <i is in V or tT and

are best considered separately. Note that corresponding to the two

alternatives we have v* = V or V* = tvt , respectively.

LEMMA 1 . Let u, w be in t . If there is v in Z and d in

$ such that uo = vu* , where w* = dwd , then w is a cycle of u or

tut (as d is in T or tT , respectively).

Proof. If |u| 2 |w| , there must be u' and w' such that u = vu'

and w* = w'v . Then, substituting in the original identity, we have

u' = w' and the result follows.

If |u| > |w| , there must he v' and v" such that

y S uv' = v"w* . It follows as before that v' = v" . Since u is in

E- , \v'\ < \v\ • The relation above satisfies the hypothesis of the

lemma with y replaced by v' . Hence, we are either in the first case,

or we may complete the proof by induction.

LEMMA 2. Let u, w be in t . If there is v in Z and d in

$ such that uv* = vu* , where v* = tvt and w* = dwd , then there exist

u., u- in E such that u = u u and u is a cycle of either o ' or

u*u~ , where u*. = tu.t , i = 1, 2 .

Proof. If |w| £ |w| , there will be u' such that u = vu' and

W* = u'v* . The result follows.

If |y| > |u| , there is v' such that v B uv' and v* = v'w* .

The hypothesis of the lemma is satisfied if v* is replaced by the shorter

y' and d by td . The proof is completed as before.

Let u.d , £ = 1 , 2 , be a pair of conjugates with u. in I_ . If
t. % u
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d is in T , Lemma 1 applies. The initial letter of u. is a and,

since a final a can be cycled past d to the initial position, there is

no loss of generality in assuming that u. is either a power of a or its

final letter is b . In the case that u is a power of a , the second

case of the lemma cannot occur, so that u = u .

If d is in tT , Lemma 2 applies. We may now assume that the final

letter of u. is a since bd = da . It is again true that if w. is a

power of a , then u ? = it. .

In terms of the following subsemigroups of Z ,

A = sgp(a) , 8 = sgp(i) , C = U (AB)n ,
n

the detailed result may be stated as

THEOREM. Any member of A is the conjugate of a member of F, A$,

CT or CA(tT) . The representative is unique in the first two oases.

Otherwise, if a pair of representatives u.d. , £ = 1, 2 , are conjugates,

then (£. = dp ,* if d. is in T , then w is a cycle of either

uAa, b) or uAb, a) ; if d is in tT , then there exist u, v such

that u. = uv and u is a cycle of either u(a, b)v(b, a) or

u(b, a)v(a, b) .

Some further comments may be of interest. The elements of Ar are

all parabolic and the theorem shows that any parabolic element of A is a

conjugate of rs or a unique member of Ar . Representatives of any

arbitrary trace can be found among t and the members of A(tF) .

The result can be interpreted in matrix terms. A representative ud

in Z $ is such that the elements of the matrix ud are of constant sign;

for example, they are all non-negative if ud is in either I or I t .

This fact has the consequence that there are only a finite number of

representatives with a given trace. More generally, there are only a

finite number of different conjugates in the set of all (unimodular)

matrices with a specified characteristic polynomial. I t would be
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interesting to know whether similar methods could toe used for the set of

non-singular matrices with integral elements, (it would be necessary to

obtain a presentation for the corresponding (cancellation) semigroup as a

first step.)

Matrices in particular subsets of £Q$ are subject to further

arithmetic restrictions. For example, if (m n \ x y) is in C , then not

only is m 5 n , x 5 2/ , but also m 5 a; and n 'S y . In the same vein,

the trace m + y can be considered as a function of the sequences of

integers which appear as exponents of the powers of a and b when the

matrix is expressed in normal form. The conjugate cycles of a

representative then correspond to certain symmetries of the trace function.

These symmetries are, presumably, inherent in the problem, or in this

approach to i t . Nevertheless, a closer analysis of this situation might

lead to more precise estimates of the class number.

We conclude by drawing attention to the intrusion of semigroups into

the characterisation of the normal form and of representatives. There are

numerous examples in the literature where "positive words" have featured in

a combinatorial investigation, albeit in a rather ad hoc way. However, a

particular case, which may be germane to the present observation, is

furnished by Garside's solution of the conjugacy problem for braid groups.
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