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BOUNDED REALIZATION OF /-GROUPS OVER
GLOBAL FIELDS

The method of Scholz and Reichardt

WULF-DIETER GEYER AND MOSHE JARDEN1

Abstract. We use the method of Scholz and Reichardt and a transfer principle
from finite fields to pseudo finite fields in order to prove the following result.
THEOREM Let G be a group of order ln, where I is a prime number. Let KQ
be either a finite field with \KQ\ > I4n+4 or a pseudo finite field. Suppose that
I φ char(Ko) and that KQ does not contain the root of unity ζι of order I. Let
K — Ko(t), with t transcendental over K®. Then K has a Galois extension L
with the following properties: (a) Q(L/K) = G] (b) L/KQ is a regular extension]
(c) genus(L) < | n / 2 n ; (d) Ko[t] has exactly n prime ideals which ramify in L;
the degree of each of them is [Ko(ζιn) : Ko}; (e) (ί)oo totally decomposes in L; (f)
L = K(x), with Ίττ(x,K) = Xr +ai(t)Xιn~1 H hαz«(t), 0 < deg(oi(ί)) <
\nl2n and deg(aτ(t)) < deg(αi(ί)) for i = 1,..., Γ.

Introduction

Scholz [Sch] proved that if I is an odd prime, then each /-group occurs

as a Galois group over Q. Here G is an /-group if the order of G is a power

of I. Independently, Reichardt [Rei] gave a simpler and shorter proof to the

same theorem. One can find a modern presentation of Reichardt's proof in

Serre's course on Galois theory [Sel, §2.1].

The reason why the method of Scholz and Reichardt does not work for

Z = 2 is that the primitive root of unity of order 2, namely — 1, belongs to

Q. The same reason forced Rzedowski-Calderόn and Villa-Salvador [RCV]

to exclude all primes I with (| G F g , when they proved that each /-group

occurs as a Galois group over ¥q(t). Here q is a power of a prime p ψ I and

ζl is a primitive root of unity of order /.

Shafarevich [Shi] has overcome this difficulty. He used refined combi-

natorial arguments to prove that for an arbitrary prime number /, for each

number field K, and for each /-group G, there exists a Galois extension L
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14 W.-D. GEYER AND M. JARDEN

of K such that G(L/K) = G. In a later work [Sh2], Shafarevich pointed

out how to correct an incomplete group theoretic argument in his earlier

work for the case 1 — 2.

However, Shafarevich had to pay a price for his generalization. The

combinatorial arguments forced him to allow an exponentially growing num-

ber of primes of K which may ramify in L. In contrast, as Serre [Sel, p. 9]

emphasizes, the method of Scholz and Reichardt gives for a group G of

order Zn, with I odd, a Galois extension L of Q in which only n primes

ramify.

Although Rzedowski-C alder on and Villa-Salvador [RCV] use the meth-

od of Scholz and Reichardt they do not try to bound the number of ramified

primes. Indeed for a given Z-group G with I \ q and ζι fi¥q, they construct

a Galois extension L of ¥q(t) such that Q(L/¥q(t)) = G and the genus of L

is large. Here and in the sequel, t is a transcendental element over the base

field. By the Hurwitz-Riemann genus formula, this means that the number

of primes of ¥q(t) which ramify in L is also large.

The goal of this work is to use the method of Scholz and Reichardt to

realize each /-group G over an arbitrary global field with bounded ramifi-

cation.

THEOREM A. Let K be a global field and let I be a prime number

such that I φ char (If) and ζι £ K. Then there exists a nonnegative integer

r = r(K) such that for each group G of order ln there exists a Galois

extension L of K with G(L/K) = G and |Ram(L/iΓ)| <n + r.

Here Ram(L/i iί) denotes the set of primes of K which ramify in L. If

K — Q or K = ¥q(t), then r(K) = 0. In the former case we therefore

reproduce the result of [Sel]. In the latter case we improve the result of

[RCV].

The extension LjK which Theorem A gives can actually be constructed

to satisfy given 'local conditions'. See Theorem 7.4 for the exact formula-

tion.

Serre uses cyclotomic fields in his proof. Rzedowski-Calderόn and Villa-

Salvador use Carlitz' analog of cyclotomic fields over ¥q(t). Both type of

fields are useless for the construction of /-extensions with bounded ramifica-

tion over an arbitrary global field K. We replace their use by a systematic

application of class field theory.

https://doi.org/10.1017/S0027763000025046 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025046


Z-GROUPS OVER GLOBAL FIELDS 15

In the function field case, we supplement Theorem A with bounds on

various invariants of the extension L/K. We prove that for each large

multiple k of \¥q(ζin) : F ς], the field L can be chosen such that deg(p) = k

for each prime p G Ra,m(L/K) and

(0.1) 2gL - 2 < ln(2gκ - 2 + (n + r(K))k).

Here gx (resp., gι) is the genus of K (resp., L). See Theorem 8.6 for more

details.

The bounds of Theorem 9.6 become more explicit if K = ¥q(t). For

example, Theorem 9.1 improves (0.1) in this case to

2gL-2<Γ(nk-2).

Theorem 10.5 does even better under the assumption that q > l4n+4.

It produces absolutely irreducible polynomials /, g G Fq(T,X) with coeffi-

cients of bounded degrees such that L is the splitting field over K — ¥q(t)

of both /(£, X) and g{t,X) and Rarr^L/jFΓ) consists of those prime of K

which divide the discriminants of both f{t,X) and g(t,X). Of course,

Q{L/K) = G. Moreover, (t)^ totally decomposes in L, gL < \nl2n ,

\RsLm(L/K)\ = n, and deg(p) = \Fq(&n) : ¥q] for each p G Ram(L/K).

It is therefore possible to write down a sentence θ(l,ή) in the first order

language of the theory of fields, such that if q > / 4 n + 4

? then K = ¥q(t) has

a Galois extension as in the preceding paragraph.

This has an immediate consequence for the infinite models of the theory

of finite fields. They are called pseudo finite fields. For example, each

nonprincipal ultraproduct of finite fields is pseudo finite. Also, if F is

a countable Hilbertian field (e.g., F = Q or F = Fq(t)), then F(σ) is

pseudo finite for almost all σ in the absolute Galois group G(F) of F [Jal,

Thm. 3.5]. Here F(σ) is the fixed field of σ in the algebraic closure F of F.

THEOREM B. Let Ko be a pseudo finite field and let I be a prime

number such that I \ char(UTo) and ζι ^ KQ. Let G be. a group of order ln.

Then K = Ko(t) has a Galois extension L which is regular over KQ such

that G(L/K) = G, \Ram(L/K)\ = n, gL < \nl2n, (t)^ totally decomposes

in Lj and deg(p) = [Ko(ζι^) : Ko] for each p G Ram(L/if).

Note that each pseudo finite field Ko is PAC. That is, each absolutely

irreducible variety over KQ has a i^o-rational point. It is known for an
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16 W.-D. GEYER AND M. JARDEN

arbitrary PAC field KQ and for each finite group G that there exists a Galois
extension L of Ko(t) which is regular over ifo such that Q{L/K) = G. This
was first proved by Fried and Volklein [FrV] in characteristic 0. In the
general case it follows from a theorem of Harbater [Ja2, Thm. 2.6] which
has been recently reproved in an elementary way by Haran and Volklein
[HaV]. However, none of the proofs of this theorem supplies a bound for
|Ram(L/if)|. Theorem B does it in a very special case.

§1. Global fields

Consider a global field if. Thus, K is either a number field, that is,
a finite extension of Q, or K is a function field, that is, K is a regular
extension of transcendence degree 1 of a finite field ¥q with q elements. We
denote the set of primes of K by P = P(if). In the number field case, P
has a finite subset PQO, the set of arehimedean primes, which correspond
to the embeddings of K into C Each arehimedean prime p is a divisor of
the unique arehimedean prime oo of Q and we write p|oo. All other primes
of K are nonarchimedean. In particular, if K is a function field, then K
has only nonarchimedean primes and we let PQO = 0

Fix a prime number / which does not divide char (if). For each n choose
a root of unity ζin of order ln. Most of our results will assume that ζι £ if.
If K is a number field, we denote the finite subset of P that consists of all
prime divisors of I by P/. If if is a function field, we let P/ = 0.

Denote the completion of if at a prime p by ifp and let ifp be its
residue field. If p is arehimedean, then Kp is either R (p is real) or C (p
is complex). In each case we let Up = Kp be the multiplicative group of
Kp and set TΓp = 1. If p is nonarchimedean, then Kp is a complete discrete
valuation field. We denote its normalized valuation by Vp and choose a
prime element πp in ifp, that is Vp(τrp) = 1. Let Up be the group of units
of Kp and UPiχ its group of 1-units. Then Kp = (πp) x Up and Up/Up^ is
isomorphic to Kp . If if is a number field, then Kp is a finite extension of
Fp, where p is the rational prime that lies under p. If if is a function field,
then Kp is a finite extension of ¥q and [Kp : Fq] = deg(p). In both cases
t/p5i is a pro-p group, where p = char(^p).

The group Iχ of ideles of if is the restricted product of the multiplica-
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Z-GROUPS OVER GLOBAL FIELDS 17

tive groups Kp with respect to the subgroups Up. Thus

Iκ = J a e J J K* I ap £ Up for all but finitely many p E P >.

^ PGP J

A basis for the topology of Iχ consists of all sets Y[ Vp such that Vp is open

in Kp and Vp = Up for almost all p. In particular, the group of unit ideles

is open in Iχ\

This group is the kernel of the divisor map div: Iχ —+ Όiv(K) = φ p ^ Z p

which is defined by div(α) = Σp\ooVp(ap)p. The image of the divisor map

is the group of divisors Όiv(K) of K.

One embeds Kx diagonally in Iχ and calls Oχ = Iκ/Kx the idele

class group of K. Its factor by UKX /Kx is the ideal class group of K:

(1.1) C\(K) = IK/UKX = Όiv(K)/div(Kx).

If K is a number field, then Cl(if) is a finite abelian group, whose order

hjζ is the class number of K. If K is a function field, then we define the

degree function for ideles deg:/# —> Z by deg(α) = ΣpeψVρ(&ρ) deg(p)

and consider the group of ideles of degree 0:

i l = { « £ Iκ I deg(α) = 0}

The product formula implies that Kx < 1^. Also, U < 1%-. So, we may

consider the group of idele classes of degree 0: Clo(K) = Iχ/UKx.

Then Cl(K)/C\0(K) ^ Z, but C\0(K) is a finite abelian group whose order

hx is the class number of K. More important for us is the Z-class rank

of K:

rankί(ίf) - dimFz Cl(K)t

Here Cl(if)/-is the /-torsion part of the finite abelian group Cl(K).

To each finite nonempty subset S of F that contains P ^ one associates

the group if 5 of S-units. Thus Ks consists of all elements x E K such that

Vp(x) = 0 for all p ^ ^UPoo. By Dirichlet's unit theorem, Ks = μκ>< Z ' 5 ' " 1

where μjζ is the finite cyclic group of roots of unity of K [CaF, p. 72]. If K

is a function field, then μx — ̂ q- If if is a number field and S — P ^ , we
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18 W.-D. GEYER AND M. JARDEN

call rankoo(ίί) = |Poo| ~ 1 the unit rank of K and Ex = Kψ^ is the group
of units of K. If K is a function field, we let EK = μ>κ and ranko o(ίί) = 0.

The group of S-ideles of K is the direct product

(1-2)
pes

It contains U and satisfies

(1.3) κs = iKtSnκx.

The restricted topology of Iχ induces the usual direct product topology on

Iκ,s In particular, if h is a homomorphism of Iχ,s into a finite group C

such that h is continuous on Kp for each p £ S and MΓL^s Up) = 1, then

ft, is continuous.

Data 1.1. (Basic set) If if is a number field, choose ideles α i , . . . , a^K

which represent Iχ modulo UKx. Let So be the set of archimedean primes

and those nonarchimedean primes p for which Vp(a^p) φ 0 for at least one i.

Then So is a finite set and each set of primes S which contains So satisfies

(1.4) IK = IKSK
X.

If K is a function field, then we choose αo G IR oΐ degree 1 and α i , . . . , dhK

which represent 1^ modulo UKX. Let So be the set of primes p such that

Vp(θLi) Φ 0 for at least one i. Again, So is a finite subset of P and each set

So C S C P satisfies (1.4). It follows from (1.3) and (1.4) that

(1.5) Cκ - IKis/Ks

We increase So now by adding P/ to it, if if is a number field, and possibly

finitely many additional primes which we choose at will. Then we call So a

basic set and fix it for the rest of this work.

Example 1.2. (The cases K = Q and K = ¥q(t)) For K = Q the u-

nique factorization in Z implies that /Q = £/Qx and therefore hq = 1.

We may therefore choose a.\ = 1 and So to be any finite set of primes that

contains {oo,Z}.

For K = ¥q(t) we may choose αo as the idele whose component at the

pole of t (which we denote by (t)oo) is t~λ and otherwise is 1. Again, the

unique factorization in ¥q[t] implies that I^ = UKX and h,κ = 1. We may

therefore choose So to be any finite set of primes of K that contains ( t )^ .
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§2. Class field theory

Class field theory teaches us that the idele class group Oχ controls the

abelian extensions of K. Specifically, for each finite abelian extension L/K

the reciprocity law gives a continuous epimorphism

(2.1) φ:Cκ^G(L/K),

whose kernel is NL/χCι and which is functorial in L. For details, we refer

the reader to chapters 4 (Serre: local class field theory) and 5 (Tate: global

class field theory) of [CaF] and also to [Neu] (which however handles only

the class field theory of number fields).

For each prime p of K we consider Kp as the subgroup of Iχ which

consists of all ideles whose q coordinate is 1 for each q φ p. Under this

identification Kp Γ\KX = 1. So, we may and we will consider Kp also as a

subgroup of Cjζ. The restriction of ψ to Kp gives a continuous epimorphism

(2.2) ψp:K£ ^Dp(L/K)

whose kernel is NL /κ Lp . Here, Lp is the completion of L with respect

to a prime pf of L which lies over p and Dp(L/K) is the decomposition

group of p in L. Since L/K is abelian, both the norm group and the

decomposition group do not depend on p'. The fixed field of Dp(L/K) is

LΠKp. It is the maximal subfield of L/K in which p completely decomposes.

In particular p completely decomposes in L if and only if Dp(L/K) — 1.

The homomorphism ψp maps Up onto the inertia group Ip(L/K) of L/K

whose fixed field is the maximal subfield of L/K in which p is unramified.

Thus Ip(L/K) = 1 if and only if p is unramified in L. If φ is unramified at p,

then /0p(πp) = (-y~) is the Frobenius automorphism of L/K at p. Finally,

the condition Dp{L/K) = Ip(L/K) is equivalent for nonarchimedean p to

Lp = Kp.^

Let K (resp., Ks) be the algebraic (resp., separable) closure of K and

let G{K) = G(KS/K) be the absolute Galois group of K. We embed K

into Kp, thereby extending p to K. Then K Π Kp = Kp,alg is a Henselian

closure (resp., real closure) of K with respect to p if p is nonarchimedean

(resp., archimedean). Its absolute Galois group G(Kp^\g) is the absolute

decomposition group of p. We denote it by Dp. By Krasner's lemma,

KsKp = Kp^s. Hence, resχs: G(Kp) —* Dp is an isomorphism. We iden-

tify G(Kp) with Dp under this map. We denote the maximal unramified
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20 W.-D. GEYER AND M. JARDEN

extension of Kp by Kp^ur (if P is archimedean, we set Kp^nτ — ̂ p) and let
/p = resκs(G(KP}UT)). This is the absolute inertia group of p. If p is
nonarchimedean, then the quotient group Dp/Ip = Q(Kp^uτ/Kp) is isomor-
phic to Z and the Frobenius automorphism Frobp is a canonical generator
of this group.

Whenever we consider a homomorphism φ: G{K) —• G into a finite
(not necessarily abelian) group G, we assume that φ is continuous. Then,
the fixed field L of Ker(<p) in Ks is a finite extension of K. The prime
p totally decomposes in L if and only if φ{Dp) = 1, i.e., L C ifp. We
then say that φ totally decomposes at p. Similarly, we say that φ is
unramified at p if p is unramified in L, that is, \ϊ φ(Ip) = 1. In this case φ
induces a homomorphism of Q(Kp^UT) onto Q{L/K) which maps Frobp onto
the Frobenius element [-jjr-] of Q(L/K), where pf is the prime of L which
is determined by the embedding of L into Kp. If p is nonarchimedean and
I/p| is relatively prime to char(^p), then φ is tamely ramified at p. We
denote the finite set of primes at which φ ramifies by Ram(^) and also by
Ram(L/if). Finally, φ(Ip) = φ(Dp) if and only if Lp = Kp. Note that all
these concepts are independent of the embedding of K into Kp.

We choose a multiplicative copy C\ of the cyclic group of order /. Let
Horn be the functor of continuous homomorphisms. Then the reciprocity
law gives a commutative diagram

(2.3)

Hom(/p,Q)

in which the horizontal maps are isomorphisms and the vertical maps are
the natural restriction maps. Both Φ and Φp map epimorphisms onto epi-
morphisms. If h G Hom(Dp,Q) is trivial on /p and η = Φp(/i), then η is
trivial on Up. In this case h induces a homomorphism h: Q(Kp)UI/Kp) —> C\
such that h(Frobp) = η(πp).
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§3. Embedding problems; Scholz extensions

An /-group is a group G whose order is a power of I. Such a group

has a central sequence all of its factors are of order /. We consider central

embedding problems for G(K) of the following type:

(3.1)

Here the lower sequence is exact, p is surjective, and C\ is contained in the

center of G. A weak solution to (3.1) is a homomorphism φ: G{K) —> G

such that a o φ = p. If φ is in addition surjective, we call φ a solu-

tion. In this case let L (resp., I/) be the fixed field in Ks of Ker(p) (resp.,

Ker(cp)). Then p (resp., φ) induces an isomorphism p:Q(L/K) —» G (resp.,

φ: Q{L'/K) —» G) such that pores^ = aoίp. The embedding problem splits

if the short exact sequence splits. This is the case if and only if G = C\ x G

and a is the projection onto the second factor. Each epimorphism from

G(K) onto C\ can then be multiplied with p to yield a solution to (3.1) and

each solution of (3.1) is of this type. In the general case, if φ is a weak

solution to (3.1), then C\ φ(G(K)) = G and hence the index of φ(G(K))

in G divides /. Since G is an Z-group, φ(G(K)) is normal in G. Hence,

if (3.1) does not split, then C\ < φ(G(K)) and therefore φ is a solution

to (3.1). In this case, if η:G(K) —> C\ is a homomorphism, than the map

φ'\ G{K) —> G defined by φ'(σ) = η(σ)φ(σ) for σ G G(K) is also a solution

to (3.1). Moreover, each solution to (3.1) is obtained in this way. We write

φ1 = η φ.

For each prime p ofK, (3.1) gives rise to a local embedding problem:

(3.2)

C\ > Gp > Gp

Here Dp is the absolute decomposition group of p (Section 2), pp = P\DP,

Gp = p(Dp), Gp = a~1(Gp) and ap — OL\Q . If (3.1) is central, then so is

(3.2). However, even if (3.1) does not split, (3.2) may split.
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22 W.-D. GEYER AND M. JARDEN

Class field theory reduces the solvability of the global embedding prob-

lem (3.1) to the solvability of all local embedding problems induced by

(3.1) (as we shall see in the proof of Lemma 4.3). This led Scholz to try

to construct the map p: G(K) —» G with conditions that will impose the

solvability of all local embedding problems (3.2). Before we reformulate

Scholz's conditions we fix some 'local data' which we would like to impose

on φ.

Local data 3.1. A set {φp: Dp —> G \ p G SO} of homomorphisms is

a local data for an Z-group G and a positive integer n if it satisfies the

following conditions:

(3.3a) φp(Ip) = 1 for each p G Pj,

(3.3b) if p G So and φp(Ip) φ 1, then ζln G Kp and φp(Ip) = φp(Dp).

We fix the local data for G for the rest of this work.

Our definition of a Scholz extension depends on a finite set SΊ of

rank/(If) -f ranko o(i ;ί) 'exceptional primes' of K which is disjoint from SQ.

We choose such a set in §5. It depends on K and on Z but not on G.

DEFINITION 3.2. (Scholz extension) Let n be a positive integer and let

φ be an epimorphism of G(K) onto an Z-group G equipped with a local data

as in Local data 3.1. We say that φ is n-Scholz if

(3.4a) ζin G Kp, for each p G Ram(<p),

(3.4b) φ(Ip) = φ(Dp) for each p G Ram(^), and

(3.4c) Ψ\DP = φp for each p G SO (Thus, φ respects the local data.)

(3.4d) φ(Ip) = φ(Dp) for each p G 5χ.

We say that a finite Galois extension L/K is an /-extension, if Q{L/K) is

an Z-group. In this case L/K is n-Scholz if τesL'.G(K) —> Q{L/K) is an

n-Scholz epimorphism.

By (3.3a), ψ ramifies at no p G P/. In other words, if p G Ram(y>), then

φ is tamely ramified at p. By (3.3b), φ is unramified at each archimedean

prime if ln Φ 2. Condition (3.4a) then means that p totally decomposes

in K{Cχa). By Hensel's lemma, it is also equivalent to ζjπ G Kp and also
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to Np = 1 mod ln (Recall that Np is the cardinality of Kp). Condition
(3.4b) means that the inertia group of each prime of L which ramifies over
K coincides with its decomposition group. If ψp = 1 for some p G So,
then Condition (3.4c) means that p totally decomposes in L. If on the
other hand, ψp(Ip) φ 1, then Condition (3.4c) implies that p G Ram(<p).
Thus, Ram(<p) Π So is a priori determined by the local data. Note that all
conditions are independent of the particular embedding we have chosen for
K into Kp.

In the notation of (3.1), the local data for G induces a local data for
G. This is the set {pp = a o ψp | p G So}. (Note that Condition (3.3) is
satified for the pp's.) If φ is a solution for the embedding problem (3.1) and
φ is n-Scholz, then p is n-Scholz. But even if p is n-Scholz, φ need not be
n-Scholz itself. So, in order to continue the induction on the order of G, we
multiply φ by an appropriate homomorphism η: G(K) —* C\ such that it
will be n-Scholz. We do it in two steps. First we change φ in this way such
that Ram((^)USi = Ram(p)uSi. Then we change the resulting ψ such that
Ram((/?) U SQ U Si = Ram(p) U {q} U SQ U SI where q is an additional new
ramified prime which arises from an application of the Chebotarev density
theorem. At this step we use the assumption ζι ^ K. Thus, if the order of
G is Zn, then we finally realize G as the Galois group of a Galois extension
L/K with \R<xm(L/K) \ (So U Sλ)\ = n.

Note the difference between the roles of the finite sets So and Si. The
set So must contain some basic primes but otherwise we are free to make
it arbitrarily large and we are completely free to determine Ψ\DP f°r each
p G So. In particular, we can assume that φ(Ip) = 1 for each p G So
and then ψ will be unramified at each p G So. The behaviour of ψ at
p G Si on the other hand is out of our control. In particular we can
not determine whether or not φ is ramified at a given p G Si. However,
I Si I = rank/(if) + rankoo(if) does not depend on G.

§4. Existence of a solution

The first step toward an n-Scholz solution of embedding problem (3.1)
is to find a solution which need not be n-Scholz. The easier case is when
(3.1) splits. In this case (Lemma 4.2) we need to make no assumptions on
p. In the more difficult case (Lemma 4.3) we have to assume that p is an
n-Scholz epimorphism.
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LEMMA 4.1. Let q be a prime of K which does not belong to P/
ΊSuppose that ζι £ Kq. Then Uq/Uι

q = Q.

Proof. We have assumed in the function field case that / Φ char (if).

Hence, in both cases I φ cha,τ(Kq). Hence ζι £ Kq. By HenseΓs Lemma

I7q>1 < U\. Hence Uq/Uι

q <* K*/{K*)1 9* Q. D

LEMMA 4.2. Suppose that embedding problem (3.1) splits. Then it

has a solution.

Proof. Denote the fixed field of Ker(p) by L. Then assume without

loss that G — Q(L/K), G — Q x Q(L/K), p — res/,, and α is the projection

on the second factor.

As K is Hilbertian [FrJ, Cor. 12.8], every finite abelian group is re-

alizable over K [FrJ, Thm. 24.48]. In particular suppose that CJ71 is the

maximal /-elementary abelian quotient of Q(L/K). Let N be a Galois ex-

tension of K with Q{N/K) = C z

m + 1 . Then N has a subfield M which is

linearly disjoint from L over K and Q{M/K) = C\. So, V = LM satis-

fies G{L'IK) = Q{M/K) x G(L/K) and τesLr.G(K) -• G(L'/K) gives a
solution to (3.1).

Alternatively, let S = *Ram(L/K)USoUSι. Choose generators α i , . . . , as

for Ks modulo Kι

s and consider the Galois extension N = K(ζι,<J/a\,...,

-J/al) of K. Apply the Chebotarev density theorem to choose a prime q ̂  S

such that (—7j—) = 1? i e., N C Kq. In particular, vq(ai) — 0 and α̂  G t/q,

i = 1,.. . , s. Also, q { I. Hence, by Lemma 4.1, there exists a continuous

epimorphism hq:Uq -^ C\. Define a continuous homomorphism

[ ] Up —+ Q
pes

by h(K*) = 1 for p G 5, h\Uq = hq, and h(Up) = 1 for p g 5 U {q}.

Since α̂  G ί7q, i = 1,.. . , s, h(K$) = 1. Hence, /ι induces an epimorphism

/i:C^ = Iκ,s/Ks -^ C/ which satisfies h(K*) = 1 for p G 5, Ji(ϊ7q) = Q,

and Λ(t/p) = 1 for p £ S U {q}.

The reciprocity law (2.3) transfers h to an epimorphism η: G(K) —> C/

such that 77(Jq) = C\. Let M be the fixed field of Ker(7y) in Ks. Then

Q{M/K) = C\ and q is ramified in M. Since q is unramified in L, we have

M Π L = K. Conclude the proof as in the second paragraph. Π
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The following local global principle is implicit in [Rei], [Ko, p. 35], and

[Se, Lemma 2.1.5]. We include a proof of this principle for the convenience

of the reader.

LEMMA 4.3. // each of the embedding problems (3.2) has a weak so-

lution, then the embedding problem (3.1) has a solution.

Proof. By lemma 4.2 we may assume that (3.1) does not split. So, by

the discussion in the first paragraph of §3, we have to prove that (3.1) has

a weak solution.

To this end let K1 = K(ζι) and apply class field theory to write a

commutative diagram of cohomology groups:

H2(G,Q) -?-> H2(G(K),Q) - ^ - H2{G(K'),Cι)

The Brauer-Hasse-Noether theorem for Brauer groups [CaF, p. 185] implies

that the right vertical map in (4.1) is injective. Since [K' : K] is relatively

prime to /, the upper res map in (4.1) is injective [CaF, p. 105]. Hence, the

middle vertical map in (4.1) is injective.

Denote now the element of H2{G,C{) (resp., H2(Gp,Cι)) which cor-

responds to the short exact sequence by ε (resp., εp). A necessary and

sufficient condition for (3.1) (resp., (3.2)) to be weakly solvable is that

p*(ε) = 1 (resp., Pp(εp) = 1) [Hoe, Lemma 1.1] (Note that C\ is a multi-

plicative group).

It follows from the preceding paragraph and from the weak solvability

of each of the local embedding problems that (3.1) is weakly solvable. Π

LEMMA 4.4. Let L/K be an n-Scholz extension with G — Q(L/K).

Suppose that the central embedding problem (3.1) does not split and that the

exponent of G is at most ln. Then (3.1) has a solution.

Proof By Lemma 4.3, it suffices to prove that each of the local em-

bedding problems (3.2) that (3.1) induces is solvable. To this end we put

Lp = LKp, replace Gp by the group G(Lp/Kp), Dp by G(KP), and ρp by

resL p .
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If Lp/Kp is an unramified extension, then pp decomposes through a map

p p :Z = g(KPiUr/Kp) -» g(Lp/Kp) and therefore (3.2) is weakly solvable.

If Lp/Kp is ramified, then by (3.4b) and (3.4a), it is totally ramified and

ζin £ Kp. By (3.3a) I φ char(ίίp) and therefore the ramification is tame.

Hence Lp is a cyclic Kummer extension. Since Q(Lp/Kp) is isomorphic to

a subgroup of G and since the exponent of G is at most Z71"1, the order

of Q(Lp/Kp) is at most ln~~ι. Thus Lp = Kp(
 ιrn~lfa) for some m < n

and a E Kp with Vp(a) — 0 [CaF, p. 32]. If (3.2) splits, then it certainly

has a weak solution. If (3.2) does not split, then Gp is a cyclic group of

order Zm. Then L'p = Kp(
 z^/α) is a cyclic extension of Kp of degree Zm

which contains Lp. The composition of res:G(Kp) —> Q(Lp/Kp) with an

isomorphism Q(Lp/Kp) —> Gp which maps generators of both groups to the

same generator of Q(Lp/Kp) solves the local embedding problem (3.2). Π

§5. Linearly disjoint fields; an exceptional set of primes

The condition that Lemma 5.1 imposes on the subgroup A of F* to be

nontrivial is translated in Lemma 5.2 to ζι £ K. This condition restricts

the Scholz-Reichardt method of realizing Z-groups over K to the case where

ζl ^ K. In particular, as (2 = — 1 belongs to every field, the method fails

for I = 2.

The introduction of an 'exceptional set of primes' (Definition 5.4, Lem-

ma 5.5, and Data 5.6) allow us to handle number fields and the case l\hχ>

To find such a set and also for further applications we construct a special

Galois extension iV* of K. Then we use the Chebotarev density theorem

and find primes of K whose Art in symbol is the conjugacy class of a given

element of G(N*/K) and therefore have specific decomposition behaviour

inΛΓ*.

LEMMA 5.1. Let A be a nontrivial subgroup ofF* which acts on the

direct product C = C™ in a natural way: ( c i , . . . , c m ) α =' (c-j*,..., c^).

Then the semidirect product G = C x A has no nontrivial quotients of order

I.

Proof. Let h: G —> C\ be a homomorphism. Then the order of h(A)

divides both I and I — 1, and therefore h(A) = 1. Let now 1 φ a G A and

c € C. Then h(c)a = h(ca) = h(a~ιca) = h(a)-χh(c)h(a) = h(c) and
hence h(c) = 1. Conclude that h = 1. Q
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Let S be a finite set of primes of K and consider elements a\,..., as of

Ks We say that αi , . . . , as are multiplicatively independent modulo
Kι

s if each relation

(5.1) aιϊ aι;=bι.

with Zi,.. ., Zs G Z and 6 G ifs implies that Z|Ẑ , i = 1,. . ., s. Replace '6 G

^ V by 'b G if*' to define the expression multiplicatively independent

modulo (Kx)1.

LEMMA 5.2. Let S be a finite set of primes of K. Let α i , . . . , as be

multiplicatively independent elements of Ks modulo Kι

s. Then the fields

K(ζh >/&!)> J K(ζι, J/al) are linearly disjoint and of degree I over K(ζι).

Further, suppose that ζι ^ K. Let L be an l-extension of K and let n be

a positive integer. Then, the fields L(^n,^/α7),.. ., L(ζ/n,^/αJ) are linearly

disjoint and of degree I over L(ζιn). In particular, [L(£/n,^/αΐ',..

Proof Observe that α i , . . . , α s are even multiplicatively independent

modulo (Kx)1. Indeed, let lu . . . , ls G Z and b e Kx such that (5.1) holds.

Then Ẑ p(fe) = 0 and therefore vp(b) = 0 for each p £ S. So, ί> G i^5 Hence

I divides Zi,.. ., Zs, as desired.

It follows that a\,..., as are also multiplicatively independent modulo

(K(ζι)x)1. Indeed, k = [K(&) : K] divides I — 1 and is therefore relatively

prime to Z. If in (5.1) b G K(ζι), we take the norm of both sides to obtain

By the preceding paragraph l\kli. Hence l\U for i = 1 . . . , 5, as desired.

By Kummer theory [Lan, p. 220, Thm. 14], the fields K(ζι,ψa{),...,

are linearly disjoint and of degree Z over K(ζι). Hence M =

, y/oΓs) is a Galois extension of if and Q{M/K) is the semidi-

rect product of Q{M/K{^Γ1,... , Λ / ^ ) ) with G(M/Km(ζι)) ^ Ff. The for-

mer group is isomorphic to Q{K(ζι)/K) and therefore to a subgroup of

¥x which acts on the latter group by scalar multiplication. Indeed, if

σ G g(M/K(ψaϊ, ...,ψal)) satisfies ζf = ζf for some s G Ff and r G

g(M/K(b)), then σ-Vσ = τ s .

We may write K(ζin) — K{ζι)Kr where Kr is a cyclic extension of K

of degree Zm with m < n — 1. So, Lif' is an Z-extension of K. Since, by
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assumption, Q(K(ζι)/K) is nontrivial, M/K has no Galois subextension of

degree I (Lemma 5.1). Hence M Π LK1 = K and therefore M Π L(ζin) =

K(b). Let N = L(Czn,^αΓ,...,^αί). Then Q{N/L{ζln)) * Q{M/K{Q)).
In particular L(ζιn,ψaϊ),..., L(ζi«, ^/αj) are linearly disjoint and of degree

I over L(ζin).

M N

K

L(ζι) L(ζι»)

LK' D

Remark 5.3. Under the assumption of Lemma 5.2 suppose that L is

αJ) is aa function field over a finite field KQ. Then iV =

regular extension of i^o(On)

Indeed, let L(0°°) = L(Cz>Cz2>Cz3> •)• Since n is arbitrary in the last

paragraph of the proof of Lemma 5.2, we have that M Π L(ζ/oo) = K(ζι).

Since Ko(O°°) has no /-extensions and M/K(ζι) is an /-extension, this im-

plies that M Π LKo = K(ζι). Hence N Π LK0 = L(&n). Since L/Ko is

regular, L(Cz*) Π ̂ o = ^o(O n ) Conclude that Λ̂  Π K o = ϋΓo(On)? that is

N/Ko(ζin) is regular.

DEFINITION 5.4. (Exceptional set of primes) Let r = rank/(/ί) and

choose α i , . . . ,cer in 7χ (resp., /^) which represent a multiplicative basis

over Fj for Cl(K)ι (resp., Clo(K)ι) if K is a number field (resp., function

field). By definition there exist μι G U and a* £ Kx such that

(5.2) i = l , . . . , r .

We call α j , . . . , α* an /-basis for K and fix it for the whole work. We also

choose fundamental units of K. These are elements wi , . . . , ws G EK, with

s = rank o o ( i ί) , which generate Ejζ modulo μ # . We fix them too for the

whole work. We also fix the following basic Galois extension of K:
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By (5.2), Ram(N*/K) C P; U ?«,.
An n-exceptional set of primes of K is a set of finite primes

(5.3) = { P l > -iPΪiQli- - j f l s

which is disjoint from SO such that for all i,i ; G {1,..., r} and all
{1,..., s} we have

i 7̂  i!\ α* G ίrf*,

(5.4) G ϋfj j ' , and

. 0-

LEMMA 5.5. (Characterization of exceptional set) Let

29

iV = K(ζιn, y^*,..., y^*, Λ̂ /5UΓ,.. -, Λ/ , , \/wl),

Γften

(a) N*/Ni and N*/Nj are cyclic extensions of degree I, N*/K is a Ga-
lois extension of degree [K(ζγ) : K]Γ+S, Ni/K and Nf-/K are Galois
extensions, and

(b) the set S\ (of (5.3)) is exceptional if and only if it is disjoint from So,
and

(5.5) (N*/K) = G{N*/Ni) and £>q* {N*/K) =

for i = 1,..., r and j = 1,..., s.

Proof. Let S — Poo Once we prove that a\,..., α*, w\,..., ws are
multiplicatively independent modulo Kx, (a) will follow from Lemma 5.2
with L — K. Since the fixed field of the decomposition group of a prime p in
TV* is N*nKp, statement (b) will then also hold. Note that since Q(N*/Ni)
and Q(N*/Nj) are normal subgroups of G(N*/K), (5.5) is independent of
the embedding we have chosen for K in Kp*.
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Suppose therefore that fcχ?..., fcr, Zχ5..., ls are integers and b G Kx

such that

Then, by (5.2),

(5.7) μ-L * μ~ ri(;1

1 ws

s = (α^ 1 * a~ rb) .

Since the left hand side of (5.7) belongs to [/, so is its right hand side and

therefore a*1 a^b'1 G U. Hence α^1 ak

r

r G UKX. By the choice of

α i , . . . , α r each fci is a multiple of Z.

It follows from (5.6) that there exists c G Kx such that wl± ιy^s = cι.

Hence c G EK and since κ;χ,... ,ws are multiplicatively independent over

Z and generate Ex modulo μx, each Ẑ  is a multiple of Z. Conclude that

a\ . . . , α*, wi, . . . , ws are multiplicatively independent modulo (Kx)1. Q

5.6. (Exceptional set of primes) Choose a generator σ* for G(N*/

Ni), let Con(σ*) be the conjugacy class of σ* in Q(N*/K) and apply the

Chebotarev density theorem to choose p* G P \ So such that (—4—) =

Con(σ*), i = l , . . . , r . Similarly, choose a generator τϊ for G{N*/N'j)

and q* G P \ 5 0 such that {^^-) = Con(r*), j = l , . . . , s . Since the

Artin symbol of a prime generates its decomposition group in ΛΓ*, (5.5)

holds and therefore, by Lemma 5.5, the set 5χ of (5.3), chosen in this

way is exceptional. We fix it for the rest of this work and note that

I Si I = rankootK) + rank/(K).

Note that if K is a number field, then S\ is empty exactly if either K =

Q and I φ 2, K = Q(\/—3) and I φ 2,3, or K is another imaginary quadratic

field with / φ 2 and I \ hjζ. If K is a function field, then rank o o (ί ί) = 0 and

I Si I = rank/(if). In this case Si = 0 is equivalent to I \ hκ>

§6. Getting rid of extra ramification

The second step in the solution of embedding problem (3.1) is to change

the solution ψo we have found in Lemma 4.4 such that in addition to the

primes of Ram(p) the only primes of K at which the solution ramifies belong

to the exceptional set Si which we have chosen in Data 5.6.

LEMMA 6.1. Let S be a finite set of primes which is disjoint from the

exceptional set S\. For each prime p G S let hp\ Up —* C\ be a continuous
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homomorphism. Suppose that ζι £ K. Then there exists a continuous

homomorphism h: C& —•> C\ such that h\jjp = hp for each p G 5 and h(Up) —

1 for each prime p (£ S U S±

Proof We break the proof into five parts.

Part A. (Definition of hp for p G S\)

By (5.4), ζι G Up. Hence, by Lemma 4.1, Up/Uι

p ^ Cz. Hence, for

each u £ Up^Up and each c E Cι there exists a continuous homomorphism

hf:Up-^ Cι such that /ι;(u) = c.

By (5.2) and (5.4), μι G CΛ,?. \ UL. Hence, there exists a continuous

homomorphism hp*: Up* —> Q such that

(6.1)

Here, μ^p is the p-th component of μι. For the same reason, there exists a

continuous homomorphism /iq*: Uq* —> C\ such that

(6.2) (ft hpiwΔ - hq* (Wj) = 1, j = 1, ...,*.

This completes the definition of hp for each p G SΊ.

By (5.2) and (5.4), μι G C/p and therefore

(6.3) M W , P ) = X f o r e a c h P G 5 i x {Pz*}

By (5.4), tϋj G Up and therefore

(6.4) ^p(^j) = 1 for each p G SΊ \ {q*}

Pαrί B. (Definition of f on UKX/KX)

The formula

(6.5) f(μ)= H hp(μp)

defines a continuous homomorphism / from the open subgroup U of Iχ

into C\ that is trivial on Up for each p ^ 5 U S\ and coincides with hp on t/p

for each p G 5 U 5χ. By (6.2) and (6.4), /(WJ) = 1 for j = 1,. . . , 5. Since

|μ_κΊ is relatively prime to Z, / is trivial on μx- It follows that / is trivial

on EK — U Π Kx. So, / defines a homomorphism /: U/Eχ —> C/ which

we compose with the isomorphism UKX/Kx = U/Eχ to get a continuous

homomorphism / ; : UKX/KX -> C/.
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Part C. (Claim: Iι

κK
x Π UKX = UιKx ΓG=i(w))

Indeed, as μi — a\{a*)~ι, by (5.2), the right hand side is contained
in the left hand side. Each element of the left hand side has the form
ξ = aιa — μb with a G Iκ-> CL.be Kx, and μ G U. Thus a1 == μfcα"1 G
UKX. If ί ί is a function field, then Zdeg(α) = deg(μ) + deg(6α~1) = 0
and hence deg(α) = 0, so that a G /^. So, in any case a — ^cfj^=1 c*/
for some v e U, c e K x , and fc^ G Z, i = 1,... ,r. It follows from (5.2)
that ξ = ^/(c^Π[=ri(αi)/Ci) Π[=i M^ belongs to the right hand side. This
concludes the proof of the claim.

Part D. (Definition of g on Iι

κUKx/Kx)

By (6.1) and (6.3), f(μi) = 1, i = 1,..., r. Hence, by Part C, / ; is triv-
ial on (Iι

κK
x Π UKX)/KX. So, /' extends to a continuous homomorphism

g\Iι

κUKx/Kx —> Cj which is trivial on Iι

κK
x/Kx, coincides with hp on

Up for each p G 5 U 5χ, and is trivial ?7p for each p φ S Π S\.

7^ΛΓX Π

Part E. (Conclusion of the proof)

Finally observe that Iχ/UKx is a finitely generated abelian profi-
nite group (Section 1). Hence, Iι

κUKx /Iι

κK
x is an open subgroup of

Cχ/Cι

κ. The latter group may be considered as a vector space over F/ and
Iι

κUKx/Kx has a closed complement in it. So, g extends to a continuous
homomorphism h: CK —> C\. Π

LEMMA 6.2. Suppose that the central embedding problem (3.1) does
not split. Assume that ζι £ K. If the central embedding problem (3.1)
has a solution ψ$, then (3.1) also has a solution φ:G(K) —» G for which
Ram(^) C Ram(p)ϋSi.

Proof. Let S = Ram(^o) x (Si U Ram(p)). If p G S, then p(Ip) = 1
and therefore ψo(Iρ) < Q (Actually, as p G Ram^o), we have φo(Ip) φ 1
and therefore φo(Iρ) = Q ) The reciprocity law (2.3) associates with φo\ip

a continuous homomorphism hp'.Up —> C/. By Lemma 6.1 there exists a
continuous homomorphism h: Cjζ —> C\ such that h\u = /ip for each p G 5
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and h(Up) = 1 for each p ^ S U Si. Apply again the reciprocity law to

obtain a continuous homomorphism η:G(K) —> C\ such that η\jp = ψo\ip

for each p G S and η(Ip) = 1 for each p ^ S l ) 5 i . Consider the solution

ψ z u r / " 1 - ^ to (3.1). Then, ^(/p) = 1 for each p G SU[P\(Ram(^ 0 USΊ))] .

Hence, Ram(^) C (P ^ S) Π [Ram(^0) U Si] C Ram(p) U Si, as desired. D

§7. Scholz solution of a nonsplitting embedding problem

The last step in the solution of embedding problem (3.1) is to multiply

the solution which Lemma 6.2 gives with a homomorphism η:G(G) —> C\

such that the resulting solution will be n-Scholz.

LEMMA 7.1. Let S be a finite set of primes of K which contains SQ.

Let L be a finite l-extension of K and let n be a positive integer. For each

p G S let hp\ Kp —> C[ be a homomorphism. Suppose that ζι φ. K.

Then there exists a prime q of K and there exists a continuous homo-

morphism h: CK —* C\ such that

(a) q ^S andL(ζin) C Kq,

(b) h\κx = hp for each p G S ;

(c) h(Uq) = Cι,

(d) h(Up) = 1 for each p£Su{q}.

Proof. We break the proof into five parts.

Part A. (Reduction of the lemma to constructing a homomorphism g: ϊκ,s/

Ks - Cι)

Let (Ks : Kι

s) = Is. Choose generators α i , . . . ,α s for Kβ modulo Kι

s.

For each q ^ S w e can decompose Iχβ as

P X χ ^ x Π UP

Use a bar to denote the reduction of elements and subgroups of Iχβ modulo

l\ζ S' In particular1

(7.1) ΐκ,s = HκϊxUqx H Up.
pes

^ o not confuse K* ^ K*/(Kp)1 with the multiplicative group of the Kp of the

residue field Kp, for p ^ Poo.
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and

(7.2) ^ s = ( δ 1 , . . . , o β )

Also, hp: Kp —> C\ induces a homomorphism hp\ Kp —> C\. Then Ϊκ,s/Ks

= (Iκ,s/Il

κ,s)/(KsIlκ,s/llκ,s) i s a quotient of Cκ = Iκ,s/Ks (See (1.5)).
Hence, it suffices to find a prime q of K which satisfies (a) and to construct

a homomorphism g: ϊκ,s ~^ C\ such that

(7.3a) g\— = hp for each p G S,

(7.3b) g(Uq) = Cu

(7.3c) g(Up) = 1 for each p£SU {q}.

(7.3d) g(ai) = l for i = 1,...,5.

By (7.1) and (7.3), g will induce a homomorphism g:ΐκ,s/Ks ~+ C/ which

will compose with the canonical homomorphism C ^ —• Ϊκ,s/Ks to the

desired homomorphism /ι.

Pαrί B. (Presentation of aι as an idele)

For each i between 1 and s and each p let α^ be α̂  considered as an

element of Kp and let

(7.6) δi

If q satisfies (a), then αi , . . ' . , α s, ζι G C/q and C7q = C\ (Lemma 4.1). Choose

a generator ΰ q of Uq. For each i there exists then 0 < βi < I such that

άjq = ΰq . The representation of α̂  as an idele will therefore take the form:

(7.7) ai = Πaip ϋζi f j άip

Conditions (7.3a) and (7.3c) force that g(άip) — h(άip) for p £ S and

g((iip) = 1 for p ^ 5 U {q}. Condition (7.3b) is equivalent to g(ΰ^) φ 1. We

have therefore to choose q such that (a) will hold and to define g(ΰq) as a

nonzero element of C\ such that (7.3d) will be satisfied.

If δi = 1 for i = 1,. . . , r we may use the Chebotarev density theorem

to choose q ^ S such that

(7.8) N
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In particular (a) holds and aιq G Uj. so that βi — 0 for i = 1,..., s. We

therefore define g(ΰq) to be a generator of C\ and derive from (7.7) that

g(ai) — δi g(uq)@l = 1, so that (7.3d) holds.

Part C. (The main case)

We may and we will from now assume that

(7.9) Si φ 1

Under this assumption there exists 0 < εi < I such that in C\

(7.10) ^ = « i , i = l ,2, . . . , s .

In particular εi — 1. Define

(7.11) b\ — a\ and b{ = ai/a\% for i = 2,. . . , s.

As α i , . . . , α s are multiplicatively independent modulo iΓ^, so are 6χ,..., 6S.

By Lemma 5.2, L(ζin, \/b\),..., i ( 0 n > V^) ^ r e linearly disjoint fields of de-

gree I over L(ζin).

Part D. (Choosing q)

Part C allows us to choose σ G Q(N/L(ζin)) with σ̂ J/αΐ" = OΛ/^T and

CΛ/^ = v ^ , i = 2,. . . , s.

Chebotarev density theorem gives a prime q ^ S such that (—τ~) —

Con(σ). Thus, L(ζιn) C Kq but iίq(ζ"/n,^/αΐ) is an unramified extension of

Kq of degree I. In particular αi G C/q \ ί/̂ . On the other hand bi G Uι

q and

therefore, by (7.11)

(7.12) aιq=ά% i = 2, . . . , 5.

Part E. (Definition of g)

By Part B, αiq = ίZ^ with 0 < β < I. We may therefore define g(ΰq)

as the element of C\ that satisfies

(7.13) g(ύqf = δ^

In particular g(ΰq) φ 1. By (7.12), α q̂ = tϊ^ε% i = 2,... ,s. As εi = 1 the

latter equality also holds for i = 1. This gives (7.7) the following form:

(7.14) ai = Y[aip ΰPε* ]J άιp
pes

https://doi.org/10.1017/S0027763000025046 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025046


36 W.-D. GEYER AND M. JARDEN

Apply g on (7.14) and use (7.3a), (7.3c), (7.6), (7.13), and (7.10) to get

that

So (7.3d) holds and the proof is complete. Q

LEMMA 7.2. Suppose that (3.1) is a central embedding problem such

that p is an n-Scholz epimorphism which respects the local data {pp = aoψp |

p E So}. Suppose further that ζι (£ K and that (3.1) has a solution ψ

such that Ram(τ/>) U Si — Ram(p) U 5χ. Then there exists a prime q £

Ram('0)u5oUS'i at which p totally decomposes and there exists an n-Scholz

solution φ:G(K) —> G to (3.1) which respects the local data {φp | p E SO}

such that Ram(</>) U 5 0 = Ram(^) U {q} U So.

Proof. Let L (resp., V) be the fixed field of Ker(p) (resp., Keτ(ψ))

in Ks. For each p E 5 = Ram(/0) ϋ So U SΊ we define a homomorphism

ηp: Dp —> C/ as follows:

If p E (Ram(^) \ So) U Si, then p E Ram(ρ) U Si. Choose a lifting of

Frobp to an element σp of Dp. Since p is n-Scholz, we have a o ψ(σp) =

p(σρ) ^ PiPp) — P(h) — a o Ψ(Iρ)- Hence, there exists r E Ip and j p E C\

such that ψ(σp) = Ύpψ(τ). Replace σp by σpr" 1 , if necessary, to assume

that ψ(σp) = 7p. Now define a homomorphism Tfy from (Frobp} = Dp/Ip =

Z to Cj by ?7(Frobp) = 7̂ " . Then compose fjp with the canonical map

Dp —> Dp/Ip to a homomorphism ηpiDp —> C\. It satisfies

(7.15) 77p(/p) - 1 and r/p(σp) - ^(σp)" 1 .

If p E So, then a o φ\op = Pp — a o φp. Hence φp = ηp ψ\r>p with

a map ηp'.Dp —• C/. Since C/ is contained in the center of G, ηp is a

homomorphism.

Lemma 7.1, applied to L! instead of to L and the reciprocity law (2.3)

supply a prime q E P and a continuous epimorphism η: G{K) —> C\ such

that

(7.16a) q ^ S and L'(ζιn) C ϋΓq; in particular ψ(Dq) = 1,

(7.16b) η\op

 = Vp f° r each p E S,

(7.16c) η(Iq) = Cu and
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(7.16d) η(Ip) = 1 for each p £ S U {q}.

We prove that ψ = η ψ: G(K) —* G satisfies the requirements of the

lemma. To this end, let p be a prime of K. We have to prove that if p ^ SQ,

then φ(Ip) Φ I iϊ and only if ψ(Ip) φ 1 or p = q. In addition, if φ(Ip) φ 1

or p G Si, then φ(Ip) = φ{Dp) should hold. Finally, we have to prove that

ψ\Dp — Ψp f° r each p G Sg. We distinguish between several cases:

Case A. (p G (Ram(^) \ So) U Si)

Then, by (7.15), φ\Ip = η\Ip φ\Ip = ψ\Ip. So, φ(Ip) φ 1 if and only if

ψ(Ip) φ 1. Also, by (7.15) and (7.16b) φ(σp) = ηp(σp)ψ(σp) = 1. Hence,

Case B. (p G So)

By (7.16b), Ψ\DP — Vp ' Ψ\DP — Ψp- So, φ respects the given local data.

Case C. (p = q)

By (7.16a), φ(Dq) = 1 and hence, by (7.16c), φ(Iq) = Ch Also, for

each σ G Dq we have φ(σ) — η(σ) 1 G Q . Hence C/ = ^(/ q) < φ(Dq) < C/.

D. (p ^ Su{q})
T h e n ^ | / p = r y | J p . ^ | / p = 1.

In each case all the requirements are fulfilled. Q

We combine Lemmas 4.2, 4.3, 6.2, and 7.2:

PROPOSITION 7.3. (Solution of an embedding problem) Let K be a

global field and let I Φ char(ϋΓ) be a prime such that ζι £ K. Let So be

a basic set of primes {Data 1.1), let n be a positive integer, and let S\ be

an n-exeptional set of primes (Data 5.6). Consider an embedding problem

(3.1) for G(K) for which G is an l-group of exponent ln. Let {φp | p G So}

be a local data for G and n. Suppose that p is an n-Scholz epimorphism

which respects the local data {a o ψp | p G So}. Then there exists a prime

q ^ Ram(p)USoUSi and there exists an n-Scholz solution φ for (3.1) which

respects the local data {ψp \ p G So} such that

(7.17) Ram(<p) U So U Si = Ram(p) U {q} U S o U Sx

THEOREM 7.4. (Realization of Z-groups) Let K be a global field and

let I Φ char(iί) be a prime such that ζι φ K. Let SQ be a basic set of
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primes (Data 1.1), let m < n be positive integers, and let S\ be an n-

exeptional set of primes (Data 5.6). Consider a group G of order lm and

a local data {φp' Dp —> G | p G SO} for G. Then K has a finite Galois

extension L which is n-Scholz such that Q(L/K) = G, for each p G SO

the map res: Dp —> Dp{L/K) coincides with ψp, and there exist m primes

q i , . . . , qm G P \ (SO U Si) such that

(3.18) Ram(E/K) U S o U Si - {q l 5 . . ., qm} U So U Sλ.

In particular, if each p G So completely decomposes in L, then

(3.19) m < |Ram(L/iΓ)| <m + rank/(if) + ranko o( Jfί).

Proof Suppose without loss that m > 1 and embed C\ in the center

of G, let G = G/Cι, and let a: G —* G be the canonical map. Induction on

the order of the group gives an n-Scholz epimorphism p: G(K) —> G which

respects the local data {a o ψp | p G So} such that |Ram(p) \ (So U S\)\ =

m — 1. This creates an embedding problem (3.1). Proposition 7.3 supplies

an n-Scholz solution of this problem such that (7.17) holds. Conclude that

(7.18) is true. As \Sχ\ = rank/(if) + rankoo(ίf), this gives the estimates

(7.19). D

Example 7.5. (Necessity of many ramified primes) We prove in this ex-

ample that if L/K is an Z-elementary abelian extension, then Ram(L/iί)

must be 'big'. More precisely, we compute a constant ΓQ such that if

[L : K] — V and I is unramified in L, then |Ram(L/jK')| > r — ro

Indeed, let Γ be a finite set of m primes which is disjoint from P/ U P ^

and let S — Ψ\ UPQO UT. Let r be the maximal integer for which K admits a

Galois extension N which is unramified outside S such that Q(N/K) = G[.

Class field theory suggests a bound on r which does not depend on T.

CLAIM. The following inequalities hold for a number field K:

(7.20a) r < [K : Q] + |P/| + r&nkι(K) + m, iflφ 2;

(7.20b) r < [K : Q] + | P 2 | + φreal archimedean primes + rank 2 (iί) + m, if

1 = 2

(7.20c) r < 1 + m, ifK =

(7.20d) r = 2 + m,ifK =
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The following inequalities hold for a function field K:

(7.20e) r < 1 + rank/(UΓ) + m, if K is a function field,

( 7 . 2 0 f ) r<l + m

Indeed, let V = Πp^s^p By the reciprocity law (2.3), r is the maximal
integer for which there exists a homomorphism h: Iχ —* C[ which is trivial
on VKX. As V < U (in the notation of Section 1), we have the following
short exact sequence

1 —> UKX/VKX —> IK/VKX —> Cl(K) —• 1.

Observe that UKX/VKX is a homomorphic image of U/V = Πpes ^V
Hence

r = dim¥ι(Iκ/VKx)/(Iκ/VKx)1

(7.21) < dim¥ι(UKx/VKX)/{UKX/VKX)1 + dimFz Cl(K)/C\(K)1

< Σ dim^ Up/Uι

p + dimFz Cl(K)/Cl{K)1.
pes

For each p e¥ι the dimension of Up/Uι

p over Ft is [Kp : Qι] + 1 if ζι € Kp

and [Kp : Qι] if ζι £ Kp. If p G P ^ , then Up = Uι

p unless I = 2 and p is real.
In the latter case Up = R x and so dimF 2 Up/U$ = 1. If p £ P/ U P ^ , then
Up = Up unless ζι G Up, in which case dimFz Up/Up = 1. Thus

(7.22a) ^ (
pGPz ^p real

+ m + dimFz C\{K)/Cl(K)1

(7.22b) < [K : Q] + |P/| + #real archimedean primes

+ dimFz Cl(K)/C\{K)1 + m

where the term '^real archimedean primes' appears only if Z = 2.
If K is a number field, then dimF/ C\(K)/Cl(K)1 = rank/(K). If / φ 2,

then we can drop Σp r e a l 1 from (7.22b). So, (7.20a) and (7.20b) hold.

If K = Q, then Cl(X) = 1 and therefore dimFz C\(K)/C\(K)1 = 0. If
in addition, I φ 2, that ζι £ Q/ and therefore P/ = {/} contributes 1 to the
sum Σ^p(EsdimFj Up/Uι

p. If instead, I = 2, then #real archimedean primes
= 1. This gives (7.20c) and (7.20d).
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If K is a function field, then |PZ| = |Poo| = 0 but

dimFz C\{K)/C\(K)1 = τank^K) + 1.

This gives (7.20e). Finally, if K = Fq(t), then rank/(if) = 0 and so (7.20f)
is true.

Thus, in each case, there exists a constant ro that does not depend on
m such that r < ΓQ + m. If L/K is a Galois extension with Q(L/K) = Cf
and we take T = Ra,m(L/K) \ P/, then we find that r — ro < |Γ|, which is
somewhat stronger than claimed.

Consider now the case in which I φ 2 and K — Q. Then ro = 1
and Q has a unique extension LQ of degree I in which I ramifies. It is
the unique extension of degree I which is contained in Q(C/2). No other
prime execpt I is ramified in LQ- If L is a Galois extension of Q with
G(L/Q) = Cf which does not contain Lo, then G(LL0/Q) ^ C[ + 1 . Hence,
by the preceding paragraph |Ram(LLo/Q) \ Pj| > r. Since Ram(L/Q) and
Ram(Lo/Q) = {/} are disjoint, we conclude that Ram(L/Q) contains at
least r elements.

Similarly, let L be a Galois extension of ¥q(t) with Galois group iso-
morphic to Cf which is regular over ¥q. Then L is disjoint from the unique
unramified extension ¥qι of degree I oϊ¥q(t). As in the preceding paragraph,
|Ram(L/F,(t))|>r.

Thus, if K = Q or K = Fς(ί), Theorem 7.4 gives the most economic
realization of Cf in terms of number of ramified primes. Π

§8. Estimates

In this section we consider the case where K is a function field of one
variable over the field KQ = F^, where q is a prime power. Our goal is to
estimate some of the invariants of the field L of Theorem 7.4.

Data 8.1. We fix the following notation for the whole section:

t — transcendental element

over K which we also consider as a variable

K = finite separable extension of Ko(t) which is regular over KQ

gκ = the genus of K

d=[K:K0(t)]
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I — 'prime element φ char(iί)

n = positive integer

So — basic set for K {Data 1.1); put SQ = |5o|;

TV* = basic extension of K [Definition 5.4)

S\ — exceptional set of primes for K.

Note that s\ = \S\\ = rank/I^ (Data 5.6).

LEMMA 8.2. Let N be a finite Galois extension of K. Denote the

algebraic closure of KQ in N by KQ. Let C be a conjugacy class in Q(N/K),

and let c = \C\. Let k be a multiple of [K'o : KQ}. Denote the number of

primes q of K which do not ramify over K$(t) nor in N, are of degree k,

and such that (-~r~) ~ C by v. Let vo be a positive integer and suppose

that

(8.1) klogq > maxJ21og(2pτv + (d+l)[N : K'} + 3),

then v > i/Q.

Proof Let K1 = KK'O and let m = [N : K'). By (8.1), qk>2 > uokm/c

and ς^/2 > 2gχ + 2m + 3. Also, (13.1) holds with K and JV, respectively

instead of i? and F . Hence, by Corollary 13.5

v > T^- qk ~ γ^- ' {m + gN + 1) gfc/2

> v0 1 = i/0.

This proves our claim. D

For a finite set T of primes of a function field K/Ko we write

per
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LEMMA 8.3. Let L/K be a finite tamely ramified extension of function

fields of one variable over the same constant field. Then their genera satisfy

the following inequality:

(8.3) W^\ ~ {2gK ~2)

Proof The Riemann-Hurwitz genus formula for L/K is

(8.4) 2gL - 2 = [L : K](2gκ - 2) + £ J > 0 P / p ) - 1) deg(φ)
pGRam(L/K) φ|p

[FrJ, p. 24]. In the second sum φ ranges over all prime divisors of L which lie

over p and e(ty/p) denotes the relative ramification index. We also denote

the relative residue degree of φ/p by f(9β/p). Then

Σ Σ(e(Wp) - 1) deg(φ)
/K-) φ\p

^ Σ ( )
p<ΞRam(L/X)

[L:K\άeg(p)
)

= [L:K]deg(R&m{L/K))

Hence, inequality (8.3) follows from (8.4). D

LEMMA 8.4. Let T be a finite set of primes of K. Suppose that ζι ^

K. Let L/K be a finite l-extension such that L is regular over Ko and

let S = Ram(L/Jfί) U T. Consider elements α i , . . . ,α r of Ks which are

multiplίcatively independent modulo Kι

s and let N = L(ζ/n,^/αϊ,... ,

Then

(8.5)

Proof. We apply Lemma 8.3 to N/K(ζin) instead of to L/K.

Let K'o = K0(ζιn), Kr = K(ζιn), and V = L{ζin). Then K'/K'o is a

regular extension which is obtained from the function field K/KQ by a finite

separable extension of the field of constants. Hence gχι = gx [Deu, p. 132].

Let Sf be the set of primes of Kf/K'o which lie over S. Since each prime of

K' is unramified over KQ, we have deg(5/) = deg(S') [Deu, 132].
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By Remark 5.3, N is a regular extension of KQ and by Lemma 5.2,

[N : Kf] = lr[L : K]. Since I is relatively prime to char (if), the extension

N/K; is tamely ramified. If a prime p of K'/K'o does not belong to 5

and ?β is an extension of p to L', then vφ(di) = Vp(μi) — 0. Hence, 9β is

unramified in Lf(tfaϊ) (a consequence of [CaF, p. 32, Prop. 1]) and therefore

p is unramified in N. Thus, Ram(7V/K/) C S".

It follows that (8.5) is a consequence of (8.3). D

LEMMA 8.5. Let T be a finite set of primes of K. Suppose that

ζi ^ K. Let L/K be a Galois extension of degree lm such that L is reg-

ular over KQ and let S = R&m(L/K) U T. Consider elements α i , . . . , as

of Ks which are multiplicatiυely independent modulo Ks and let N =

LiCi"-, v^αj,.. ., yfcΐs)- Suppose that k is a multiple of dn such that deg(p) < k

for each p G S. Let

(8.6)

and let C be a conjugacy class in Q(N/K(ζin))m Suppose that

(8.7) Hogςί > 41og8 + 4(ra + s)log£ + 41ogμ.

Then there exists q G P \ S such that deg(q) = k and ( ^ p ) = C.

Proof Let K'o = KQ(ζln) and K' = K(ζιn). By Lemma 5.2, [N : Kr] =

Z m + 5 . If m + s = 0, then TV = K(ζin). Then g^ = gx and the constant m of

Lemma 8.2 becomes 1. Let v be the number of q G P such that deg(q) = k

and (-L—) = C. We have to prove that v > \S\. Indeed, the inequality of

Lemma 8.2 simplifies to v > ^(qk/2 - 2gκ - 2). Since qh'2 > 2k'2 > k

and qk'2 > μ2 (by (8.7)), we have v > μ2 - v > \S\.

So, assume from now on that m + s > 1. By Lemma 8.2, it suffices to

prove (8.1) with UQ = \S\.

The inequality fclog^ > 41og(2^χ + 1) follows from (8.6) and (8.7).

Hence, it suffices to prove

(8.8) ^ log q > \og(2gN + (d + 1)Γ+S + 3)

(8.9) ^ +
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By Lemma 8.4 and by the assumption 'deg(p) < k for each p E S" we

have

(8.10) 2gN-2< Γ+S(2gκ - 2 + deg(S)) < Γ+S{2gκ -2 + k\S\).

Since 5 < 2Z m + s , (8.10) gives

(8.11) 2gN + (d+ 1)Γ+S + 3 < Γ+S(2gκ + k\S\ +d+l).

Nest observe that -^p is a decreasing function for x > e and that

^ - i ^ . Hence, for k > 16, logfc < \ log 2 < f logg. If k < 16, then

by (8.6), μ > 2 and then by (8.7), klogq > 41og(8μ) > 4\ogk. Thus, in

each case log/c < | logg . It follows from (8.7) that

k
(8.12) log k + (m + s) log / + log μ < - log q + (m + s) log I + log μ

Hence, by (8.11)

k k k
- l o g g + - l o g < ? = -logq.

< (m + s)log/ + logk + \og(2gκ + \S\+d+l)

k
= log k + (m + s) log / + log μ < - log q,

which proves (8.8). Finally, (8.9) follows from (8.13) and the inequality

| 5 | < μ. D

THEOREM 8.6. Let K be a function field of one variable over Fq and

let So and 5χ be sets of primes as in Data 8.1. Let G be a group of order

lm and let n > m. Suppose that ζι ̂  K. Then K has an n-Scholz extension

L which is regular over ¥q such that Q{L/K) = G, |Ram(L/K) U S±\ =

m + τ&ukiK, and each p G SO totally decomposes in L.

Moreover, let μ = 3gκ + d + m + so + τ&nkiK + 1 and let k be a multiple

of dn such that

(8.13) kλogq > 41og8 + 4(ra + rank/J?Γ)logZ + 41ogμ.

Then we can choose S\ and L such that deg(p) = k for each pGRam(L/ίί)U

S\. The genus of L is estimated by

(8.14) 2gL-2< Γ(2gκ - 2 + (m + rank^if ))/c).
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Proof. Denote ¥q by KQ. Assume without loss that m > 1. Embed

C\ in the center of G and let G — GjC\. By induction, K has an n-Scholz

extension L which is regular over KQ such that Q(L/K) = G, and the

above conditions are satisfied for m — 1 instead of for m. Now consider the

following central embedding problem

G{K)

(8.15)

1 > Cι > G —^—> Q{L/K) > 1

Lemmas 4.2 and 4.4 give a solution φ to (8.15), which however, need not

be n-Scholz. Use Lemma 6.2 to replace φ by another solution, if necessary,

to assume that Ram(/0) C R&m(L/K) USΊ Then Lemma 7.2 gives a prime

q ^ So U Si U Ram(L/i iί) and an n-Scholz solution φ to (8.15) such that

RaiΆ(φ) — Ram(^) U {q}. The fixed field L* of Ker((/?) is an n-Scholz

extension of K with Q(L*/L) = G and Ram(L*/iί) = Ram(^) U {q}. In

particular L*/L ramifies. Hence, as L is regular over K$, so is L*.

Now suppose that (8.13) holds. Then apply Lemma 8.5 to choose the

exceptional set Si with primes of degree k. Here we follow the construction

of Data 5.6 with r — rank/(jFΓ) and s — ranko o(i ;ί) — 0. Let JV* and W{ be

as in Lemma 5.5. Then we choose a generator T{ for G(N*/Ni) and apply

Lemma 8.5 to choose p* e F\Raxn(N*/K)uS0 such that ( ^ ^ ) = Con(σ^),

i = l , . . . , r .

In order to choose q ^ SQU SI URam(L/i ;ί) as in Lemma 7.2 we have to

apply Lemma 7.1. The latter Lemma chooses generators α i , . . . , αs for JFC^

modulo Kι

s, puts JV = L(Czn5 v^Γ> > v^s) a n ( i chooses σ E Q(N/L(ζin)) in

a special way (Part D, after the proof). Then it applies the Chebotarev den-

sity theorem to choose q G P \ S such that either {~—) — 1 (in Part B) or

(—r—) = Con(σ) (in Part D). Since (8.13) holds, we may apply Lemma 8.5,

which is an effective version of the Chebotarev density theorem, and choose

q such that in addition to the above, deg(q) = k.

Finally, (8.14) follows from Lemma 8.3. Q

§9. Field of rational function

The case where K — ¥q(t) is simpler than the general one. In this case,

in the notation of Data 8.1, we have
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(9.1) d = 1, hκ = 1, N* = Fg(t,C/n), Ram(N*/K) = 0, rankf(liΓ) = 0,

Si = 0, and #χ = 0. We take *SΌ as a finite set of primes of K/¥q

which contains (t)^.

Note that ζι φ. K is equivalent to Z \ q — 1 and I φ char(jFΓ) is equivalent to

I \ q. Thus Theorem 8.6 specializes in this case to the following result:

THEOREM 9.1. Let q be a prime power and let I be a prime such that

I \ (q — l)q. Let G be a group of order ln and let So be a finite set of primes

of¥q(t) which contains (ί)oo Then ¥q(t) has an n-Scholz extension L which

is regular oυer¥q such that G(L/¥q(t)) = G, |Ram(L/F g(ί)) | = n, and such

that each p G So totally decomposes in L. Moreover, let k be a multiple of

dn such that Hogg > 41og(8Zn(l + n + |SΌ|)) Then we can choose L such

that deg(p) = k for each p e Ra,m(L/K) and 2gL - 2 < Γ(nk - 2).

By the primitive element theorem, there exists a Galois polynomial

/ G Fq[t,X] such that {?(/(*, JQ,F ρ (ί)) = G. The degree of / in X is of

course ln. The following result will enable us to choose / with bounded

degree in t.

LEMMA 9.2. Let Ko be an arbitrary field and consider a Galois ex-

tension L of K = Ko (t) of degree d which is regular over Ko

(a) Suppose that (t)^ totally decomposes in L. Let p be a prime divisor

of L/Ko which divides (t)oo and let x be an element of L such that

(α^oo = kp for some positive integer k. Then x is integral over K$\t\,

L = K(x) and f = irr(x, K{t)) has the form

(9.1) f{t,X) = Xd + α i ί * ) ^ - 1 + + ad(t).

with a,i G Ko[t] and deg(αi(t)) < deg(αχ(t)) = k, i = 1,... ,d.

(b) Conversely, suppose that x G L and that f = irr(x, Kit)) is given

by (9.1) such that aι{t) G K0[t], deg(αχ(ί)) > 0 ; and deg(α^t)) <

deg(αχ(t)), i = 1,... ,<i. Then (t)^ totally decomposes in L.

Proof of (a). Denote the normalized valuation of L/KQ that corresponds

to p by v. Then υ(x) — —k and w(x) > 0 for each other valuation w of

L/KQ. In particular, since υσ ψ v, we have υ(xσ ) = υσ(x) > 0 for each

σ G Q(L/K), σ φ \. Hence xσ φ x for each σ φ 1, and therefore
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In addition w(x) > 0 if w(t) > 0. Hence x is integral over Jϊo[£] I*1

particular f(t,X) = irr(x,UΓ(t)) G .Ko[*>^] is a monic polynomial in X.

Since L/if is a Galois extension, f(t,X) decomposes into distinct linear

factors over L:

(9.2) f(t,X)=
σeG

A comparison of (9.1) and (9.2) gives:

(9.3) ai(t) = (

where 7^ is the collection of all subsets of G of cardinality i. Note that v

is unramified over K. Hence the restriction of υ to K coincides with the

valuation VQQ that corresponds to (t)oo Since σ = 1 appears at most once

in each of the summands ΠσeS χU-> a n <^ s i n c e v(xσ) — 0 for σ φ 1, this gives

deg(αi(t)) = ^ooK(t)) = v(a,i(t)) > min ^ ^ ( x σ ) = -k.

Also, -deg(αi(t)) = Voo(a>i(t)) = v(-x - Σσφιx
σ) = v(x) = -fc, as

desired.

Proof of (b). Let k = deg(αi(t)). Then 2 = x/tfc satisfies

(9.4) zd + 61 ( t ) ^ ^ 1 + 6 2 ( t ) ^ ~ 2 + • + 6d(ί) - 0,

where bi(t) = ai(t)/ttk. As in (a), choose an extension t; of i ^ to a valuation

of L, let e = e^/v^) and let p be a prime divsior of L/KQ that corresponds

toi;. Thenv(6i(t)) = 0 and υ(bi(t)) = e(ifc-deg(αj(t))) > 0 for i = 2,. . . ,d.

Hence reduction of (9.4) modulo p gives zd~1(z+b) — 0 for some 0 φ b G Ko

By HensePs Lemma, h(Z) = Zd + bι(t)Zd~ι H + 6n(*) has a root in the

completion K${{t~1)) of K with respect to (ί)oo Since L — K(z) is Galois

over K, all roots of /ι(Z') are in Ko^t"1)). Conclude that (t)^ totally

decomposes in L. []

LEMMA 9.3. Let KQ be an arbitrary field and consider a Galois exten-

sion L of K = KQ{€) of degree d which is regular over KQ. Suppose that (£)oo
totally decomposes in L. Then there exists x G L which is integral over Ko[t]
such thatL = K(x) and f = iττ(x,K(t)) = Xd+a1(t)Xd-1 + - - +ad(t) with

di G Ko[t] such that 0 < deg(αi(t)) < ^L + 1 α n ^ deg(α^(t)) < deg(αχ(ί)),

i = l , . . . , d .
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Proof. Let G = Q{L/K). By assumption (ί)^ = ΣσeGpσ f°r s o m e

prime divisor p of L and pσ φ pτ if σ 7̂  r. In particular deg(p) = 1.
For each k consider the vector space C(kp) = {x G L \ (x) + kp > 0}
over K. We have dim£(0 p) = 1 and dim£((2#L - l)p) =g [FrJ, p. 20],
C({k-l)p) C C(kp) and dim£(φ)-dim£(fcp) <l-kiϊl>k [FrJ, Chap. 2,
Exer. 12]. In particular, dim£(/cp) = 1 implies k < g. Hence, the first k for
which dim£(kp) = 2 satisfies k < g + 1. For this k there exists x £ L such
that (x)oo = fcp. By Lemma 9.2, x satisfies the requirements of the present
lemma. Π

§10. Bounds

The goal of this section is to realize a given /-group G over Fq(t) with q
large with a bound on all parameters involved in the realization. This will
enable us to use model theory and to realize G over Ko(t) for any pseudo
finite field K$. In order to do this, we need to speak about the set of
ramified primes in the first order language of fields. So, we have to express
discriminants of field extensions in an elementary way.

Let R be a Dedekind domain with a quotient field K, let L be a finite
Galois extension of K with Galois group G = {σi,... ,σ^}, and let S be
the integral closure of R in L. The discriminant of S/R is the ideal
Όisc(S/R) of R which is generated by all determinants Det(σ^j) 2 where
u?!,..., Wd G S are linearly independent over K. If p is a prime ideal of
i?, we can compute the p-component of the discriminant by localizing at
p. That is Όisc(S/R)Rp = Disc(Sp/.Rp) [La2, p. 65]. The set of prime
ideals of R which ramify in L coincides with the set of prime divisors of
Όisc(S/R) [CaF, p. 22]. In particular, if R = K0[t] for some field Ko, and
(t)oo is unramified in L, then Ra,m(L/K) consists of the prime divisors of

The discriminant of a monic polynomial / G R[X] is given in terms
of its roots xi,..., xn by the formula Disc(/) = (—l)0^""1)/2 Π^Axi — Xj).
It is an element of R and equals {—l)d^d~ι^2NL/κf

l{xι). One can compute
Disc(/) in terms of the resultant of / and its derivative by the formula
Resultant(/,f) = (-l)d(d-1)/2Disc(/) [La4, p. 211]. Resultant(/, f) is a
(2d — 1) x (2d — 1) determinant whose entries are the coefficients of / and
/'. The only nonzero entries in the first column of this determinant are the
leading coefficients of / and f. In the case where R = Ko[t], this leads to
an estimate on the degree of Disc(/):
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(10.1) Suppose that R — Ko[t] and char(iίo) \ d. If / £ Ko[t, X] is a monic

polynomial of degree d in X and deg t(/) < ra, then deg(Disc(/)) <

If x is integral over K, L — K(x), and / = irr(x, K), then Disc(/) is a

multiple of Ό'ιsc(S/R). If in addition S = R[x], then Disc(S/i?) = Disc(/)i?

[CaF, p. 17]. This situation occurs often in the local case as Lemma 10.1

reveals. Together wfth the local nature of the discriminant, this gives us a

tool to handle disciminants.

LEMMA 10.1. Let R be a discrete valuation ring of a field K with

a maximal ideal p and a perfect residue field K. Let L be a finite Galois

extension of K with \K\ > [L : K). Denote the integral closure of R in

L by S. Then there exists x £ S, such that S = R[x], Moreover, S

has only finitely many nonzero prime ideals q i , . . . , q r. // xf £ S satisfies

xr=x mod q?; i — 1,. . . , r, then S — R[x'}.

Proof. Denote the valuation of K that corresponds to R by v. The

ring S is a finitely generated R-module [La2, p. 6] and has only finitely

many prime ideals q i , . . . , q r. They correspond to the extensions ι?i,..., vr

of v to L. In particular each q̂  is a principal ideal [La2, p. 15].

For each i let JFQ be the decomposition field of ς\ι over K and let Li be its

inertia field. Since K is perfect, the residue fields satisfy K% — K = i?/p,

Li = S/qi, and [Li : K] — [Li : Ki] [Ser, p. 32]. For the same reason

there exists yi £ S Π Li with Li = K[yi], Then gι = irr(yi,UΓi) satisfies

§i = irr(yi, K) and in particular (ji(yi) φ 0. Observe that gι £ (S Π Li)[X].

We may replace each y^ by yi + a with a E R. Since ŷ  has [Z^ : Ki]

conjugates over K and since Σl=ι[Li : ΛΓi] < [L : if] < \K\, we may

assume, without loss, that yi,... ,yr are pairwise nonconjugate over K. In

other words, p i , . . . ,gr

 a r e distinct.

Choose now TΓ̂  £ 5 such that Vi(πi) = 1 and let Xi = yi + ^%- Then

Siί^ί) = 9i{yi)^i + Ci f° r s o m e Q ^ ^ with ^ ( Q ) > 1. Hence Vi{gi{xi)) = 1.

Since i? is ^-dense in SΓ\Li, there exists /î  £ i?[X] such that Vi(hi~gi) > 1.

Then Vi(hi(xi)) = 1.

Use the Chinese remainder theorem to choose x £ S such that Vi(x —

a^) > 1, z = 1,. . . , r. Then x modulo p^ = q̂  ni?[#] generates Li. Also, with

7î  = /ii(χ) £ i2[χ] we have ^(TΓQ = 1. It follows that q̂  = π^S = piS and

hence p i , . . . , pr are distinct. Since q i , . . . , qr are the only nonzero prime
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ideals of S and q̂  Π R[x] = pi, q* is the only prime ideal of S which lies

over pi. Also, as S/R[x] is an integral extension, each nonzero prime ideal

of R[x] lies under some q̂ . Thus p 1 ? . . . , pr are all nonzero prime ideals of

R[x].

It suffices now to prove that S = R[x]. To this end consider the local

rings R[x]i = R[x]fa and Si = S^. Then 5* is the unique valuation ring of

L that contains i2[a:]i. It follows that 5; is the integral closure of R[x]i in L

[La3, p. 14]. Hence Si is a finitely generated i2[#]i-Modul. Also, π[ generates

the maximal ideal of Si and π[ G i2[x]i. By construction, Si/π[Si — Li —

R[x]i/piR[x]i. It follows that Si = R[x]i + π[Si. By Nakayama's Lemma,

Si = R[x]i. Conclude that S = f]r

i=1 Si = ΠΓ=i R[χ\i = β W •

LEMMA 10.2. (Strong approximation theorem) Let L be a function

field of one variable over a field K$. Let Q be a finite set of primes of

L/KQ and let q^ be a prime of L/KQ which does not belong to Q. Suppose

that for each q G Q we are given an element ?/q G L and a positive integer

rriq. Suppose also that m satisfies

(10.2) m deg(qoo) > 2gL - 2 + ^ m q deg(q).

Then there exists y £ L such that vq(y — yq) > m^ for each q G Q, vqoo(y) >

—m, and Vp(y) > 0 for each prime p ^ S U {qoo}

Proof Consider the divisor α = mqoo — Σ q G o r n q c l °f -̂ /-KΌ I n

adele ring A of L/Ko consider the vector space

Λ(α) = {a e A \ Vp(a) + vp(a) > 0 for every p}.

By (10.2), deg(α) > 2gL — 2. Hence, by the Riemann-Roch theorem,

dim(A/(Λ(α) + L)) = 0 [FrJ, Sec. 2.6]. It follows that A = Λ(α) + L.

Define η G A by η^ = yq for q G Q and η$ = 0 for p ^ Q. Then there

exists y G L such that y — η (Ξ Λ(α). This y satisfies the requirements of

the Lemma. Q

NOTATION 10.3. (The set Tk{LjK)) Let iΓ0 be a field, let if = K0(t),

let L be a Galois extension of K of degree d, and let fc be a positive integer.

We define Tk(L/Ko) to be the set of all absolutely irreducible polynomials

/ι(Γ, X) - Xd + a (Γ)X^- 1 + + Cd(T)

https://doi.org/10.1017/S0027763000025046 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025046


Z-GROUPS OVER GLOBAL FIELDS 5 1

with a(T) G Ko[T] such that 0 < deg(ci(Γ)) < (k + d)2d, deg(ci(Γ)) <
deg(ci(Γ)), i = 1,..., d, and L = #(2) with /ι(ί, 2) = 0.

LEMMA 10.4. Let K^ be a perfect field, R = ΛTo[*]>
Consider a Galois extension L of K of degree d > 1 which is regular over
KQ and let S be the integral closure of R in L.

Suppose that (t)^ totally decomposes in L, char(i^o) f d, and \KQ\ > d.
Suppose that T^iLfK) contains a polynomial /(Γ, X) = Xd + aι(T)Xd~1 +
' * * + ad(T) with deg(αχ(Γ)) = k > 0. Γ/ien ί/ie following two statements
hold:

(a) There exists g G Tk(L/K) such that

(10.3) Disc(5/i?) = gcd(Disc(/(t,X)),Disc(fl(t,X)))jR.

(b) Lei /i,<7i G J~k(L/K) be polynomials such that

dχ(ί) = gcd(Disc(/1(ί,X)),Disc(5l(ί,X)))

dividesΌisc(h(t,X)) for each h€Fk(L/K). ThenΌisc(S/R) = d1(ί)jR.

Froo/ 0/ (a). The total degree of /(Γ, X) is A; + d - 1. Hence, by [PrJ,
Cor. 4.8]

(10.4) gL < hk + d - 2){k + d-3)<hk + d)2.
Δ Δ

Denote the set of prime divisors of K/KQ which correspond to the irrre-
ducible factors of Disc(/(ί, X)) by P and note that (t)^ $ P. By (10.1)

(10.5) J2 de8(P) ^ deg(Disc(/(ί, X))) < k2d~2.

For each p G P consider the localization Rp and Sp of R and 5, respec-
tively, at p. Then Rp is a discrete valuation ring with residue field which
contains i^o, and therefore of cardinality at least <i, and Sp is its integral
closure in L. By Lemma 10.1 there exists yp G Sp such that Sp = i2p[yp].
Moreover, let Qp be the set of prime divisors of p in L. Then, Sp = Rp[y]
for each y G Sp which satisfies vq(y — yp) > 1 for each q G Qp. Since

p = ΣqeQp e(q/p)q>w e h a v e

(10.6) 5 ] deg(q) < ^ e(q/p)deg(q) - deg(p).
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Choose now a prime divsor qoo of L which divides (t)^ and let m —

29L-1 + Σ p e p Σ q 6 Q p 2deg(q). By (10.4), (10.5), and (10.6)

(10.7) m < (Jfc + d)2 + 2 k 2 d ~ 2 < 3(k + d ) 2 d - 2 <{k + d ) 2 d

By assumption, deg(qoo) = 1. Hence, by Lemma 10.2 with Q = {JpePQp

and mq = 2, there exists y G L such that i>q(y — yp) > 2 for each p G P

and each q G <2P, ^ ^ ( y ) > —ra, and υq(y) > 0 for each q £ Q U {qoo}

Since i>q(yp) > 0 for each p G P and each q G Qp, we have vq(y) > 0 for

each prime of q φ q^. Hence y £ S. Also, Sp = i2p[y] for each p G P . In

particular L — K(y). Hence y ^ KQ and therefore there exists a positive

integer ko < m such that (y)oo — ^o^oo

Let g — irr(y, jRΓ) G i?[X]. Then ^(t, X) is monic and Galois in X, and

since L/KQ is regular, g(T,X) is absolutely irreducible. By Lemma 10.2(a)

applied to y, #, and fco instead of to x, /, and k and by (10.7), g{T,X) =

X r f + 6 1 ( Γ ) X d - 1 + . +6 d(Γ) with&iCΓ) G K0[T] anddeg(fe,(Γ))<deg(61(Γ))

= ^o < m < (k + d)2d. Hence gf G Tk{L/K).

In order to conclude the proof of (a) recall first that the left hand

side of (10.3) divides its right hand side. To prove the other direction

consider a prime divisor p φ (t)^ of K/KQ. Then we may identify p with

a nonzero prime ideal of R. If p G P, then Disc(5/R)Rp = Disc(5p/i?p) =

Disc(i?p[y]/i?p) = Όise(g(t,X))Rp. If p ί P, then vp(ΌΊsc(f(t,X))) = 0

and therefore Vp(Όisc(S/R)) = 0. Thus, in each case the value of Vp at both

sides of (10.3) is the same. So, (a) holds.

Proof of (b). Again, Disc(S/i2) divides both Disc(/i(t, X)) and

Disc(^i(t, X)) and therefore also dι(t). Conversely, by assumption, d\{t)

divides both Disc(/(t,X)) and Disc(^(ί,X)). Hence, by (10.3), dλ{t)\

Όisc(S/R). Conclude that Disc(S/i?) = di(ί)β, as desired. Π

THEOREM 10.5. Let q be a prime power, let G be a group of order ln

with I a prime, and let t be a transcendental element over Fq. Suppose that

I Φ char(F ς) ; ζι £ Fq, and q > / 4 n + 4 . Then there exist absolutely irreducible

polynomials f,g€ Fq[T,X] which are monic and Galois in X such that

(a) / (T ,X) = Xιn + ax{T)Xιn-1 + + αZn(Γ), 0 < deg(αi(Γ)) < \nl2n,

and deg(θί(Γ)) < deg(αχ(Γ)), i = 1,. . ., ln,

(b) /(t, X) and g(t, X) have the same splitting field L over K = Fq(t); L is

obtained by adjoining one root of f{t,X) or of g(t,X) to K,
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(c) L is a regular extension of¥q and Q(L/K) = G,

(d) g G Tk{L/K), where k = deg(αi(Γ)),

(e) (<0oo totally decomposes in L\ in particular, L has ln prime divisors of
degree 1,

(f) 9L < \nl2n,

(g) \R&m(L/K)\ = n and deg(p) = [Fς(C*Ό : ¥q] for each p G Ram(L/K),

(h) Ze£ i? = Ko[t] and let S be the integral closure of R in L. Then
Όisc(S/R) = gcd(Όisc(f(t,X)),Όisc(g(t,X)))R. Thus Ram(L/K) con-
sists of those primes φ [t)oo of K/KQ that divide both Disc(/(ί, X)) and
Όisc(g(t,X)).

Proof Assume without loss that n > 1. Since ζι ̂  F9, we have I > 3
and 2 < dn = \Fq(&n) : ¥q] < ln. Then gd-/4 > q1'2 > l2+2n > 8/n(2 + n).
Hence, Theorem 9.1 with k — dn and So — {(̂ )oo} gives a Galois extension
L oϊ K with G{L/K) 9* G which is regular over FQ such that 2^L ~ 2 <
/n(ndT1 - 2), |Ram(L/AΓ)| = n, deg(p) = dn for each p G Ram(L/if) and
(Ooo totally decomposes in L. Hence gι < ^nl2n and so (f) is true. By
Lemma 9.3, there exists x G L which is integral over ¥q[t] such that L =
¥q(t,x) and f(t,X) = iττ(x,K) satisfies (a). In particular f(t,X) is monic
and Galois in X. Since L/¥q is regular, /(Γ, X) is absolutely irreducible.

Since q > l4n+4 > ln = [L : K], Lemma 10.4, with d = Γ gives an
absolutely irreducible polynomial g G FkiL/K) such that Disc(S/i?) is the
greatest common divisor of the ideal of ¥q[t] generated by Disc(/(ί,X)) and
Όisc(g(t,X)). Since (t)^ is unramified in L this gives (h) and concludes
the proof of the theorem. Q

§11. Pseudo finite fields

A field KQ is pseudo finite it satisfies one of the following equivalent
conditions [Ax, Thm. 9]:

(11.1a) KQ is a perfect, G(KQ) = Z, and each nonempty absolutely irre-
ducible variety which is defined over KQ has a ίΓo-rational point
(Thus, in the terminology of [FrJ], KQ is a perfect, 1-free PAC
field.)
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(11.1b) Every elementary statement about fields which is true in all but

finitely many finite fields is true in ϋfo

(11.1c) Ko is an infinite model of the theory of finite fields.

Pried and Volklein [PrV] prove that if KQ is a PAC field of characteristic

0 and G is a finite group, then K = Ko(t) has a Galois extension L which

is regular over Ko such that Q(L/K) == G. The same result without any

restriction on the characteristic follows from a theorem of Harbater [Har]

(see, [Ja2, Thm 2.6]). However, in none of these results there is a bound on

the cardinality of Ram(L/K) in terms of G. The following result suggests

such a bound in the case where KQ is pseudo finite and G is an Z-group such

that I\ char(Xo) and ζι £ Ko.

THEOREM 11.1. Let Ko be α pseudo finite field and let G be a group

of order ln with a prime I. Suppose that I Φ char(JίΓo) and ζι ^ Ko Let

dn = [Ko(ζin) : KQ\. Then there exist absolutely irreducible polynomials f,

g G Ko[T, X] which are monic and Galois in X such that

(a) /(T,X) - Xιn + ai{T)Xln-1 + ••• + αZn(Γ) ; with 0 < deg(αi(Γ)) <

\nl2n, and deg(α^Γ)) < deg(αi(Γ)), i = 1, . . . , in;

(b) /(t,X) and g(t,X) have the same splitting field L over K = Ko(t)\

(c) L is a regular extension of Ko and Q(L/K) = G;

(d) g E Tk{L/K) where k = deg(αi(Γ)) (Notation 11.3) and degτg <

(±nl2n + ln)2ln;

(e) gL < \nl2n\

(f) (£)oo totally decomposes in L;

(g) \Ram(L/K)\ = n and deg(p) = [K0(&n) : Ko] for each p G R&m(L/K)',

(h) Let R = Ko[t] and let S be the integral closure of R in L. Then

Όisc(S/R)= gcd(Disc(/(ί, X)),Όisc(g(t, X))). In particular Ram(L/K)

consists of the primes φ (t)oo of L/Ko that divides both Disc(/(ί, X))

and Disc(g(t,X)).

Proof. Let dn be a divisor of (/ - l)ln~l and let 2 < k < \nl2n. Denote

the conjunction of the following elementary statements on Ko by θ(dn^k)

(see [PrJ, proof of Lemma 10.8] for the absolute irreduciblity and [FrJ,

Prop. 18.2] for the statement about the Galois group):
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(11.2a) I φ char(#0), ζι £ Ko, and dn = [K0(ζln) : Ko}.

(11.2b) There exist absolutely irreducible polynomials /, gζKo[T, X] which
are monic and Galois in X such that f(T, X) = X1"+ax (T)Xιn~ι +
•.. + αZn(Γ) with deg(θi(Γ)) < deg(αi(Γ)) - fc, i = 1,... ,Zn,
/(£, X) and #(£,X) have the same splitting field L over ί ί = Ko(t)
with £(£/#) = G, £ G Tk{LjK), and rf(t) - gcd(Disc(/(t,X)),
Όisc(g(t, X])) divides Disc(/ι(ί, X)) for each h G Fk{L/K), and d(t)
has exactly n distinct irreducible divisors, each of them of degree

Let θ be the disjunction of all the above 0(dn,fc)'s. By Theorem 10.5, for
all but finitely many prime powers q the statement #, with KQ replaced
by Fρ, is true in Fq. Hence, by (11.1b), θ is true in KQ. SO, there exist
dn and k such that θ(dn,k) is true in JFΓO In particular (a), (b), (c), and
(d) are true. By Lemma 9.2 (b), (t)^ totally decomposes in L. Hence, by
Lemma (10.4a), and with the notation of (11.2b), Disc(5/i?) = d(t)R. In
particular the primes in Ra,m(L/K) correspond to the irreducible divisors
of d(t). Hence (g) is true. Finally, by Lemma 8.3, 2gL - 2 < [L : K](-2 +
deg(Ram(L/iί)) = Γ(~2 + ndn) < nl2n. So, (e) is also true. Q

The absolute Galois group G(F) of a field F admits a unique normalized
Haar measure. In the following Corollary we use the expression "almost all"
with respect to this measure. For each σ G G(F) we denote the fixed field
of the unique extension of σ to F by F(σ).

COROLLARY 11.2. Let F be a countable Hilbertian field. Then for
almost all σ G G{F), the field KQ — F(σ) satisfies the conclusion of Theo-
rem 11.1.

Proof. By [FrJ, Thm. 18.14], F(σ) is a pseudo finite field for almost
all σ G G(F). Now apply Theorem 11.1. Q

§12. Z/-extensions

We have proved that if KQ is a finite field or if KQ = F(σ) where F is
a global field, σ G G(F) is taken at random, and ζι £ KQ, then for each
/-group G there exists a Galois extension L of K = Ko(t) which is regular
over KQ such that Q{L/K) = G. We then say that G is regular over KQ.
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If K is a function field of one variable over a finite field Ko with I \

chai(Ko), then it has no Galois extension L which is regular over Ko such

that Q(L/K) = TL\ [GeJ, Thm. 1.1]. In particular, Z/ is not regular over

Ko. Since Ko has a unique extension with Galois group Zj, K has a unique

Z/-extension.

Iwasaswa proves [Iwa, Thm. 2] that a number field K has at most

n = [K : Q] linearly independent Z/ extensions. In particular, Z™+1 is not

realizable over K. For a finitely generated field K of positive characteris-

tic [GeJ, Thm. 1.1] says that K has exactly one Z/ extension. Thus the

realization results of finite Z-groups do not generalize to pro-/ groups.

The goal of this section is to prove an analog of these results for almost

all field F(σ), where F is a global field.

LEMMA 12.1. Let K be a function field of one variable over a field

Ko with char(.?Γo) φ l Let L\jK be a cyclic extension of degree I such that

L\ is regular over KQ. Suppose that L\ is contained in a cyclic extension

Ln of K of degree ln. Suppose that p is a prime of K/KQ which ramifies in

L\. Then p totally ramifies in Ln and its residue field contains Ko(ζin). In

particular \Ram(LιK0/KK0)\ > [K0(ζιn) : Ko].

Proof Denote Ln by L. The inertia group Ip(Lι/K) of p coincides with

Q(Li/K). Since τe8Ll:G(L/K) -> G(LX/K) maps IP(L/K) onto Ip(Lx/K),
we have Ip(L/K) = Q{L/K). In other words, p totally ramifies in L.

Let Kp be the completion of K at p and let Lp = LKp. Then Lp/Kp is a

cyclic totally and tamely ramified extension of complete discrete valuation

fields. Hence ζin G Kp [CaF, p. 32] and therefore ζ/n G Kp. It follows that

there are at least [iί"o(C/n) : Ko] distinct primes p of KKo which lie over

p. Each of them totally ramifies in LKQ and therefore also in LIKQ. Thus

k > [ίΓo(Cin) : Ko]. D

PROPOSITION 12.2. Let K be a function field of one variable over a

field Ko of characteristic φ I such that [Ko(ζin) : Ko] is unbounded. Then

K has no ramified Galois extension L which is regular over KQ such that

Q(L/K) = Z/. In particular, ΊL\ is not regular over Ko

Proof. Assume that there exists L as above. Then L is the ascending

union of Galois extensions Ln of K with Q{Ln[K) = Z/ZnZ. Each Ln is a

regular extension of K and for large m, Lm+ι/Lm is ramified. Replace K
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by such Lm, if necessary to assume that Lχ/K is ramified. By Lemma 12.1,
[Ko(ζin) : KQ] < \ΊϋdLm(LιKo/KKo)\, a contradiction.

Finally recall that if K = K0{t), then Lx/X is ramified [FrJ, Prop. 2.15].
Hence, K admits no Zj-extension L which is regular over K$. Π

PROPOSITION 12.3. Let F be a global field of characteristic φ I. Then

for almost all σ G G(F), the group Z/ is not regular over F(σ).

Proof Let N = F(ζh ζpXp,...). Then N = KL with K ΓΊ L =
F, α(ΛΓ/JP) ^ Zj, and ^(L/F) = A is a finite group. Thus G(N/F) =
Q(N/K) x G(N/L). If if is a finite subgroup of Q{N/F), then its projection
on G(N/L) is also finite and therefore trivial. Thus H < Q(N/K). It
follows that if for some σ G G(F) the degree [F(σ)(ζin) : F(σ)] is bounded,
then Q(N/N Π F(σ)) is finite and therefore K C F(σ). Since UΓ/F is
infinite, almost no σ G G(F) satisfies the latter condition. Hence, for
almost all σ G G(F), [F(σ)(ζιn) : F(σ)] is unbounded. For each of these σ,
Proposition 12.2, asserts that Z/ is not regular over UΓQ- Π

Appendix. Effective form of the Chebotarev density theorem

Lemma 5.2 uses an effective form of the Chebotarev density theorem
for function fields. One may find such a form in [FrJ, §5.4] and in [HKo].
Unfortunately, the proof of [FrJ, Prop 5.16] applies [FrJ, Lemma 5.14] in a
faulty way. Indeed, on [FrJ, page 63, line —3] d should be replaced by md.
The same mistake occurs in [HKo]. We therefore take this opportunity to
correct the mistake and at the same time to improve the estimate of [FrJ,
Prop 5.16].

Data 13.1. We fix the following notation for the whole section.

q = a power of a prime number

t = a transcendental element over ¥q

K = a finite separable extension over ¥q(t)

which is regular over ¥q

d=[K:¥q(t)}

L = a finite Galois extension of K

¥qn the algebraic closure of ¥q in L

F(K) — the set of all prime divisors of K/¥q
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P'(K) = {p € F(K) I p is unramified over ¥q(t) or in L}

Ψk{K) = { P € Ψ{K) I deg(p) = k}

C = a conjugacy class in Q{LjK)\ c = \C\

ck(L/κ,c) = {pe F'k(K) I (yi£\ = c}

Our first result improves [FrJ, Lemma 5.14].

LEMMA 13.2. Suppose that L = KFqn, C = {r}, and r\¥q7l = φ.

Then

(13.1) \#CX(LIK,C)-q\< 2(gL^/ξ + gL + d).

Proof, Note first that Cι(L/KyC) = Ψ[(K) and that each p G Ψ(K) is

unramified in L. Thus, Pi(UΓ) \ Cι(L/K,C) consists exactly of all prime

divisors of Different(i;ί/F(?(t)). By the Riemann-Hurwitz genus formula,

deg(Different(K/Fς(ί)) = 2(gκ + d - 1) [FrJ, P. 24]. By Weil's theorem

| # P i ( Λ 0 - ( ς + l ) | < 2gKy/q [FrJ, Thm. 3.14]. Hence, \#C1{L/K,C)-q\ <

+ 1 + 2(#κ + d - 1). Since p ^ = gL, this proves (13.1). Q

Next we improve [FrJ, Lemma 5.15]. Here we use the notation 'α pd 6'

to mean 'α properly divides b\

LEMMA 13.3. Let K' be an extension of K of degree km which con-

tains ¥gk. For each q E F(K') we denote the prime of K which lies under

q by c\κ Then

(13.2) #{q G Ψ{K') I deg(qχ) pd k} < m{qk'2 + ( 3 ^ +

Proof. lίj\k and p G P(ϋQ, then ¥qj C Fgfc and therefore p decomposes

in X F ^ into j prime divisors of degree 1. Each of them has exactly one

extension to K¥qk and the latter decomposes in Kf into at most m prime

divisors. Hence, by Weil's theorem

(13.3) #{q € Ψ(K') I deg(qκ) pd k} < m ^ -\Yx{K¥q3)\
J<k/2 J

< m
j<k/2 J

https://doi.org/10.1017/S0027763000025046 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025046


Z-GROUPS OVER GLOBAL FIELDS 59

Induction on k shows that for q > 2

(13.4)
j<k/2 J

A direct check for k < 5 and an induction for A; > 6 shows that for q > |

(13.5)

3<k/2 J

If q is a power of a prime, then q1/2 > Λ/2 > 9/7. Hence, (13.2) is a

consequence of (13.3), (13.4), and (13.5). D

Finally we improve [FrJ, Prop. 5.16].

PROPOSITION 13.4. In the notation of Data 13.1 let a be a positive

integer and let r be an element ofC such that τ\ψqn = φa. Let k be a positive

integer such that k = a mod n. Then

(13.6) \#Ck(L/K,C)
km

-^-[(m + 2gL)qk'2 + m(Sgκ + l)qkβ + 2{gL + dm)},
km

Proof. Let nf = nk ord(r) and extend L to V = LF ς n/. Then [1/ :

gn/] = [L : iίFgn] = m. Since k = α mod n there .exists r 7 G Q{l! jK)

such that T'IX, = r and T'IF , = (/?fc. Then ord(τ') = lcm(ord(r), ord((/?fc)) =

lcm(ord(r), [Fgn/ : ¥qk]) = lcm(ord(r),n ord(τ)) = n ord(r). Denote

the conjugacy class of τf in Q(L'/K) by C'. By [FrJ, Lemma 5.12(c)],

Denote the fixed field of τf in V by Kf. Then K'nFqn> = K'
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and K'¥qn* = V.

ord(r;)

K K¥qk K¥qn

*>(*) V(*)

Fqk V
Then \K' : K¥qk] = [L : K¥q7l>] = m and therefore [K' : ¥qk(t)} - dm. By
[FrJ, Cor. 5.11] applied to L', K, C, {r'}, k instead of F, E, C, C, r,

\Ck(L'/K,C')\ = 1^L^C1{L'IK\ {r '» \ { q e Ψ{K') \ deg(q^) P d k}\.

Since [K' : K] = fcm, we have by Lemma 13.3,

(13.7) \φCk(Lf/K,Cf) - ^#Ci(Z//if ' ,{τ '}) |

- IZΓ^ί0! G P ( K 0 I d e s ( ^ ) P d

<

By Lemma 13.2 applied to if', Z/, nf, r', qk instead of to if, L, n, r,

(13.8) \φCλ(Lf/Kf, {τ1}) - qk\ < 2{guq
k/2 + gjj + dm).

Multiply (13.8) by ^ and replace gL, by gL. Then replace CK(V/K,C')
in (13.7) by Ck(L/K,C). Finally combine the two inequalities obtained in
this way to (13.6). •

COROLLARY 13.5. If in the situation of Proposition 13.4

(13.9) Hogg > max{21og(£L + dm),41og(3gκ + 1)},

then

(13.10) \#Ck(L/K,C) - ^-qk\ < p-(m + gL + l)qk/2.
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Proof. By (13.9), 3gκ + 1 < qk'A and gL + dm < qk/2. Hence

(m + 2gL)qkl2 + m(3c» + l ) g V 4 + 2(gL + dm) < (m + 2<?L + m

Now combine this inequality with (13.6) to get (13.10). Q
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