
Mathematical Structures in Computer Science (2020), 30, pp. 627–663
doi:10.1017/S0960129520000110

PAPER

Higher-order pattern generalization modulo equational
theories
David M. Cerna1,2,∗ and Temur Kutsia1

1RISC, Johannes Kepler University, Linz, Austria and 2FMV, Johannes Kepler University, Linz, Austria
∗Corresponding author. Email: david.cerna@risc.jku.at

(Received 26 February 2019; revised 25 February 2020; accepted 21 April 2020; first published online 20 May 2020)

Abstract
We consider anti-unification for simply typed lambda terms in theories defined by associativity, commuta-
tivity, identity (unit element) axioms and their combinations and develop a sound and complete algorithm
which takes two lambda terms and computes their equational generalizations in the form of higher-order
patterns. The problem is finitary: the minimal complete set of such generalizations contains finitely many
elements. We define the notion of optimal solution and investigate special restrictions of the problem for
which the optimal solution can be computed in linear or polynomial time.

Keywords: Simply typed lambda calculus; anti-unification; equational theories; higher-order patterns

1. Introduction
Anti-unification algorithms aim at computing generalizations for given terms. A generalization
of t and s is a term r such that t and s are substitution instances of r. Interesting generalizations
are those that are least general (lggs). However, it is not always possible to have a unique least
general generalization. In these cases, the task is either to compute a minimal complete set of
generalizations or to impose restrictions so that uniqueness is guaranteed.

Anti-unification, as considered in this paper, uses both of these ideas. The theory is simply
typed lambda calculus, where some function symbols may be associative, commutative, have an
associated unit element, or have any combination of these equational properties. Anti-unification
for first-order terms containing function symbols obeying these properties is finitary, and the cor-
responding modular generalizations algorithms have been proposed in Alpuente et al. (2014), also
in the presence of ordered sorts. Anti-unification for simply typed lambda terms can be restricted
to compute generalizations in the form of Miller’s patterns (Miller, 1991), which makes it uni-
tary, and the single least general generalization can be computed in linear time by the algorithm
proposed in Baumgartner et al. (2017). These two approaches combine nicely with each other
when one wants to develop a higher-order equational anti-unification algorithm. In this paper,
we present higher-order pattern anti-unification for terms containing function symbols whose
equational axioms may include associativity, commutativity, identity (unit element), and their
combinations. Basically, we extend the syntactic1 generalization rules from Baumgartner et al.
(2017) by equational decomposition rules inspired by those from Alpuente et al. (2014). The exis-
tence of the unit element introduces some complications due to the fact that the corresponding
equational classes are infinite. To avoid them and still have a complete algorithm, we concentrate

© The Author(s), 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110
https://orcid.org/0000-0002-6352-603X
mailto:david.cerna@risc.jku.at
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0960129520000110

628 D.M. Cerna and T. Kutsia

on linear generalizations (i.e., each generalization variable appears at most once) when a function
symbol has the unit element. At the end, we get a modular algorithm in which different equational
axioms for different function symbols can be combined automatically. The algorithm takes a pair
of simply typed lambda terms (hence, the input is not restricted to patterns) and returns a set
of their generalizations in the form of higher-order patterns. It is terminating, sound, and com-
plete. However, the number of nondeterministic choices when decomposing may result in a large
search tree. Although each branch can be developed in linear time, there can be too many of them
to search efficiently.

This is the problem that we address in the second part of the paper. The idea is to use a greedy
approach: introduce an optimality criterion, use it to select an anti-unification problem (AUP)
among different alternatives obtained by a decomposition rule, and try to solve only that. In this
way, we would only compute one generalization. Checking the criterion and selecting the right
branch should be done “reasonably fast.” To implement this idea, we introduce conditions on the
form of AUPs which are guaranteed to compute “optimal” solutions and study the corresponding
complexities. In particular, we identify conditions for which A- (Associative), C- (Commutative),
U- (with Unit) generalizations and their combinations can be computed in linear time. We also
study how the complexity changes by relaxing these conditions.

Higher-order anti-unification has been investigated by various authors from different appli-
cation perspectives. Research has been focused mainly on the investigation of special classes for
which the uniqueness of lgg is guaranteed. A generic framework of higher-order anti-unification
for such classes has been proposed recently in Cerna and Kutsia (2019a). Some application areas
include proof generalization (Pfenning, 1991), higher-order term indexing (Pientka, 2009), cog-
nitive modeling and analogical reasoning (Besold et al., 2017; Schmidt et al., 2014), recursion
scheme detection in functional programs (Barwell et al., 2018), inductive synthesis of recur-
sive functions (Schmid, 2003), learning fixes from software code repositories (Rolim et al.,
2018), just to name a few. Two higher-order anti-unification algorithms (Baumgartner and
Kutsia, 2017; Baumgartner et al., 2017) are included in an online open-source anti-unification
library (Baumgartner, 2015; Baumgartner and Kutsia, 2014). First-order order-sorted equational
generalization algorithms from Alpuente et al. (2014) have also been implemented and are avail-
able online (Alpuente et al., 2019). This related work does not consider anti-unification with
higher-order terms in the presence of equational axioms. However, such a combination can be
useful, for instance, for developing indexing techniques for higher-order theorem provers (Libal
and Steen, 2016), in higher-order programmanipulation tools, proof transformation (Ebner et al.,
2019; Hetzl et al., 2014), and inductive theorem proving (Eberhard and Hetzl, 2015; Eberhard
et al., 2017).

This paper is an extended and improved version of Cerna and Kutsia (2018). It is organized
as follows: in Section 2, we introduce the main notions and define the problem. In Section 3, we
recall the higher-order anti-unification algorithm from Baumgartner et al. (2017). In Section 4, we
extend the algorithm with equational decomposition rules for associativity, commutativity, and
their combination. Section 5 is devoted to theories with unit elements. In Section 6, we introduce
computationally well-behaved restrictions of AUPs. The next sections describe the behavior of
equational anti-unification algorithms on these restrictions: In Section 7, we discuss A- and AU-
generalization and speak about optimality. Section 8 is about C- and CU-generalization. Section 9
is about AC- and ACU-generalization. Section 10 summarizes the results.

2. Preliminaries
This work builds upon the formulations and results of Baumgartner et al. (2013, 2017). Higher-
order signatures are composed of types constructed from a set of base types (typically δ) using
the grammar τ ::= δ | τ → τ . We will consider → to be associative right unless otherwise stated.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 629

Variables (typically X, Y , Z, x, y, z, . . .) as well as constants (typically f , a, b, c, . . .) are assigned
types from the set of types constructed using the above grammar. By the symbol h, we denote
a constant or a variable.

λ-terms (typically t, s, u, . . .) are constructed using the grammar t ::= x | c | λx.t | t1 t2 where x
is a variable and c is a constant and are typed using the type construction mentioned above. Terms
of the form (. . . (h t1) . . . tm) will be written as h(t1, . . . , tm) and terms of the form λx1.λxn.t
as λx1, . . . , xn.t. We use #»x as a short-hand for x1, . . . , xn. When necessary, we write a λ-term t
together with its type α as t : α.

Every constant c will have an associated set of axioms, denoted by Ax(c). If Ax(c) is empty, then
c does not have any associated property and is called free. Otherwise, Ax(f)⊆ {A, C, U} where A is
associativity, that is, f (t1, f (t2, t3))≡ f (f (t1, t2), t3), C is commutativity, that is, f (t1, t2)≡ f (t2, t1),
and U is unit element, that is, f (t, εf)≡ f (εf , t)≡ t, where εf is the unique unit element associated
with the function constant f . Note that only function constants of the type α → α → α are allowed
to have equational properties.

We assume that terms are written in flattened form, obtained by replacing all subterms of
the form f (t1, . . . , f (s1, . . . , sn), . . . tn) by f (t1, . . . , s1, . . . , sn, . . . tn), where A ∈Ax(f). Also, by
convention, the term f (t) stands for t, if A ∈Ax(f). Other standard notions of the simply typed
λ-calculus, like bound and free occurrences of variables, α-conversion, β-reduction, η-long β-
normal form, etc., are defined as usual (see Barendregt (1984) and Dowek (2001)). By default,
terms are assumed to be written in η-long β-normal form. Therefore, all terms have the form
λx1, . . . , xn.h(t1, . . . , tm), where n,m≥ 0, t1, . . . , tm have this form, and the term h(t1, . . . , tm)
has a base type.

The set of free variables of a term t is denoted by Vars(t). When we write an equality between
two λ-terms, we mean that they are equivalent modulo α, β , and η equivalence.

The size of a term t, denoted |t|, is defined recursively as |h(t1, . . . , tn)| = 1+ ∑n
i=1 |ti|

and |λx.t| = 1+ |t|. The depth of a term t, denoted depth(t), is defined recursively as
depth(h(t1, . . . , tn))= 1+maxi∈{1,...,n} depth(ti) and depth(λx.t)= 1+ depth(t). For a term t =
λx1, . . . , xn.h(t1, . . . , tm) with n,m≥ 0, its head is defined as head(t)= h.

A higher-order pattern is a λ-term where, when written in η-long β-normal form, all free vari-
able occurrences are applied to lists of pairwise distinct (η-long forms of) bound variables. For
instance, λx.f (X(x), Y), f (c, λx.x), and λx.λy.X(λz.x(z), y) are patterns, while λx.f (X(X(x)), Y),
f (X(c), c), and λx.λy.X(x, x) are not.

Substitutions are finite sets of pairs {X1 �→ t1, . . . , Xn �→ tn} where Xi and ti have the same type
and the X’s are pairwise distinct variables.They represent functions that map each Xi to ti and any
other variable to itself. They can be extended to type-preserving functions from terms to terms as
usual, avoiding variable capture. The notions of substitution domain and range are also standard
and are denoted, respectively, by Dom and Ran. Substitutions are denoted by lower case Greek
letters, while the identity substitution is denoted by Id.

We use postfix notation for substitution applications, writing tσ instead of σ (t). As usual, the
application tσ affects only the free occurrences of variables from Dom(σ) in t. We write #»x σ for
x1σ , . . . , xnσ , if #»x = x1, . . . , xn. Similarly, for a set of terms S, we define Sσ = {tσ | t ∈ S}. The
composition of σ and ϑ is written as juxtaposition σϑ and is defined as x(σϑ)= (xσ)ϑ for all
x. Another standard operation, restriction of a substitution σ to a set of variables S, is denoted
by σ |S.

A substitution σ1 is more general than σ2, written σ1 	 σ2, if there exists ϑ such that Xσ1ϑ =
Xσ2 for all X ∈Dom(σ1)∪Dom(σ2). The strict part of this relation is denoted by ≺. The relation
	 is a partial order and generates the equivalence relation which we sometimes call equigenerality
and denote by �. We overload 	 by defining s	 t if there exists a substitution σ such that sσ = t.
The focus of this work is generalization in the presence of equational axioms, thus we need a more
general concept of ordering of substitutions/terms by their generality. We say that two terms s, t

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

630 D.M. Cerna and T. Kutsia

are s=E t if they are equivalent modulo E ⊆ {A, C, U}. For example, f (a, f (b, c))
= f (f (a, b), c),
but f (a, f (b, c))={A} f (f (a, b), c). Under this notion of equality, we can say that a substitution
σ1 is more general than σ2 modulo an equational theory E ⊆ {A, C, U}, written σ1 	E σ2, if there
exists ϑ such that Xσ1ϑ =E Xσ2 for all X ∈Dom(σ1)∪Dom(σ2). Note that ≺ and � and their
term extension are generalized accordingly. From this point on, we will use the ordering relation
modulo an equational theory when discussing generalization.

A term t is called a generalization or an anti-instance modulo an equational theory E of two
terms t1 and t2 if t 	E t1 and t 	E t2. (Will refer to such objects as E-generalizations.) It is a
higher-order pattern generalization if additionally t is a higher-order pattern. It is the least gen-
eral generalization (lgg in short), aka a most specific anti-instance, of t1 and t2, if there is no
generalization s of t1 and t2 which satisfies t ≺E s.

An AUP is a triple X(#»x) : t� s where

— λ #»x .X(#»x), λ #»x .t, and λ #»x .s are terms of the same type,
— λ�x.t and λ�x.s are in η-long β-normal form, and
— X does not occur in t and s.

The variable X is called a generalization variable. The term X(#»x) is called the generalization term.
The variables that belong to #»x , as well as bound variables, are written in the lower case letters
x, y, z, Originally free variables, including the generalization variables, are written with the
capital letters X, Y , Z, This notation intuitively corresponds to the usual convention about
syntactically distinguishing bound and free variables.

The size of a set of AUPs is defined as |{X1(#»x1) : t1 � s1, . . . , Xn(#»xn) : tn � sn}| = ∑n
i=1 |ti| + |si|.

Notice that the size of Xi(#»xi) is not considered.
An anti-unifier of an AUP X(#»x) : t� s is a substitution σ such that Dom(σ)= {X} and

λ #»x .X(#»x)σ is a term which generalizes both λ #»x .t and λ #»x .s. An anti-unifier σ of X(#»x) : t� s
is least general (or most specific) modulo an equational theory E if there is no anti-unifier ϑ of
the same problem that satisfies σ ≺E ϑ . Obviously, if σ is a least general anti-unifier of an AUP
X(#»x) : t� s, then λ #»x .X(#»x)σ is a lgg of λ #»x .t and λ #»x .s.

Here, we consider a variant of higher-order equational AUP:

Given: Terms t and s of the same type in η-long β-normal form and an equational theory E ⊆
{A, C, U}.

Find: A higher-order pattern generalization r of t and smodulo E ⊆ {A, C, U}.

Essentially, we are looking for r which is least general among all higher-order patterns which
generalize t and s (modulo E). There can still exist a term which is less general than r, generalizes
both s and t, but is not a higher-order pattern. In Baumgartner et al. (2017), there is an instance
for syntactic anti-unification: if t = λx, y.f (h(x, x, y), h(x, y, y)) and s= λx, y.f (g(x, x, y), g(x, y, y)),
then r = λx, y.f (Y1(x, y), Y2(x, y)) is a higher-order pattern, which is an lgg of t and s. However,
the term λx, y.f (Z(x, x, y), Z(x, y, y)), which is not a higher-order pattern, is less general than r and
generalizes t and s.

Another important distinguishing feature of higher-order pattern generalization modulo E
is that there may be more than one least general pattern generalization (lgpg) for a given pair
of terms. In the syntactic case, there is a unique lgpg. The main contribution of this paper is
to find conditions on the AUPs under which there is a unique lgpg for equational cases and
introduce weaker optimality conditions which allow one to greedily search the space for a less gen-
eral generalization compared to the syntactic one. We formalize these concepts in the following
sections.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 631

3. Higher-Order Pattern Generalization in the Empty Theory
Below we assume that for AUPs of the form X(#»x) : t� s, the term λ #»x .X(#»x) is a higher-order
pattern. We now introduce the rules for the higher-order pattern generalization algorithm
from (Baumgartner et al., 2017), which works for E =∅. It produces syntactic higher-order pat-
tern generalizations in linear time and will play a key role in our optimality conditions introduced
in later sections.

These rules work on triples A; S; σ , which are called states. Here, A is a set of AUPs of the form
{X1(#»x1) : t1 � s1, . . . , Xn(#»xn) : tn � sn} that are pending to anti-unify, S is a set of already solved
AUPs (the store), and σ is a substitution (computed so far) mapping variables to patterns. The
symbol � denotes disjoint union.

Dec: Decomposition
{X(#»x) : h(t1, . . . , tm)� h(s1, . . . , sm)} �A; S; σ =⇒

{Y1(#»x) : t1 � s1, . . . , Ym(#»x) : tm � sm} ∪A;
S; σ {X �→ λ #»x .h(Y1(#»x), . . . , Ym(#»x))},

where h is a free constant or h ∈ #»x , and Y1, . . . , Ym are fresh variables of the appropriate types.

Abs: Abstraction Rule
{X(#»x) : λy.t� λz.s} �A; S; σ =⇒

{X′(#»x , y) : t� s{z �→ y}} ∪A; S; σ {X �→ λ #»x , y.X′(#»x , y)},
where X′ is a fresh variable of the appropriate type.

Sol: Solve Rule
{X(#»x) : t� s} �A; S; σ =⇒A; {Y(#»y) : t� s} ∪ S; σ {X �→ λ #»x .Y(#»y)},

where t and s are of a base type, head(t)
= head(s) or head(t)= head(s)= Z
∈ #»x . The sequence #»y
is a subsequence of #»x consisting of the variables that appear freely in t or in s, and Y is a fresh
variable of the appropriate type.

Although it is not necessary for this version of Solve, we can impose an extra condition on its
application requiring that U /∈Ax(head(t))∪Ax(head(s)). This condition will become useful later,
when we consider theories with the unit element.

Mer: Merge Rule
A; {X(#»x) : t1 � t2, Y(#»y) : s1 � s2} � S; σ =⇒

A; {X(#»x) : t1 � t2} ∪ S; σ {Y �→ λ #»y .X(#»xπ)},
where π : { #»x } → { #»y } is a bijection, extended as a substitution with t1π = s1 and t2π = s2. Note
that in the case of the equational theory, we will consider later we would use ≡E instead of =.

We will refer to these generalization rules as Gbase. To compute generalizations for two sim-
ply typed lambda terms in η-long β-normal form t and s, the algorithm from Baumgartner et al.
(2017) starts with the initial state {X : t� s};∅; Id, where X is a fresh variable, and applies these
rules as long as possible. The computed result is the instance of X under the final substitution. It is
the syntactic least general higher-order pattern generalization of t and s and is computed in linear
time in the size of the input.

One may notice that an AUP of the form X(#»x) : Z(s1, . . . , sm)� Z(t1, . . . , tm), where Z is a free
variable, is transformed by Sol rather than by theDec rule. This is because applying decomposition
may result into a generalization which is not a higher-order pattern. A simple example is the AUP
X : λx.Z(x, a)� λx.Z(x, a). The algorithm returns the pattern λx.Y(x) as its generalization, while
the application of Decwould lead to the generalization λx.Z(x, a), which is not a pattern. However,

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

632 D.M. Cerna and T. Kutsia

when an AUP has the formX(#»x) : c� c, where c is a constant or one of the variables in #»x , we apply
the decomposition rule, that is, {X : c� c}; ∅; Id=⇒Dec ∅; ∅; {X �→ c}.

To illustrate the use of the above procedure, let us consider the following example
from Baumgartner et al. (2017):

Example 1. Let t = λx, y.f (U(g(x), y),U(g(y), x)) and s= λx′, y′.f (h(y′, g(x′)), h(x′, g(y′))). Then,
the algorithm performs the following transformations:

{X : λx, y.f (U(g(x), y),U(g(y), x))� λx′, y′.f (h(y′, g(x′)), h(x′, g(y′)))};
∅; Id=⇒2

Abs

{X′(x, y) : f (U(g(x), y),U(g(y), x))� f (h(y, g(x)), h(x, g(y)))};∅;
{X �→ λx, y.X′(x, y)} =⇒Dec

{Y1(x, y) :U(g(x), y)� h(y, g(x)), Y2(x, y) :U(g(y), x)� h(x, g(y))};∅;
{X �→ λx, y.f (Y1(x, y), Y2(x, y))} =⇒Sol

{Y2(x, y) :U(g(y), x)� h(x, g(y))}; {Y1(x, y) :U(g(x), y)� h(y, g(x))};
{X �→ λx, y.f (Y1(x, y), Y2(x, y))} =⇒Sol

∅; {Y1(x, y) :U(g(x), y)� h(y, g(x)), Y2(x, y) :U(g(y), x)� h(x, g(y))};
{X �→ λx, y.f (Y1(x, y), Y2(x, y))} =⇒Mer

∅; {Y1(x, y) :U(g(x), y)� h(y, g(x))}; {X �→ λx, y.f (Y1(x, y), Y1(y, x))}.
The computed result is r = λx, y.f (Y1(x, y), Y1(y, x)). It generalizes the input terms t and s: r{Y1 �→
λx, y.U(g(x), y)} = t and r{Y1 �→ λx, y.h(y, g(x))} = s. These substitutions can be read from the
final store.

We will use this linear time procedure in the following section to obtain “optimal” least general
higher-order pattern generalizations of terms modulo an equation theory. These optimal gen-
eralizations are dependent on the generalizations the syntactic algorithm produces. When we
need to check more than one decomposition of a given AUP in order to compute the optimal
generalizations modulo an equational theory, we compute the optimal generalization for each
decomposition path and then compare the results. The details are explained below.

4. Equational Decomposition Rules: A-, C-, and AC-Theories
In this section, we discuss an extension of the basic rules concerning higher-order pattern gen-
eralization by decomposition rules for A-, C-, and AC-theories. Here, we consider the general,
unrestricted case. The theory with the unit element is considered separately in the next section.
Efficient special restrictions are discussed in the subsequent section.

We assume that terms, which use polyadic version of associative symbols, are written in
flattened form obtained by replacing all subterms of the form f (t1, . . . , f (s1, . . . , sm), . . . , tn) by
f (t1, . . . , s1, . . . , sm, . . . , tn), where A ∈Ax(f). Also, by convention, the term f (t) stands for t, if
A ∈Ax(f).

4.1 Associative decomposition rules
We start from decomposition rules for associative generalization:

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 633

Dec-A-L: Associative Decomposition Left
{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A; S; σ =⇒

{Y1(#»x) : f (t1, . . . , tk)� s1, Y2(#»x) : f (tk+1, . . . , tn)� f (s2, . . . , sm)} ∪A;
S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},

where Ax(f)= {A}, n,m≥ 2, 1≤ k≤ n− 1, and Y1 and Y2 are fresh variables of appropriate types.
Dec-A-R: Associative Decomposition Right

{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A; S; σ =⇒
{Y1(#»x) : t1 � f (s1, . . . , sk), Y2(#»x) : f (t2, . . . , tn)� f (sk+1, . . . , sm)} ∪A;
S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},

where Ax(f)= {A}, n,m≥ 2, 1≤ k≤m− 1, and Y1 and Y2 are fresh variables of appropriate
types.

We refer to the extension of Gbase by the above associativity rules as GA and extend the ter-
mination, soundness, and completeness results for Gbase to GA. To illustrate the use of the above
extension of Gbase, let us consider the following example where Ax(f)= {A}:

Example 2. Let t = λx.λy.f (x, x, y, y) and s= λz.λv.f (z, v, v) be in flattened form. The initial state
is {X : t� s};∅; Id. First, we apply the abstraction rule twice:

{X : t� s};∅; Id=⇒×2
Abs

{X′(x, y) : f (x, x, y, y)� f (x, y, y)};∅;{X �→ λx.λy.X′(x, y)}.
From here, we can continue in multiple ways, applying Dec-A-L or Dec-A-R, each of them in

various positions. Assume that we use Dec-A-L at position 2, that is, with the index k being set to
2 (note that we flatten nested f ’s also in the substitutions):

{X′(x, y) : f (x, x, y, y)� f (x, y, y)};∅;{X �→ λx.λy.X′(x, y)} =⇒k=2
Dec-A-L

{X1(x, y) : f (x, x)� x, X2(x, y) : f (y, y)� f (y, y)};∅;
{X �→ λx.λy.f (X1(x, y), X2(x, y)), . . .} =⇒Sol

{X2(x, y) : f (y, y)� f (y, y)}; {Y(x) : f (x, x)� x};
{X �→ λx.λy.f (Y(x),X2(x, y)), . . .} =⇒×3

Dec

∅; {Y(x) : f (x, x)� x}; {X �→ λx.λy.f (Y(x), y, y), . . .}.
The derivation stops here with the computed answer λx.λy.f (Y(x), y, y).
Now assume that the Dec-A-L above was used not at position 2, but at position 1. It will lead to

the computation of another lgg, which shows that for the associative case, there exists more than
one lgg. (In contrast, higher-order pattern anti-unification in the free theory from Baumgartner
et al. (2017) always results into a unique lgg.)

{X′(x, y) : f (x, x, y, y)� f (x, y, y)};∅;{X �→ λx.λy.X′(x, y)} =⇒k=1
Dec-A-L

{X1(x, y) : x� x, X2(x, y) : f (x, y, y)� f (y, y)};∅;
{X �→ λx.λy.f (X1(x, y), X2(x, y)), . . .} =⇒Dec

{X2(x, y) : f (x, y, y)� f (y, y)};∅; {X �→ λx.λy.f (x,X2(x, y)), . . .}.
Here, there are alsomultiple ways to proceed.We show one of them by the Dec-A-L rule applied

at position 2:

{X2(x, y) : f (x, y, y)� f (y, y)};∅; {X �→ λx.λy.f (x,X2(x, y)), . . .} =⇒k=2
Dec-A-L

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

634 D.M. Cerna and T. Kutsia

{Y1(x, y) : f (x, y)� y, Y2(x, y) : y� y};∅;
{X �→ λx.λy.f (x, Y1(x, y), Y2(x, y)), . . .} =⇒Sol

{Y2(x, y) : y� y}; {Y(x, y) : f (x, y)� y};
{X �→ λx.λy.f (x, Y(x, y), Y2(x, y)), . . .} =⇒Dec

∅; {Y(x, y) : f (x, y)� y}; {X �→ λx.λy.f (x, Y(x, y), y), . . .}.
Hence, we obtained another lgg λx.λy.f (x, Y(x, y), y).

Theorem 1 (Termination). The set of transformations GA is terminating.

Proof. Termination follows from the fact that Gbase terminates (Baumgartner et al., 2017) and the
rules Dec-A-L and Dec-A-R can be applied finitely many times.

Theorem 2 (Soundness). If {X : t� s};∅; Id=⇒∗
∅; S; σ is a transformation sequence of GA, then

Xσ is a higher-order pattern in η-long β-normal form and Xσ 	 t and Xσ 	 s.

Proof. It was shown in Baumgartner et al. (2017) that Gbase is sound and always results in a
higher-order pattern. The associative decomposition rules replace free variables with higher-order
patterns in substitutions. Composition of pattern substitutions is again a pattern substitution.
Therefore, the associative generalization algorithm also returns higher-order patterns.

The second part of the theorem we prove by induction on the number of arguments of asso-
ciative function constants appearing in t� s. Let us assume as a base case that all occurrences
of associative constants in t� s have two arguments. Then, the rules Dec-A-L and Dec-A-R are
equivalent to the Dec rule. As an induction hypothesis (IH), assume soundness holds when all
occurrences of associative constants in t� s have ≤ n arguments. We show that it holds for n+ 1.
Let t� s be of the form f (t1, . . . , tm)� f (s1, . . . , sk) for max{m, k} ≤ (n+ 1) and let associative
constants occurring in t1, . . . tm, s1, . . . sk have at most n arguments. Any application of Dec-A-L
or Dec-A-R will produce two AUPs for which the IH holds, and thus, the theorem holds. We can
extend this argument to an arbitrary number of associative constants with n+ 1 arguments with
another induction.

Theorem3 (Completeness). Let λ #»x .t1 and λ #»x .t2 be higher-order terms and λ #»x .s be a higher-order
pattern such that λ #»x .s is a generalization of both λ #»x .t1 and λ #»x .t2 modulo associativity. Then there
exists a transformation sequence {X(#»x) : t1 � t2};∅; Id=⇒∗

∅; S; σ in GA such that λ #»x .s	 Xσ .

Proof. We can reason similarly to the previous proof. It was shown in Baumgartner et al. (2017)
that Gbase is complete. Let us assume as a base case that all occurrences of associative function
constants in t� s have two arguments. Then, the rules Dec-A-L and Dec-A-R are equivalent to the
Dec rule and completeness holds. When we have n+ 1 arguments, there are n ways to group the
arguments associatively and the decomposition rules Dec-A-L and Dec-A-R allow one to consider
all groupings.

If we wish to compute the complete set of lggs, we would simply exhaust all possible applica-
tions of the above rules. However, for most applications, an “optimal” generalization is sufficient.
We postpone discussion till the next section.

4.2 Commutative decomposition rules
The decomposition rules for commutative symbols are also pretty intuitive:

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 635

Dec-C: Commutative Decomposition
{X(#»x) : f (t1, t2)� f (s1, s2)} �A; S; σ =⇒

{Y1(#»x) : t1 � si, Y2(#»x) : t2 � s(i mod 2)+1} ∪A; S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},
where Ax(f)= {C}, i ∈ {1, 2}, and Y1 and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the commutativity rule as GC. To illustrate the use of the
above extension of Gbase, let us consider the following example where Ax(f)= {C}:

Example 3. Let t = λx.λy.f (g(x, y), g(y, x)) and s= λz.λw.f (w, g(z, z)). The initial state is {X : t�
s};∅; Id. After applying the Abs rule twice, we reach

{X′(x, y) : f (g(x, y), g(y, x))� f (x, g(y, y))};∅;{X �→ λx.λy.X′(x, y)},
from here, there are two ways to proceed: applying the Dec-C with i= 1 and with i= 2.

The derivation with i= 1 is as follows:

{X′(x, y) : f (g(x, y), g(y, x))� f (x, g(y, y))};∅;{X �→ λx.λy.X′(x, y)} =⇒i=1
Dec-C

{X1(x, y) : g(x, y)� x, X2(x, y) : g(y, x)� g(y, y)};∅;
{X �→ λx.λy.f (X1(x, y), X2(x, y)), . . .} =⇒Sol

{X2(x, y) : g(y, x)� g(y, y)}; {Y(x, y) : g(x, y)� x};
{X �→ λx.λy.f (Y(x, y), X2(x, y)), . . .} =⇒×2

Dec

{Z1(x, y) : x� y}; {Y(x, y) : g(x, y)� x};
{X �→ λx.λy.f (Y(x, y), g(y, Z1(x, y))), . . .} =⇒Sol

∅; {Y(x, y) : g(x, y)� x, Z(x, y) : x� y};
{X �→ λx.λy.f (Y(x, y), g(y, Z(x, y))), . . .}.

The obtained lgg is λx.λy.f (Y(x, y), g(y, Z(x, y))).
Taking i= 2 produces the following derivation:

{X′(x, y) : f (g(x, y), g(y, x))� f (x, g(y, y))};∅;{X �→ λx.λy.X′(x, y)} =⇒i=2
Dec-C

{X1(x, y) : g(x, y)� g(y, y), X2(x, y) : g(y, x)� x};∅;
{X �→ λx.λy.f (X1(x, y), X2(x, y)), . . .} =⇒Dec

{Y1(x, y) : x� y, Y2(x, y) : y� y, X2(x, y) : g(y, x)� x};∅;
{X �→ λx.λy.f (g(Y1(x, y), Y2(x, y)), X2(x, y)), . . .} =⇒Sol

{Y2(x, y) : y� y, X2(x, y) : g(y, x)� x}; {Y(x, y) : x� y};
{X �→ λx.λy.f (g(Y(x, y), Y2(x, y)), X2(x, y)), . . .} =⇒Dec

{X2(x, y) : g(y, x)� x}; {Y(x, y) : x� y};
{X �→ λx.λy.f (g(Y(x, y), y), X2(x, y)), . . .} =⇒Sol

∅; {Y(x, y) : x� y, Z(x, y) : g(y, x)� x};
{X �→ λx.λy.f (g(Y(x, y), y), Z(x, y)), . . .}.

Hence, we obtain the second lgg λx.λy.f (g(Y(x, y), y), Z(x, y)).
Hence, in commutative generalization, like in the associative case, the lgg is not necessarily

unique.

We can easily extend the termination, soundness, and completeness results to GC.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

636 D.M. Cerna and T. Kutsia

4.3 Associative-commutative decomposition rules
Unlike commutativity, which considers a fixed number of terms, and associativity, which enforces
an ordering on terms, AC constants allow an arbitrary number of arguments with no fixed ordering
on the terms. The corresponding decomposition rules take it into account:

Dec-AC-L: Associative-Commutative Decomposition Left
{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A; S; σ =⇒

{Y1(#»x) : f (ti1 , . . . , til)� sk,
Y2(#»x) : f (ti(l+1) , . . . , tin)� f (s1, . . . , sk−1, sk+1, . . . , sm)} ∪A;
S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},

whereAx(f)= {A, C}, {i1, . . . , in} ≡ {1, . . . , n}, l ∈ {1, . . . , n− 1}, k ∈ {1, . . . ,m}, n,m≥ 2, andY1
and Y2 are fresh variables of appropriate types.
Dec-AC-R: Associative-Commutative Decomposition Right

{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A; S; σ =⇒
{Y1(#»x) : tk � f (si1 , . . . , sil),
Y2(#»x) : f (t1, . . . , tk−1, tk+1, . . . , tn)� f (si(l+1) , . . . , sim)} ∪A;
S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},

where Ax(f)= {A, C}, {i1, . . . , im} ≡ {1, . . . ,m}, l ∈ {1, . . . ,m− 1}, k ∈ {1, . . . , n}, n,m≥ 2, and
Y1 and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the AC decomposition rules as GAC. To illustrate the use
of the above extension of Gbase, let us consider the following example where Ax(f)= {A, C}:

Example 4. Let t = λx.λy.f (x, x, y) and s= λz.λv.f (v, v, z). Starting from the initial state
{X : t� s};∅; Id, after two applications of Dec, we reach the state {X′(x, y) : f (x, x, y)�
f (y, y, x)};∅; {X �→ λx.λy.X′(x, y)}, which can be further transformed in multiple ways. We
present two derivations. The first one starts with Dec-AC-L, where k= 3 (the position), l= 1 (the
subsequence length) and looks as follows:

{X′(x, y) : f (x, x, y)� f (y, y, x)};∅; {X �→ λx.λy.X′(x, y)} =⇒k=3, l=1
Dec-AC-L

{Y1(x, y) : x� x, Y2(x, y) : f (x, y)� f (y, y)};∅;
{X �→ λx.λy.f (Y1(x, y), Y2(x, y)), . . .} =⇒Dec

{Y2(x, y) : f (x, y)� f (y, y)};∅; {X �→ λx.λy.f (x, Y2(x, y)), . . .} =⇒k=2, l=1
Dec-AC-R

{Z1(x, y) : y� y, Z2(x, y) : x� y};∅;
{X �→ λx.λy.f (x, Z1(x, y), Z2(x, y)), . . .} =⇒Dec

{Z2(x, y) : x� y};∅; {X �→ λx.λy.f (x, y, Z2(x, y)), . . .} =⇒Sol

∅; {Z(x, y) : x� y}; {X �→ λx.λy.f (x, y, Z(x, y)), . . .}.
Hence, the obtained lgg is λx.λy.f (x, y, Z(x, y)).
The second derivation is the following:

{X′(x, y) : f (x, x, y)� f (y, y, x)};∅; {X �→ λx.λy.X′(x, y)} =⇒k=1, l=1
Dec-AC-L

{Y1(x, y) : x� y, Y2(x, y) : f (x, y)� f (y, y)};∅;
{X �→ λx.λy.f (Y1(x, y), Y2(x, y)), . . .} =⇒Sol

{Y2(x, y) : f (x, y)� f (y, y)}; {Y(x, y) : x� y};
{X �→ λx.λy.f (Y(x, y), Y2(x, y)), . . .} =⇒k=1, l=1

Dec-AC-L

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 637

{Z1(x, y) : x� y, Z2(x, y) : y� x}; {Y(x, y) : x� y};
{X �→ λx.λy.f (Y(x, y), Z1(x, y), Z2(x, y)), . . .} =⇒Sol

{Z2(x, y) : y� x}; {Y(x, y) : x� y, Z′(x, y) : x� y};
{X �→ λx.λy.f (Y(x, y), Z′(x, y), Z2(x, y))} =⇒Sol

∅; {Y(x, y) : x� y, Z′(x, y) : x� y, Z′′(x, y) : y� x};
{X �→ λx.λy.f (Y(x, y), Z′(x, y), Z′′(x, y))} =⇒Mer

∅; {Y(x, y) : x� y, Z′′(x, y) : y� x};
{X �→ λx.λy.f (Y(x, y), Y(x, y), Z′′(x, y))} =⇒Mer

∅; {Y(x, y) : x� y}; {X �→ λx.λy.f (Y(x, y), Y(x, y), Y(y, x))}.
Hence, the second lgg is λx.λy.f (Y(x, y), Y(x, y), Y(y, x)).

Again, termination, soundness, and completeness are easily extended to this case.

5. Theories with the Unit Element
5.1 Generalizationmodulo U
A peculiarity of theories with unit elements is that terms with different heads may have nontrivial
least general generalizations. For instance, the lgg of λx.f (a, x) and λx.a is λx.f (a, X(x)), if f has
the unit element. (Otherwise, λx.X(x) would have been the lgg.) In order not to miss such gener-
alizations, we should not use the Solve rule for the AUP X(#»x) : t� s, if the head of t or of s is a
constant f such that U ∈Ax(f). Instead, the following expansion rules should be applied:

Exp-U-L: Expansion for Unit, Left
{X(#»x) : t� s} �A; S; σ =⇒ {X(#»x) : t′ � s} �A; S; σ ,

where f = head(s)
= head(t), U ∈Ax(f), εf is the unit element of f , t′ ∈ {f (t, εf), f (εf , t)}.
Exp-U-R: Expansion for Unit, Right

{X(#»x) : t� s} �A; S; σ =⇒ {X(#»x) : t� s′} �A; S; σ ,

where f = head(t)
= head(s), U ∈Ax(f), εf is the unit element of f , s′ ∈ {f (s, εf), f (εf , s)}.
Extending the base algorithm with these rules (and modifying Solve as described above) gives

an algorithm whose soundness is straightforward. Termination is also easy to see because the
expansion rules are to be followed by the decomposition and the problem becomes strictly smaller
than it was before the expansion. However, it turns out that the algorithm is not complete, as the
following example shows:

Example 5. Let t = g(a, a) and s= f (g(b, εf), b), where Ax(f)= {U} and εf is the unit element of
f . Note that these terms come from the first-order fragment of the term language. Then we have a
derivation:

{X : g(a, a)� f (g(b, εf), b)}; ∅; Id=⇒Exp-U-L

{X : f (g(a, a), εf)� f (g(b, εf), b)}; ∅; Id=⇒Dec

{X1 : g(a, a)� g(b, εf), X2 : εf � b}; ∅; {X �→ f (X1, X2)} =⇒Dec

{Y ′
1 : a� b, Y ′

2 : a� εf , X2 : εf � b}; ∅; {X �→ f (g(Y ′
1, Y

′
2), X2)} =⇒3

Sol

∅; {Y1 : a� b, Y2 : a� εf , Y3 : εf � b}; {X �→ f (g(Y1, Y2), Y3)}.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

638 D.M. Cerna and T. Kutsia

With another term choice f (εf , g(a, a)) in Exp-U-L, we would get a derivation of a more general
generalization f (X1, X2). However, even f (g(Y1, Y2), Y3) is not least general: It is strictly more
general than f (g(f (Z1, Z2), Z1), Z3). To get convinced that the latter is indeed a generalization of
t and s, take

f (g(f (Z1, Z2), Z1), Z3){Z1 �→ a, Z2 �→ εf , Z3 �→ εf } ≡U f (g(a, a), εf)≡U g(a, a)= t,
f (g(f (Z1, Z2), Z1), Z3){Z1 �→ εf , Z2 �→ b, Z3 �→ b} ≡U f (g(b, εf), b)= s.

The problem highlighted in Example 5 is related to the fact that from two U-equigeneral terms
Y and f (Z1, Z2), sometimes we have to choose one in the generalization and sometimes another,
depending which variable can occurmore than once in the generalization. However, if we compute
linear generalizations (i.e., no variable occurring more than once and, hence, Merge rule is not
applied), then there is no need to consider f (Z1, Z2) as an alternative of Y (as a generalization).
Notice that in Example 5, Z1 has multiple occurrences allowing one to add additional occurrences
of f . While we do not go into detail in this paper concerning how to handle unit in the nonlinear
case, we conjecture that a terminating complete algorithm is possible using a similar framework
as was introduced in Cerna and Kutsia (2019b) where a terminating and complete algorithm was
provided for idempotent generalization. In that case, the expansion rules cover all alternatives to
“repair” head disagreement between two terms, where the head of one of those terms has the unit
element. Therefore, we call the algorithm GU-lin.

For the general case, one might hope to take an advantage of the unit element and generalize
even arbitrary head-different terms.2 The following rule would deal with all such possibilities:

DH-U: Terms with Different Heads in the Unit Element Theory
{X(#»x) : t� s} �A; S; σ =⇒

{Y1(#»x) : t� εf , Y2(#»x) : εf � s} �A; S; σ {X �→ f (Y1(#»x), Y2(#»x))},
where head(t)
= head(s), U ∈Ax(f), εf is the unit element of f , t
= εf , and s
= εf .

Extending GU-lin with DH-U, we would be able to compute the lgg for terms in Example 5,
continuing the derivation that stopped there:

{Y1 : a� b, Y2 : a� εf , X2 : εf � b}; ∅; {X �→ f (g(Y1, Y2), X2)} =⇒DH-U
{Z1 : a� εf , Z2 : εf � b, Y2 : a� εf , X2 : εf � b}; ∅;

{X �→ f (g(f (Z1, Z2), Y2), X2)} =⇒4
Sol

∅; {Z1 : a� εf , Z2 : εf � b, Y2 : a� εf , X2 : εf � b};
{X �→ f (g(f (Z1, Z2), Y2), X2)} =⇒Mer

∅; {Z1 : a� εf , Z2 : εf � b, X2 : εf � b}; {X �→ f (g(f (Z1, Z2), Z1), X2)} =⇒Mer

∅; {Z1 : a� εf , Z2 : εf � b}; {X �→ f (g(f (Z1, Z2), Z1), Z2)}.
While the use of DH-U can help to find lggs in the general case as in this example, it has a serious

drawback: if we have more than one function constant with the unit element, it will generate an
infinite branch in the derivation tree:3

{X : a� b}; ∅; Id=⇒DH-U
{X1 : a� εf , X2 : εf � b}; ∅; {X �→ f (X1, X2)} =⇒DH-U
{Y1 : a� εg , Y2 : εg � εf , X2 : εf � b}; ∅; {X �→ f (g(Y1, Y2), X2)} =⇒DH-U
{Z1 : a� εf , Z2 : εf � εg , Y2 : εg � εf , X2 : εf � b}; ∅;

{X �→ f (g(f (Z1, Z2), Y2), X2)} =⇒DH-U
. . .

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 639

Along the branch, we will have generalizations

f (X1, X2),
f (g(Y1, Y2), X2),
f (g(f (Z1, Z2), Y2), X2),
f (g(f (g(U1, Y2), Z2), Y2), X2),
f (g(f (g(f (V1, Z2), Y2), Z2), Y2), X2),
. . .

but all of them are U-equigeneral. In fact, one can notice that by the repeated application of DH-U
with more than one unit element, the same AUPs (with fresh generalization variables) are gener-
ated over and over again. Therefore, with a simple loop checking, or by setting the bound to the
derivation depth based on the size/depth of the original problem, we can obtain a terminating
algorithm for the general case as well.

Nevertheless, to avoid such unpleasant consequences of using the DH-U rule, in the rest of the
paper, we will restrict ourselves with the algorithm GU-lin when the equational axioms involve U.
Hence, we will be interested in computing linear generalizations for those theories.

Theorem 4 (Completeness of GU-lin). Let λ #»x .t1 and λ #»x .t2 be higher-order terms and λ #»x .s be a
linear higher-order pattern such that λ #»x .s is a U-generalization of λ #»x .t1 and λ #»x .t2. Then, there
exists a transformation sequence {X : λ�x.t1 � λ�x.t2};∅; Id=⇒∗

∅; S; σ in GU-lin such that λ #»x .s	
Xσ .

Proof. We assume that λ #»x .t1, λ #»x .t2, and λ #»x .s have been normalized, that is, subterms of the
form f (t′, εf) or f (εf , t′), where U ∈Ax(f), do not occur. We prove the theorem by induction on
depth(λ #»x .t1)+ depth(λ #»x .t2) which we denote by n.

Case 1: n= 2, that is, t1 and t2 are constants.

(a) First, assume that depth(s)= 1. If t1 = t2, then s= t1 = t2 and s is computed by the
derivation {X : t1 � t2};∅; Id=⇒Dec Id;∅;{X �→ t1}. If t1
= t2, then smust be a variable,
computed by the derivation {X : t1 � t2};∅; Id=⇒Sol ∅; {X : t1 � t2};Id.

(b) Now assume as the IH that for every generalization s of t1 and t2 of depth at most k, either
s	 t1 and t1 = t2, or s	 X and t1
= t2. We show that this holds for a generalization s′ of
depth k+ 1. Let head(s′)= f . Our assumptions imply that U ∈ Ax(f) because both t1 and
t2 are of depth 1. Thus, s′ = f (s1, s2).

By the definition of a generalization, there must exists two substitutions σ1 and σ2
such that s′σ1 = t1 and s′σ2 = t2. If s1σ1 = s1σ2 = εf (resp. if s2σ1 = s2σ2 = εf), then s2
(resp. s1) is, by the IH, more general than t1 when t1 = t2, or more general than X when
t1
= t2. This implies, by the linearity assumption, that there exists a substitution ϑ such
that s2ϑ = s2 and s1ϑ = εf . Thus, s′ϑ = s2, that is, s′ ≺ s2.

However, if s2σ1 = εf and s1σ2 = εf , or vice versa, then additional observations are
required. We assume without loss of generality the former case.

If t1 = t2, then both s1 and s2 are generalizations of t1 � t2 and by the IH s1 	 t1 and
s2 	 t1. If t1
= t2, then we need to make a distinction:

b1. If neither t1 nor t2 are units of function constants ft1 and ft2 , respectively, whichmay
appear in s, then there exists a variable Y occurring in s1 such that Yσ1 = t1 and a
variable Y ′ occurring in s2 such that Y ′σ2 = t2. However, by the linearity of S, this
implies that there exist two substitutions σ ′

1 and σ ′
2 which coincide everywhere with

σ1 and σ2 except on Y and Y ′, respectively. That is, Yσ ′
1 = t2 and Y ′σ ′

2 = t1. This

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

640 D.M. Cerna and T. Kutsia

implies that both s1 and s2 are generalizations of t1 � t2 which have depth ≤ k+ 1.
Thus, s1 	 X and s2 	 X.

b2. If either t1 or t2 is a unit of the function constants ft1 and ft2 , respectively, which
may appear in s, then additional observations are necessary. If neither t1 nor t2
occurs in s, then we have the same situation as b1. Otherwise, if ft1 occurs in s1
(respectively, ft2 in s2), then it must occur as the head symbol of a term with t1 as a
subterm because s1σ2 = εf . This implies that there must be a variable Y in s1 which
σ1 maps to t1. Similar can be said concerning s2, t2, and σ2. We can construct a
new substitution which coincides with σ1 (resp. with σ2) everywhere but on the
variable Y (resp. Y ′) which it maps to t2 (resp. to t1). This means that s1 and s2 are
generalizations of t1 � t2 and by the IH s1 	 X s2 	 X. This completes the case 1.

Case 2: n> 2.

(a) Let us assume that t1 = λy.t′1 and t2 = λz.t′2, then it must be the case that s= λy.s′ where
s′ is a generalization of the AUP X(y) : t′1 � t′2. Note that depth(t′1)+ depth(t′2)= n− 1
and thus by the IH, there exists a generalization s∗ computable using the rules of GU-lin
such that s′ 	 s∗. Thus, a generalization for the AUP t1 � t2 may be computed using the
GU-lin by first applying the abs rule to t1 � t2 and then computing s∗. Thus, λy.s∗ is a
generalization of t1 � t2.

(b) Let us assume that t1 = f (w1, . . . ,wm) and t2 = f (r1, . . . , rm), such that U
∈ Ax(f) then
by applying the Dec rule to the AUP X : t1 � t2 we get m AUPs X1 :w1 � r1, . . . , Xm :
w1 � r1 each of which has a depth sum of n− 1. Thus, by the IH, for each generalization
s′ generalizing Xi :wi � ri, there exists a generalization s∗i , computed using GU-lin, such
that, s′ 	 s∗i . Now let S∗

i be the set of all such generalizations computed using GU-lin. We
may now define the set of generalizations S∗ as follows:

S∗ = {f (s∗1, . . . , s∗m) | s∗i ∈ S∗
i for all 1≤ i≤m}.

Note that each term in S∗ is a generalization of X : t1 � t2 computed using GU-lin. Thus,
any generalization s′ of X : t1 � t2 such that head(s′)= f is more general than some gen-
eralization of S∗. Thus, we need only to consider generalization s′ such that head(s′)
= f .
This implies that U ∈ Ax(head(s′)).

If s′ does not contain f , then s′ 	 X. Thus, let us assume that s′ = g(s′1, s′2) where U ∈
Ax(g) and without loss of generality head(s′1)= f . This implies that s′2 	 εg (note that s′ is
linear) and thus s′1 	 s′. This reduction can be performed inductively thus showing that
for any generalization s′ with head(s′)
= f , there exists s′′ ∈ S∗ such that s′ 	 s′′.

(c) Let us assume that t1 = f (w1,w2) and t2 = f (r1, r2), such that U ∈ Ax(f). Then, we can
proceed in a similar fashion as in case b) by constructing S∗. Thus, any generalization
s′ of X : t1 � t2 such that head(s′)= f and s′ = f (d1, d2), where d1 is a generalization of
w1 � r1, d2 a generalization of w2 � r2, is more general than some generalization of S∗.
WhenU ∈ Ax(head(s′)) and some generalization s′′ is a subterm of s′ such that there exists
s∗ ∈ S∗ with s′′ 	 s∗, a similar approach can be taken as in the second half of case b).

(d) Let us assume that t1 = f (w1, . . . ,wm) and t2 = g(r1, . . . , rm), where either U ∈ Ax(f)
or U ∈ Ax(g), or both. By a single application of Exp-U-L or Exp-U-R, this case can be
reduced to c).

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 641

5.2 Linear generalization modulo AU
When an associative function constant has a unit element, we cannot simply combine associative
decomposition and unit expansion rules. Such a combination would generalize, for instance f (a, b)
and f (b, a) by f (X, Y), but the lggs are f (X, a, Y) and f (X, b, Y). The problem is related to the fact
that by A-decomposition (by the rules Dec-A-L and Dec-A-R), we cannot obtain AUPs which retain
the first argument of a term on one side and an arbitrary term from the arguments on the another
side.

The problem can be solved by special rules for AU-decomposition, which are used for those
f ’s for which Ax(f)= {A, U}. However, for termination, we should make sure that they do not
generate trivial AUPs of the form Y(#»x) : εf � εf . This is what the condition about nontriviality of
new AUPs requires in the conditions below:

Dec-AU-L: Associative-Unit Decomposition Left
{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A; S; σ =⇒

{Y1(#»x) : f (t1, . . . , tk)� s1, Y2(#»x) : f (tk+1, . . . , tn)� f (s2, . . . , sm)} ∪A;
S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},

where Ax(f)= {A, U}, n,m≥ 2, 0≤ k≤ n, Y1 and Y2 are fresh variables of appropriate types,
f (t0)= f (tn+1)= εf , and the new AUPs are not trivial.

Dec-AU-R: Associative-Unit Decomposition Right
{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A; S; σ =⇒

{Y1(#»x) : t1 � f (s1, . . . , sk), Y2(#»x) : f (t2, . . . , tn)� f (sk+1, . . . , sm)} ∪A;
S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},

where Ax(f)= {A, U}, n,m≥ 2, 0≤ k≤m, Y1 and Y2 are fresh variables of appropriate types,
f (s0)= f (sm+1)= εf , and the new AUPs are not trivial.

Note the difference from Dec-A-L and Dec-A-R: k is allowed to reach the boundaries. It can
become 0, n, orm.

Soundness of the AU-decomposition rules is easy to see. As for termination, we may require
that an application of a unit expansion rule is immediately followed by the application of an AU-
decomposition rule. Since the latter does not generate a trivial AUP, the sizes of the new AUPs will
be smaller than the one to which the unit expansion rule was applied, which implies termination.

Note that if we did not put the trivial AUP restriction condition in the AU-decomposition rules,
we could get an infinite derivation of the form {X : f (a, b)� a};∅; Id=⇒Exp-U-R {X : f (a, b)�
f (a, εf)};∅; Id=⇒Dec-AU-L {Y : f (a, b)� a, Z : εf � εf };∅; {X �→ f (Y , Z)} =⇒ · · · .

Hence, to compute linear generalizations modulo AU, we extend GU-lin by AU-decomposition
rules. We call this algorithm GAU-lin. With the AU-decomposition rules, we obtain all possible
decompositions. The unit expansion rules allow one to transform AUPs with mismatching head
symbols into AUPs with matching head symbols when at least one of the head symbols is an AU-
symbol. Therefore, by GAU-lin, we will never miss an existing linear lgg of two terms. To illustrate
the use of the above extension of Gbase, let us consider the following example whereAx(f)= {A, U}:

Example 6. Let t = λx.λy.f (x, x, y, y) and s= λz.λv.f (z, v, v). The initial state is {X : t� s};∅; Id
and the derivation of the lgg λx.λy.f (x, Y(x, y), f (y, y)) is as follows:

{X : t� s};∅; Id=⇒×2
Abs

{X′(x, y) : f (x, x, y, y)� f (x, y, y)};∅;{X �→ λx.λy.X′(x, y)} =⇒k=2
Dec-AU-L

{X1(x, y) : f (x, x)� x, X2(x, y) : f (y, y)� f (y, y)};∅;
{X �→ λx.λy.f (X1(x, y), X2(x, y))} =⇒×3

Dec

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

642 D.M. Cerna and T. Kutsia

{X1(x, y) : f (x, x)� x};∅;{X �→ λx.λy.f (X1(x, y), f (y, y))} =⇒Exp-U-R
{X1(x, y) : f (x, x)� f (x, εf)};∅;{X �→ λx.λy.f (X1(x, y), f (y, y))} =⇒k=1

Dec-AU-L
{X3(x, y) : x� x, X4(x, y) : x� εf };∅;

{X �→ λx.λy.f (f (X3(x, y), X4(x, y)), f (y, y))} =⇒Dec

{X4(x, y) : x� εf };∅;{X �→ λx.λy.f (f (x, X4(x, y)), f (y, y))} =⇒Sol

∅; {Y(x, y) : x� εf };{X �→ λx.λy.f (f (x, Y(x, y)), f (y, y))}.
Notice that the AU-lin generalization λx.λy.f (x, Y(x, y), y, y) computed here is less general than
the A-generalizations λx.λy.f (Y(x), y, y) and λx.λy.f (x, Y(x, y), y) computed in Example 2.

5.3 Linear generalization modulo CU
Generalization in a commutative theory with the unit element is simpler than AU-generalization
described above. The reason is in the Dec-C rule, which generates new AUPs from the arguments
of the given AUP, removing the head symbol. The effect of its combination with the unit expan-
sion rules is to anti-unify one argument from one side with the term in another side, while the
other argument is anti-unified with the unit element. These are exactly all the alternatives CU-
generalization should consider. For (linear) CU-generalization algorithm, we can add to GU-lin
the counterpart of Dec-C rule which is applied when Ax(f)= {C, U}, obtaining the algorithm
GCU-lin. Its soundness, termination, and completeness properties are straightforward. To illustrate
the use of the above extension of Gbase, let us consider the following example where Ax(f)=
{C, U}:

Example 7. Let t = λx.λy.f (g(x, y), g(y, x)) and s= λz.λv.g(z, z). The initial state is {X : t�
s};∅; Id and the derivation of the lgg λx.λy.f (g(x, Y(x, y)), Z(x, y)) is as follows:

{X : t� s};∅; Id=⇒×2
Abs

{X′(x, y) : f (g(x, y), g(y, x))� g(x, x)};∅;{X �→ λx.λy.X′(x, y)} =⇒Exp-U-R

{X′(x, y) : f (g(x, y), g(y, x)� f (εf , g(x, x))};∅;{X �→ λx.λy.X′(x, y), . . .} =⇒i=2
Dec-C

{X1(x, y) : g(x, y)� g(x, x), X2(x, y) : g(y, x)� εf };∅;

{X �→ λx.λy.f (X1(x, y), X2(x, y)), . . .} =⇒×2
Dec

{X4(x, y) : y� x, X2(x, y) : g(y, x)� εf };∅;

{X �→ λx.λy.f (g(x,X4(x, y)), X2(x, y)), . . .} =⇒Sol

∅;{Y(x, y) : y� x, Z(x, y) : g(y, x)� εf }; {X �→ λx.λy.f (g(x, Y(x, y)), Z(x, y)), . . .}.

5.4 Linear generalization modulo ACU
ACU-lin-generalization is characterized by the properties of both AU-lin- and CU-lin- generaliza-
tions. From AU-lin, it should inherit the condition that new AUPs are not trivial. It is similar to
CU-lin in that the original decomposition does not need to be changed: since the order of argu-
ments is not fixed, there is no problem in reaching the boundaries in the combination with the
unit expansion rules (which was problematic in the A case). Therefore, ACU-decomposition rules
have the following form:

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 643

Dec-ACU-L: Associative-Commutative-Unit Decomposition Left
{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A; S; σ =⇒

{Y1(#»x) : f (ti1 , . . . , til)� sk,
Y2(#»x) : f (ti(l+1) , . . . , tin)� f (s1, . . . , sk−1, sk+1, . . . , sm)} ∪A;
S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},

where Ax(f)= {A, C, U}, {i1, . . . , in} ≡ {1, . . . , n}, l ∈ {1, . . . , n− 1}, k ∈ {1, . . . ,m}, n,m≥ 2, Y1
and Y2 are fresh variables of appropriate types, and the new AUPs are not trivial.

Dec-ACU-R: Associative-Commutative-Unit Decomposition Right
{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A; S; σ =⇒

{Y1(#»x) : tk � f (si1 , . . . , sil),
Y2(#»x) : f (t1, . . . , tk−1, tk+1, . . . , tn)� f (si(l+1) , . . . , sim)} ∪A;
S; σ {X �→ λ #»x .f (Y1(#»x), Y2(#»x))},

where Ax(f)= {A, C, U}, {i1, . . . , im} ≡ {1, . . . ,m}, l ∈ {1, . . . ,m− 1}, k ∈ {1, . . . , n}, n,m≥ 2, Y1
and Y2 are fresh variables of appropriate types, and the new AUPs are not trivial.

Extending GU-lin with Dec-ACU-L and Dec-ACU-R, we obtain an algorithm for linear ACU-
generalization which we call GACU-lin. Its soundness is straightforward. Arguments for termination
are similar to those for AU. For completeness, note that we essentially consider all decompositions
with all permutations of arguments under ACU symbols, and the unit expansion rules introduce a
unit element allowing comparison between the unit element and all terms occurring as arguments
to an ACU symbols. Therefore, no linear lgg will be missed. To illustrate the use of the above
extension of Gbase, let us consider the following example where Ax(f)= {A, C, U}:

Example 8. Let t = λx.λy.λz.f (x, z, y) and s= λx′.λy′.λz′.f (y′, z′, x′, g(x′)). The initial state is {X :
t� s};∅; Id and the derivation of the lgg λx.λy.λz.f (x, y, z, Y(x, y, z)) is as follows:

{X : t� s};∅; Id=⇒×3
Abs

{X′(x, y, z) : f (x, z, y)� f (y, z, x, g(x))};∅;{X �→ λx.λy.λz.X′(x, y, z)} =⇒l=1,k=3
Dec-AC-L

{X1(x, y, z) : x� x, X2(x, y, z) : f (z, y)� f (y, z, g(x))};∅;

{X �→ λx.λy.λz.f (X1(x, y, z), X2(x, y, z)), . . .} =⇒Dec

{X2(x, y, z) : f (z, y)� f (y, z, g(x))};∅;

{X �→ λx.λy.λz.f (x,X2(x, y, z)), . . .} =⇒l=1,k=2
Dec-AC-R

{X3(x, y, z) : y� y, X4(x, y, z) : z� f (z, g(x))};∅;

{X �→ λx.λy.λz.f (x,X3(x, y, z), X4(x, y, z)), . . .} =⇒Dec

{X4(x, y, z) : z� f (z, g(x))};∅;

{X �→ λx.λy.λz.f (x, y, X4(x, y, z)), . . .} =⇒Exp-U-L

{X4(x, y, z) : f (z, εf)� f (z, g(x))};∅;

{X �→ λx.λy.λz.f (x, y, X4(x, y, z)), . . .} =⇒×2
Dec

{X5(x, y, z) : εf � g(x)};∅; {X �→ λx.λy.λz.f (x, y, z, X5(x, y, z)), . . .} =⇒Sol

∅;{Y(x, y, z) : εf � g(x)};{X �→ λx.λy.λz.f (x, y, z, Y(x, y, z)), . . .}.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

644 D.M. Cerna and T. Kutsia

5.5 Combining different theories
Finally, we consider the general case when different function constants satisfy associativity and/or
commutativity and/or identity axioms. Like in Alpuente et al. (2014), we can use the rules above
all together. (In the presence of the unit element, we can restrict ourselves with computing linear
generalizations.) All rules, except DH-U, are local in the sense of Alpuente et al. (2014): they are
local to the given top function constant in the given AUP they are acting upon, irrespective of what
other constants and what other axioms may be present in the given alphabet and the equational
theory. Such a locality means that the rules are modular and they do not change when new A
and/or C and/or U constants are introduced.

It should be also mentioned that in the algorithms considered above minimality was not our
goal. The obtained complete set of generalizations is not necessarily minimal. They can be min-
imized later. Also, the rules have not been optimized, and in general, nondeterminism can be
high. In the rest of the paper, we will try to reduce it, aiming at computing some kind of optimal
solutions.

6. Toward Special Restrictions
This section is devoted to computing special kind of “optimal” generalizations, which can be done
more efficiently than the general unrestricted cases considered in the previous section.

The idea is the following: The equational decomposition rules introduce branching in the
search space. Each branch can be developed in linear time, but there can be too many of them.
However, if the branching factor is bounded, we could choose one of the alternative states (pro-
duced by decomposition) based on some “optimality” criterion and develop only that branch.
Such a greedy approach will give one “optimal” generalizations.

While restricting the input terms enough will guarantee the production of generalizations in
linear time, these generalizations are not necessarily useful, meaningful, or relevant. For example,
we can allow function symbols with an equational theory but only consider terms which do not
need the equation decomposition rules. In order to guarantee relevance, we want to find the least
restrictive restrictions of the input terms which have some guaranteed complexity bounds and
produce generalizations which are less general than the syntactic counterpart. In this sense, the
restrictions given in the following sections are useful, meaningful, or relevant.

In order to have a “reasonable” computational complexity, we should be able to choose such
an optimal state from “reasonably” many alternatives in “reasonable” time. Toward this goal, we
start by introducing the concept of E-refined generalizations. They will be our main target to
compute.

Definition 1 (E-refined generalization).Given two terms t and s and their E-generalizations r and
r′, we say that r is at least as good as r′ with respect to E if either r′ 	E r or they are not comparable
with respect to 	E .

An E-generalization r of t and s is called their E-refined generalization iff r is at least as good
(with respect to E) as a syntactic lgg of t and s.

In our equational theories, to obtain a syntactic generalization of two terms, we assume that all
occurrences of associative symbols in the terms are associated to the right.

Example 9. Let t = f (a, b, c, c, a) and s= f (d, d, b, b, c, a) be two terms, where f is associative.
Their syntactic lgg (with f being right associated) is r′ = f (x, f (y, f (z, f (z, u))), where x is a
generalization of a and d, y of b and d, z of c and b, and u of a and f (c, a).

An A-refined generalization of t and s is r = f (x, b, y, c, a), where x generalizes a and f (d, d) and
y generalizes c and b. Note that r is as good as r′: they are incomparable with respect to 	A.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 645

We design the following general procedure to compute E-refined generalizations:

Refine A procedure to compute E-refined generalizations
1: Let A; S; σ be a state containing an AUP P upon which equational decomposition rules can be

applied in n different ways.
2: From A; S; σ generate n new states A1; S1; σ1 through An; Sn; σn which result from the various

ways equational decomposition rules may be applied to P.
3: Now find an lgg, denoted by li, for each Ai; Si; σi using Gbase.
4: Select the least general li (or one by some heuristics when multiple generalizations are least

general) and choose Ai; Si; σi as the successor state of A; S; σ .
5: If Ai; Si; σi contains an AUP which may be equationally decomposed, then go back to 1.

Otherwise, apply a rule from Gbase if possible, and repeat this line. If no rule applies, then
we exit.

Note that every syntactic generalization is also an E-refined generalization. Therefore, to guar-
antee that Refine indeed computes E-refined generalizations, we need to make sure that in step 2,
equational decomposition rules produce results among which at least one is as good as the result
of syntactic decomposition. Another consequence of the definition of E-refined generalization
is that every element of the minimal complete set of E-generalizations (in our equational theo-
ries) of two terms is an E-refined generalization of t and s. However, there might exist E-refined
generalizations which do not belong to the minimal complete set of generalizations.

Example 10. Let us consider a simple first-order example of this property, namely, the AUP
f (a, f (b, c))� f (c, f (a, b)) where Ax(f)= {A, C}. Note that the minimal complete set of AC-
generalizations for this AUP contains one element, f (a, f (b, c)). Its syntactic generalization is
f (x, f (y, z)) where x, y, and z are fresh variables. An example of AC-refined generalization, which
is not in the minimal complete set of AC-generalizations, is f (a, f (y, z)).

Looking back at the description of the Refine procedure, we can say that at each branching
point, we will be aiming at choosing the alternative that would lead to “the best” E-refined gener-
alization. To limit the number of choices, we will need to identify restrictions of equational AUPs
which would have a constant decomposition branching factor.

The concept of E-refined generalizations allows us to compute better generalizations than the
base procedure would do, without concerning ourselves with certain difficulty to handle decom-
positions. We will outline what we mean by “difficult” in later sections. Some of these difficult
decompositions can be handled by finding alignments between two sequences of symbols. These
sequences are usually extracted as sequences of root symbols from the given AUPs, where the root
of a term is defined as root(λx1, . . . , xk.t)= λx1, . . . , xk if k> 0, and root(λx1, . . . , xk.t)= head(t)
if k= 0. Note that as a root, we treat λx1, . . . , xk as one symbol and it is identified with any lambda
prefix with k variables, for example, λx1, . . . , xk = λy1, . . . , yk.

Definition 2 (Pairs of argument root sequences). Let t = λx1, . . . , xk.h(t1, . . . , tn) and s=
λx1, . . . , xk.h(s1, . . . , sm), where k≥ 0, be terms with the same type and the same head h (which
can be a constant, free variable, or a bound variable). Then the pair of argument root sequences of
t and s, denoted as pars(t, s), is defined as follows:

pars(t, s)= 〈(root(t1), . . . , root(tn)), (root(s1), . . . , root(sm))〉 .
This notion extends to AUPs: a pair of argument root sequences of an AUP X(#»x) : t� s is the pair

of argument root sequences of the terms t and s.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

646 D.M. Cerna and T. Kutsia

Definition 3 (Alignment, rigidity function). Let w1 and w2 be sequences of symbols. Then, the
sequence a1[i1, j1] · · · an[in, jn], for n≥ 0 is an alignment of w1 and w2 if

— i’s and j’s are integers such that 0< i1 < · · · < in ≤ |w1| and 0< j1 < · · · < jn ≤ |w2|, and
— ak =w1|ik =w2|jk , for all 1≤ k≤ n.

The set of all alignments will be denoted by A. A rigidity function R is a function that returns,
for every pair of sequences of symbols w1 and w2, a set of alignments of w1 and w2.

The main intuition behind the use of rigidity functions for generalization is to capture the
structure (modulo a given rigidity property) of as many nonvariable terms as possible (Kutsia
et al., 2014).

Example 11. Let us consider the two sequences of symbols (b, a, b, a) and (a, b, c, b, a). The fol-
lowing alignments are singleton alignments: a[2, 1], b[1, 2], and b[3, 4]. A larger alignment would
be a[2, 1]b[3, 2]a[4, 5]. Notice that this alignment also happens to be one of the longest sequences
of common symbols (longest common subsequence, LCS). The other LCS is b[1, 2]b[3, 4]a[4, 5].
We can define a rigidity function that returns, for instance, the set of all LCSs, or the set of all sin-
gleton alignments, or something more specific: a rigidity functionRLCS for the given two symbol
sequences selects the LCS alignment, which is lexicographically smallest (with respect to the posi-
tions) among all such alignments. For example, b[1, 2]b[3, 4]a[4, 5] is lexicographically smaller
than a[2, 1]b[3, 2]a[4, 5] because (1, 2) is lexicographically smaller than (2, 1).

RLCS((c, b, a, b, a), (a, b, c, b, a))= {c[1, 3]b[2, 4]a[3, 5]}.
RLCS((a, b, c, b, a), (c, b, a, b, a))= {a[1, 3]b[2, 4]a[5, 5]}.
RLCS((b, a, b, a), (a, b, c, b, a))= {b[1, 2]b[3, 4]a[4, 5]}.

There is a subset of AUPs, referred to as 1-determined AUPs, which have interesting E-refined
generalizations computable in linear time. The number 1 means that the equational decom-
position can be done only in one possible way. Hence, there is no branching in equational
anti-unification rule applications. (n= 1 in step 2 of Refine.) The more general k-determined
AUPs allow a bounded number of possible choices, that is k choices, whenever equational decom-
position may be applied. (n≤ k in step 2 of Refine.) Even for 2-determined AUPs computing, the
set of lggs is of exponential complexity. Therefore, we introduce the notion of (R, C, G)-optimal
generalization where R is a rigidity function, C is a choice function picking one of the available
decompositions, and G is the particular algorithm for which we are defining optimality. Under
such optimality conditions, we will see later that we are able to compute an E-refined generaliza-
tion in quadratic time for (uniformly) k-determined AUPs and in cubic time for arbitrary AUPs
with associative constants.

The equational decomposition rules above are too nondeterministic and the computed set
of generalizations has to be minimized to obtain minimal complete sets of generalizations.
However, even if we performed more guided decompositions, obtaining for example, terms with
the same root in new AUPs (as in Kutsia et al. (2014)), there would still be alternatives. For
instance, consider the following AUP where f is associative: X(#»x) : f (t1, . . . ti, . . . , tj, . . . , tn)�
f (s1, . . . si, . . . , sj, . . . , sm). Now let root(ti)= root(sj), root(si)= root(tj), and for every other term
comparison whose index is ≤ j, the root symbols are not equivalent. An example of such a situ-
ation as two sequences of root symbols would be (c, c, c, a, c, b, c, c, c) and (d, d, d, b, d, a, d, d, d).
This situation results in two singleton alignments, a[3, 6] and b[6, 3]. Note that any application
of associative decomposition will have to choose between these alignments, that is, choosing one
gives two AUPs in which the other alignment does not appear. It is not clear from the available

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 647

information which choice will lead to a less general generalization. While this situation illustrates
what happens when there are two alignments to choose from, it can easily be generalized to k
different possible alignments, for example, (c, c, c, a, c, b, c, c, c) and (d, d, d, b, a, a, d, d, d) which
contains the singleton alignments a[3, 6], a[3, 5], and b[6, 3].

Definition 4 (Maximal alignment). An alignment a= a1[i1, j1] · · · an[in, jn] is called an exten-
sion of an alignment b, if b is obtained from a by removing some letters ak1 [ik1 , jk1], . . . , akr [ikr , jkr],{k1, . . . , kr} ⊆ {1, . . . , n}. It is a proper extension if r > 0.

An alignment a is amaximal alignment of two symbol sequences w1 and w2, if no proper exten-
sion of a is an alignment of w1 and w2. The set of maximal nonempty alignments of w1 and w2 is
denoted bymax-ne-align(w1,w2).

Example 12. The sequences (a, b, a) and (c, a, b, c) have two maximal alignments: a[1, 2]b[2, 3]
and a[3, 2]. The first one is even the LCS of the given sequences, while the second one is not.

Definition 5 (k-determined sequence pair). A pair of sequences of symbols 〈w1,w2〉 is called k-
determined, ifmax-ne-align(w1,w2) contains at most k elements.

Obviously, 〈w1,w2〉 is k-determined iff 〈w2,w1〉 is k-determined. The definition implies that
any k-determined pair of sequences is also n-determined for any n≥ k.

Example 13. We illustrate the definition of k-determined pairs with the examples below:

1. 〈(a, b, c), (a, d, b, c)〉 is 1-determined, because

max-ne-align((a, b, c), (a, d, b, c))= {a[1, 1]b[2, 3]c[3, 4]}.
2. 〈(a, b, a), (c, a, b, c)〉 is 2-determined, because

max-ne-align((a, b, a), (c, a, b, c))= {a[1, 2]b[2, 3], a[3, 2]}.
3. 〈(a, c, c, b, a, c), (a, d, b, a, c)〉 is 3-determined, because

max-ne-align((a, c, c, b, a, c), (a, d, b, a, c))=
{a[1, 1]c[2, 5], a[1, 1]c[3, 5], a[1, 1]b[4, 3]a[5, 4]c[6, 5]}.

4. 〈(a, b), (b, a)〉 is 2-determined, because

max-ne-align((a, b), (b, a))= {a[1, 2], b[2, 1]}.
5. 〈(a, a), (a, a)〉 is 1-determined, because

max-ne-align((a, a), (a, a))= {a[1, 1]a[2, 2]}.
6. 〈(a, b), (c, d, e)〉 is 0-determined, because

max-ne-align((a, b), (c, d, e))=∅.

Definition 6 (Uniform and max-uniform alignments). Let a= a1[i1, j1] · · · an[in, jn] be an
alignment of two symbol sequences w1 = (l1, . . . , lm) and w2 = (r1, . . . , rk). We say that a is a
uniform alignment of w1 and w2, if the following conditions are satisfied:

(1) i1 = 1 iff j1 = 1,
(2) in =m iff jn = k,
(3) for all 1< q≤ n, we have iq − iq−1 = 1 iff jq − jq−1 = 1.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

648 D.M. Cerna and T. Kutsia

A uniform alignment a of w1 and w2 is theirmaximal uniform alignment (shortly,max-uniform
alignment), if no proper extension of a is a uniform alignment of w1 and w2. The set of all nonempty
max-uniform alignments of w1 and w2 is denoted bymax-unif-ne-align(w1,w2).

The first condition of uniformity forbids the first element in one sequence to be aligned with
a nonfirst element in another sequence. The second condition is dual to the first one, putting the
similar requirement on the last elements in the given sequences. The third condition guarantees
that consecutive elements in w1 are aligned with consecutive elements of w2 and vice versa.

The empty alignment is always uniform. It is the trivial uniform alignment.

Example 14. The sequences (a, b, a) and (c, a, b, c) from Example 12 have two (nontrivial) uni-
form alignments: b[2, 3] and a[3, 2]. They are also max-uniform alignments. Note that a maximal
alignment a[1, 2]b[2, 3] is not uniform because the first condition of uniformity is violated.

The sequences (a, b, c) and (a, d, b, c) have five (nontrivial) uniform alignments a[1, 1], b[2, 3],
c[3, 4], a[1, 1]c[3, 4], and b[2, 3]c[3, 4]. Note that a[1, 1]b[2, 3]c[3, 4] is a maximal but nonuniform
alignment because the third condition of uniformity is violated. The max-uniform alignments are
a[1, 1]c[3, 4] and b[2, 3]c[3, 4].

Definition 7 (Uniformly k-determined sequence pair). The pair of sequences of symbols 〈w1,w2〉
is called uniformly k-determined, ifmax-unif-ne-align(w1,w2) contains at most k elements.

Example 15. We illustrate uniformly k-determined pairs with the examples below and compare
them with k-determined pairs from Example 13:

1. 〈(a, b, c), (a, d, b, c)〉 is uniformly 2-determined (1-determined in Example 13) because

max-unif-ne-align((a, b, c), (a, d, b, c))= {a[1, 1]c[3, 4], b[2, 3]c[3, 4]}.
2. 〈(a, b, a), (c, a, b, c)〉 is uniformly 1-determined (2-determined in Example 13) because

max-unif-ne-align((a, b, a), (c, a, b, c))= {b[2, 3]}.
3. 〈(a, c, c, b, a, c), (a, d, b, a, c)〉 is uniformly 1-determined (3-determined in Example 13)

because

max-unif-ne-align((a, c, c, b, a, c), (a, d, b, a, c))= {a[1, 1]b[4, 3]a[5, 4]c[6, 5]}.
4. 〈(a, b), (b, a)〉 is uniformly 0-determined (2-determined in Example 13) because

max-unif-ne-align((a, b), (b, a))=∅.

5. 〈(a, a), (a, a)〉 is uniformly 1-determined (1-determined in Example 13) because

max-unif-ne-align((a, a), (a, a))= {a[1, 1]a[2, 2]}.
6. 〈(a, b), (c, d, e)〉 is uniformly 0-determined (1-determined in Example 13) because

max-unif-ne-align((a, b), (c, d, e))=∅.

We will need also orderless counterparts of definitions 4-7. They deal with alignments in which
the order of symbols does not matter and, thus, can be considered as multisets.

Definition 8 (Orderless alignment, orderless rigidity function). Let w1 and w2 be sequences of
symbols. Then the multiset {{a1[i1, j1], . . . , an[in, jn]}}, for n≥ 0, is an orderless alignment of w1
and w2 if

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 649

— i’s and j’s are integers such that 0< ik ≤ |w1| and 0< jk ≤ |w2| for all 1≤ k≤ n,
— ik
= il and jk
= jl for all k
= l, and
— ak =w1|ik =w2|jk , for all 1≤ k≤ n.

An orderless rigidity function RO returns for every pair of sequences of symbols a set of their
orderless alignments.

Example 16. Let w1 = (a, b, a) and w2 = (c, a, b, c). The set of orderless alignments of w1 and
w2 is {{{}}, {{a[1, 2]}}, {{a[3, 2]}}, {{b[2, 3]}}, {{a[1, 2], b[2, 3]}}, {{a[3, 2], b[2, 3]}}}. If RO computes
longest orderless alignments, then it will give the set {{{a[1, 2], b[2, 3]}}, {{a[3, 2], b[2, 3]}}}.

The notions of alignment extension and maximal alignment easily extend to orderless align-
ments:

Definition 9 (Maximal orderless alignment). Let a and b be two orderless alignments. We say
that a is an extension of b if b⊆ a, where ⊆ is multiset inclusion. It is a proper extension if b⊂ a.

An alignment a is a maximal orderless alignment of two symbol sequences w1 and w2, if no
proper extension of a is an orderless alignment of w1 and w2. The set of all maximal orderless
alignments of w1 and w2 is denoted by oless-max-ne-align(w1,w2).

Obviously, maximal orderless alignments ofw1 andw2 consist of symbols from the intersection
of multisets of symbols from w1 and w2.

Definition 10 (O-k-determined sequence pair). A pair of sequences of symbols 〈w1,w2〉 is called
O-k-determined, if oless-max-ne-align(w1,w2) contains at most k elements.

Example 17. This example illustrates the notion of O-k-determinedness. Note that the first six
pairs below were also used in Example 13.

1. 〈(a, b, c), (a, d, b, c)〉 is O-1-determined because

oless-max-ne-align((a, b, c), (a, d, b, c))= {{{a[1, 1], b[2, 3], c[3, 4]}}}.
2. 〈(a, b, a), (c, a, b, c)〉 is O-2-determined because

oless-max-ne-align((a, b, a), (c, a, b, c))= {{{a[1, 2], b[2, 3]}}, {{a[3, 2], b[2, 3]}}}.
3. 〈(a, c, c, b, a, c), (a, d, b, a, c)〉 is O-6-determined because

oless-max-ne-align((a, c, c, b, a, c), (a, d, b, a, c))=
{{{a[1, 1], a[5, 4], b[4, 3], c[2, 5]}}, {{a[1, 4], a[5, 1], b[4, 3], c[2, 5]}},
{{a[1, 1], a[5, 4], b[4, 3], c[6, 5]}}, {{a[1, 4], a[5, 1], b[4, 3], c[3, 5]}},
{{a[1, 1], a[5, 4], b[4, 3], c[3, 5]}}, {{a[1, 4], a[5, 1], b[4, 3], c[6, 5]}}}.

4. 〈(a, b), (b, a)〉 is O-1-determined because

oless-max-ne-align((a, b), (b, a))= {{{a[1, 2], b[2, 1]}}}.
5. 〈(a, a), (a, a)〉 is O-2-determined because

oless-max-ne-align((a, a), (a, a))= {{{a[1, 1], a[2, 2]}}, {{a[1, 2], a[2, 1]}}}.
6. 〈(a, b), (c, d, e)〉 is 0-determined because

max-ne-align((a, b), (c, d, e))=∅.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

650 D.M. Cerna and T. Kutsia

7. 〈(a, b), (c, a)〉 is O-1-determined because

oless-max-ne-align((a, b), (c, a))= {{{a[1, 2]}}}.
8. 〈(a, b), (a, a)〉 is O-2-determined because

oless-max-ne-align((a, b), (a, a))= {{{a[1, 1]}}, {{a[1, 2]}}}.

One can see that the elements in oless-max-ne-align(w1,w2) differ from each other by dif-
ferent positions of the same symbols in the input sequences. As symbol multisets, they are the
same.

All 1-determined sequence pairs have the feature: if the sequences contain a common element,
then it appears only once in each sequence. In O-1-determined case, it means that the intersection
of the sequences considered as multisets is, in fact, a set.

Definition 11 (Uniform and max-uniform orderless alignments). Let a= {{a1[i1, j1], . . . ,
an[in, jn]}} be an orderless alignment of two symbol sequences w1 = (l1, . . . , lm) and w2 =
(r1, . . . , rk). We say that a is a uniform orderless alignment of w1 and w2, if

{{l1, . . . , lm}} = {{a1, . . . , an}} iff {{r1, . . . , rk}} = {{a1, . . . , an}}.
A uniform orderless alignment a of w1 and w2 is their maximal uniform orderless alignment

(shortly,max-uniform orderless alignment), if no proper extension of a is a uniform orderless align-
ment of w1 and w2. The set of all max-uniform orderless alignments of w1 and w2 is denoted by
oless-max-unif-ne-align(w1,w2).

Similarly to uniform alignments, uniform orderless alignments prevent “misalignments” of the
type empty-vs-nonempty sequences in w1 and w2.

Definition 12 (Uniformly O-k-determined sequence pair). A pair of sequences of symbols
〈w1,w2〉 is called uniformly O-k-determined, if oless-max-unif-ne-align(w1,w2) contains at most
k elements.

Example 18. All sequence pairs that were O-k-determined in Example 17 (except the first pair)
are also uniformly O-k-determined for the same k. As for the first pair, we have the following:

〈(a, b, c), (a, d, b, c)〉 is uniformly O-3-determined (O-1-determined in Example 17), because

oless-max-unif-ne-align((a, b, c), (a, d, b, c))=
{{{a[1, 1], b[2, 3]}}, {{a[1, 1], c[3, 4]}}, {{b[2, 3], c[3, 4]}}}.

Next, from symbol sequence pairs, we move to term pairs and define the notions of k-
determinedness and uniformly k-determinedness for them. Note that these definitions accom-
modate the corresponding orderless cases as well.

Definition 13 (k-determined and uniformly k-determined term pair). A pair of terms 〈t, s〉 of
the same type is (uniformly) k-determined iff either

— head(t)
= head(s), or
— head(t)= head(s) and Ax(head(t))=∅, or
— head(t)= head(s)= f ,∅
=Ax(f)⊆ {A, U}, and pars(t, s) is (uniformly) k-determined, or
— head(t)= head(s)= f , C ∈Ax(f), and pars(t, s) is (uniformly) O-k-determined.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 651

Finally, we formulate the main definition of this section, defining two notions: total k-
determined and total uniformly k-determined term pairs. They will play an important role in
characterizing special cases of equational higher-order generalization.

Definition 14 (Total k-determined and total uniformly k-determined term pair). A pair of
terms 〈t, s〉 is total k-determined (resp. total uniformly k-determined) if 〈t, s〉 is k-determined (resp.
uniformly k-determined), and

— if t = λ #»x .h(t1, . . . , tn), s= λ #»x .h(s1, . . . , sm) where Ax(h)⊆ {A, U}, then for each a ∈
max-ne-align(pars(t, s)) (resp. for each a ∈max-unif-ne-align(pars(t, s))) and each a[i, j] ∈
a, the pair 〈ti, sj〉 is total k-determined (resp. total uniformly k-determined),

— if t = λ #»x .h(t1, . . . , tn), s= λ #»x .h(s1, . . . , sm) where C ∈Ax(h), then for each
a ∈ oless-max-ne-align(pars(t, s)) (resp. for each a ∈ oless-max-unif-ne-align(pars(t, s)))
and each a[i, j] ∈ a, the pair 〈ti, sj〉 is total k-determined (resp. total uniformly k-determined).

We say that an AUP X(�x) : t� s is total k-determined (resp. total uniformly k-determined) if the
term pair 〈t, s〉 is total k-determined (resp. total uniformly k-determined).

As one can see from Definition 14, the first item concerns four theories without commutativity
(∅, A, U, AU), and the second one to other four theories with commutativity (C, AC, CU, ACU).

Proposition 1. For a given constant k, the complexity of checking if the term pair 〈t, s〉 is (uniformly)
k-determined is O(n2) and total (uniformly) k-determined is O(knn2), where n is maximum of the
lengths of t and s.

Proof. Checking whether a pair of terms 〈t, s〉 is k-determined requires computing the set
max-ne-align(pahs(t, s)) which in worst case requires O(n2) time. When checking total (uni-
formly) k-determinedness, we need to repeat this computation recursively over the term pairs
resulting from the alignments ofmax-ne-align(pahs(t, s)). If we assume that the maximum depth
between t and s is n as well the resulting complexity is O(knn2).

7. Associative and Associative-Unit Generalization: Special Restrictions and
Optimality

Below, we introduce a special restriction of associative and associative-unit generalization based
on the concepts introduced in the previous section. Furthermore, we introduce so-called preferred
choice functions which allow us to circumvent parts of the given AUP for which computation of
a generalization is expensive and can be avoided in the search for a generalization which is at least
as good as the syntactic generalization.

7.1 1-determined associative and associative-unit generalization
We start with defining a strategy of applying associative decomposition rules guided by a given
maximal alignment. Assume that we are given the state State=A; S; σ , where A= {X(#»x) :
f (t1, . . . , tn)� f (s1, . . . , sm)} �A′ for an associative (resp. associative-unit) f and a max-uniform
alignment (resp. a maximal alignment) of pars(f (t1, . . . , tn)� f (s1, . . . , sm)) has the form a=
g1[i1, j1] · · · gn[ik, jk].

Let us denote X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm) by P. Recall that it is a flattened form of
X(#»x) : f (t1, f (t2, . . . , f (tn−1, tn) · · ·))� f (s1, f (s2, . . . , f (sm−1, sm) · · ·)).

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

652 D.M. Cerna and T. Kutsia

For a number l<min (i1, j1), define a− l as the alignment g1[i1 − l, j1 − l] · · · gn[ik − l, jk − l].
The strategy of eliminating the first alignment element g1[i1, j1] from a is defined below. TheY ’s

and Z’s are fresh variables of appropriate types. For simplicity, we show only P and its successors.

Case 1: i1 = j1 ≥ 1:

{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)}
=⇒i1

Dec {Z(#»x) : f (ti1+1, . . . , tn)� f (si1+1, . . . , sm),
Y1(#»x) : t1 � s1, . . . , Yi1 (

#»x) : ti1 � si1}.
Case 2: i1 > 1, j1 > 1, i1 < j1:

{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)}
=⇒i1−2

Dec {X1(#»x) : f (ti1−1, ti1 , . . . , tn)� f (si1−1, . . . , sj1 , . . . , sm),
Y1(#»x) : t1 � s1, . . . , Yi1−2(#»x) : ti1−2 � si1−2}

=⇒Dec-A-R {X2(#»x) : f (ti1 , . . . , tn)� f (sj1 , . . . , sm),
Y1(#»x) : t1 � s1, . . . , Yi1−2(#»x) : ti1−2 � si1−2,
Yi1−1(#»x) : ti1−1 � f (si1−1, . . . , sj1−1)}

=⇒Dec {Z1(#»x) : f (ti1+1, . . . , tn)� f (sj1+1, . . . , sm),
Y1(#»x) : t1 � s1, . . . , Yi1−2(#»x) : ti1−2 � si1−2,
Yi1−1(#»x) : ti1−1 � f (si1−1, . . . , sj1−1),
Yi1 (

#»x) : ti1 � sj1)}.
Case 3: i1 > 1, j1 > 1, i1 > j1:

{X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)}
=⇒j1−2

Dec {X1(#»x) : f (tj1−1, . . . , ti1 , . . . , tn)� f (sj1−1, sj1 , . . . , sm),
Y1(#»x) : t1 � s1, . . . , Yj1−2(#»x) : tj1−2 � sj1−2}

=⇒Dec-A-L {X2(#»x) : f (ti1 , . . . , tn)� f (sj1 , . . . , sm),
Y1(#»x) : t1 � s1, . . . , Yi1−2(#»x) : ti1−2 � si1−2,
Yj1−1(#»x) : f (tj1−1, . . . , ti1−1)� sj1−1}

=⇒Dec {Z1(#»x) : f (ti1+1, . . . , tn)� f (sj1+1, . . . , sm),
Y1(#»x) : t1 � s1, . . . , Yj1−2(#»x) : ti1−2 � si1−2,
Yj1−1(#»x) : f (tj1−1, . . . , ti1−1)� sj1−1,
Yj1 (

#»x) : ti1 � sj1)}.
When f is AU and a is a uniform alignment, the process is similar, but we may have one extra

case when min (i1, j1)= 1 and max (i1, j1)> 1. In this case, the applied rule is Dec-AU-L or Dec-
AU-R, introducing an AUP with εf on one of its sides.

Hence, after these transformations, we get a new state State1 containing a new problem P1 =
Z1(#»x) : f (ti1+1, . . . , tn)� f (sj1+1, . . . , sm). We also obtain a new alignment a1 = a−min (i1, j1).
Repeating the same process k− 1 times, we end up with the state Statek containing a new problem
Pk = Zk(#»x) : f (tik+1, . . . , tn)� f (sjk+1, . . . , sm). The alignment is now empty. Therefore, we can
decompose Pk as follows:

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 653

— If n− i1 =m− j1, then apply Dec n− i1 times.
— If n− i1 <m− j1, the apply Dec n− i1 − 1 times, followed by an application of Dec-A-R.
— If n− i1 >m− j1, the apply Decm− j1 − 1 times, followed by an application of Dec-A-L.

(When f is an AU-symbol, Pk may have εf in one of its sides. In this case, no decomposition
applies.)

We end up with the state Statek+1, which is the result of total decomposition of P. In Statek+1,
we got rid of at least k occurrences of f compared to State. Moreover, since a was a max-uniform
or maximal alignment, those AUPs in Statek+1, which do not correspond to any of the element of
a, do not have the same root. In the associative case, the only rule that applies to them is Solve. In
the associative-unit case, except Solve also the unit expansion or DH-U rules may apply, but since
we aim at computing E-refined generalizations, it is enough to transform them by Solve. It means
that we can apply a sequence of Solve rules to Statek+1, which would keep in A only those AUPs
whose root was one of the g’s from a. The other AUPs will move to the store. Let the obtained state
be Congk+2 =Ak+2; Sk+2; σk+2.

Take Y(#»x) : t′ � s′ ∈Ak+2. If t′
= εf , then t′ was a subterm of f (t1, ..., tn). The same is true for s′
and f (s1, ..., sm). Let P −Ak+2 be the AUP obtained from P by replacing all such subterms (i.e., the
nonunit sides of AUPs from Ak+2) by some constants. Let us call this operation the subtraction
from P the AUPs from Ak+2.

Theorem 5. Given a state A; S; σ , where all AUPs in A are total uniformly 1-determined (resp. total
1-determined) associative (resp. associative-unit) generalization problems and the size of A is n, we
can reach∅; S′; σ ′

— in time O(n), if all the max-uniform (resp. maximal) nonempty alignments are given;
— in time O(n3), if the max-uniform (resp. maximal) nonempty alignments are to be computed.

Proof. First, consider the associative case and assume all max-uniform alignments are given. Since
the problem is total uniformly 1-determined, all thosemax-unif-ne-align sets are singletons. For
each AUP P in A, we have the following:

— If the root of P is not associative, then using Dec, Abs, and Solve rules, we either eventually
eliminate all the successor problems of P from A in O(|P|) steps or reach a new problem P′
with an associative head in O(|P − {P′}|) steps, where |P − {P′}| is obtained by subtracting
the AUP P′ from P.

— If the root of P is associative, then by the decomposition procedure outlined above, in lin-
early many steps in the size of P, we either eliminate all successor problem of P from A
in O(|P|) steps or reach a new problem P′ with an associative head in O(|P − {P′}|) steps,
where |P − {P′}| is obtained by subtracting the AUP P′ from P.

It implies that eventually eliminating all AUPs that originate from P takes time O(|P|). Therefore,
eliminating all AUPs from A needs time O(n), where n is the size of A.

Now assume the max-uniform alignments should be computed. We do it each time when we
encounter an AUP with an associative head. For each such AUP, there is at most one max-uniform
nonempty alignment. It can be computed in time quadratic in the size of the AUP by dynamic
programming. Since the number of steps when we need to apply these computations is bounded
linearly in n, we obtain O(n3) running time in this case.

The associative-unit case can be proved analogously.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

654 D.M. Cerna and T. Kutsia

Based on Theorem 5, we obtain the following theorems:

Theorem 6. A higher-order {A}-refined (resp. {A, U}-refined) pattern generalization for a total
uniformly 1-determined (resp. total 1-determined) AUP, where all max-uniform (resp. maximal)
alignments are given, can be computed in time O(n) where n is the size of the AUP.

Proof. We use the construction outlined in the proof of Theorem 5, by which we can reach the
state ∅; S; σ from the initial one in O(n) time. From ∅; S; σ till the final answer, we proceed as in
Baumgartner et al. (2017), which proves overall O(n) runtime complexity.

The obtained generalization is a refined generalization because the involved alignments are
maximal, which ensures that all nonvariable subterms (i.e., those that are not η-equivalent to
generalization variables) of the syntactic lgg occur also in the generalization we compute. The only
case to be discussed is when our generalizations contain no other nonvariable subterms. In that
case, those AUPs that are generalized by a variable in the lgg end up in the store of our derivation,
and then theMerge rule will make sure that the computed generalization is as good as the syntactic
lgg. Note that for {A, U}-refined generalizations, we do not require linearity. Although we do not
use Exp-U-L, Exp-U-R, and DH-U rules for them (the syntactic lgg would anyway use variables to
generalize the AUPs to which those rules apply), the merging rule is not forbidden.

Theorem 7. A higher-order {A}-refined (resp. {A, U}-refined) pattern generalization for a total uni-
formly 1-determined (resp. total 1-determined) AUP can be computed in time O(n3), where n is the
size of the AUP.

Proof. By Theorem 5, to reach ∅; S; σ from the initial state requires O(n3). From ∅; S; σ , to get
to the final answer, we need linear time by the algorithm from Baumgartner et al. (2017), which
gives the total O(n3) running time. Proving the refined part is similar to Theorem 6.

In the next section, we consider AUPs which are uniformly k-determined for k> 1 but not
uniformly (k− 1)-determined. This will require a new concept of optimality based on a choice
function greedily applied during decomposition.

7.2 Choice functions and optimality
In this section, we introduce procedures and optimality conditions for total uniformly k-
determined AUPs where k> 1, that is AUPs where there are at most k ways to apply equational
decomposition.

If we were to compute the set of E-refined generalizations for a total uniformly k-determined
AUP by testing every decomposition, even for k= 2 the size of the search space is too large to
deal with efficiently. However, we can find a (R, C, G)-optimal E-refined generalization (precisely
defined below) in quadratic time, where R is a rigidity function, C an R-choice function, G is a
set of state transformation rules. Essentially, (R, C, G)-optimality means the R-choice function
chooses the “right” computation path via G based on the rigidity function R. The effect is that
we reduce the problem of total uniformly k-determined AUPs to the case of total uniformly 1-
determined AUPs with the additional complexity of computing the choice function at each step.
We will provide a choice function with linear time complexity based on the procedure for Gbase.

Definition 15 ((P, a)-decomposition). Let P be an AUP X(#»x) : h(t1, . . . , tn)� h(s1, . . . , sm), a
is an alignment of 〈(root(t1), . . . , root(tn)), (root(s1), . . . , root(sm))〉 (see Definition 2). An (P, a)-
decomposition of P is dec(P, a)= {Yij(#»x) : ti � sj | h[i, j] ∈ a }, where Yij are new variables of
appropriate type.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 655

Definition 16 (G-feasible decomposition). Let A; S; σ be a state such that P ∈A where P
is an AUP X(#»x) : h(t1, . . . , tn)� h(s1, . . . , sm), a be an alignment of 〈(root(t1), . . . , root(tn)),
(root(s1), . . . , root(sm))〉 and G ⊇ Gbase be a set of state transformation rules. We say that dec(P, a)
is G-feasible if there exists A; S; σ =⇒∗ A′; S′; σ ′ using G such that A′ = (A \ P)∪ dec(P, a).

Definition 17 ((R, P, G)-branching). Let P be an AUP X(#»x) : h(t1, . . . , tn)� h(s1, . . . , sm), w1 =
(root(t1), . . . , root(tn)), w2 = (root(s1), . . . , root(sm)), R be a rigidity function, and G ⊇ Gbase be
a set of state transformation rules. An (R, P, G)-branching is a set B(R, P, G)= {dec(P, a) | a ∈
R(w1,w2) and dec(P, a) is G-feasible}.

Definition 18 ((R, G)-choice function). Let R be a rigidity function and G ⊇ Gbase be a set of
state transformation rules. An (R, G)-choice function C(R,G) is a partial function from AUPs to
alignments such that if for some AUP P we have C(R,G)(P)= a, then dec(P, a) ∈ B(R, P, G).

In the paper, we use a specific type of choice function, defined as follows:

Definition 19 (Preferred (R, G)-choice function). Let P be an AUP X(#»x) : h(t1, . . . , tn)�
h(s1, . . . , sm). Let R be a rigidity function and G ⊇ Gbase be a set of state transformation rules..
A preferred (R, G)-choice function PC(R,G) is an (R, G)-choice function defined as

PC(R,G)(P)=
{

amin, if B(R, P, G)
=∅

undef, otherwise

where amin is an alignment satisfying the following property:

— Let σa be the substitution computed by the derivation {P};∅; Id=⇒∗
G dec(P, a); S′;σ ′ =⇒∗

Gbase
∅; S;σa, where dec(P, a) ∈ B(R, P, G). Then Xσamin is not more general than any other Xσa.

If there are several such amin’s, PC(R,G)(P) is defined as one of them (chosen by some heuristics).

Definition 20 ((R, C, G)-optimal generalization). Let A be {X : t� s},R be a rigidity function, C
be anR-choice function, and G ⊇ Gbase be a set of state transformation rules. We say that a general-
ization r of the terms t and s is an (R, C, G)-optimal generalization if r = Xσ , where σ is resulting
from the derivation A;∅;Id=⇒∗

∅; S; σ using the rules of G, in which every decomposition is either
syntactic or is performed with respect to the alignment computed by the choice function C.

All the definitions in this section can be used with uniform and orderless alignments as well. It
is straightforward to obtain the corresponding variants and, therefore, we have not spelled them
out explicitly.

In the following subsection, we show how the above definitions can lead to a more general
result (compared to the one in the previous section) concerning associative generalization.

7.3 k-determined associative and associative-unit generalization
First, we generalize Theorem 5 from 1-determined to k-determined AUPs.

Theorem 8. Given a state A; S; σ , where all AUPs in A are total uniformly k-determined (resp. total
k-determined) associative (resp. associative-unit) generalization problems with k> 1 and the size of
A is n, we can reach∅; S′; σ ′

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

656 D.M. Cerna and T. Kutsia

— in time O(n2), if all the max-uniform (resp. maximal) nonempty alignments are given;
— in time O(n3), if the max-uniform (resp. maximal) nonempty alignments are to be computed.

Proof. Case 1, alignments are given: The difference with Theorem 5 is that in the k-determined
case, we have to make a choice to select the preferred alignment between the given at most k
alternatives, when we are decomposing an AUP with associative head. The choice requires run-
ning the linear Gbase algorithm k times. Hence, each choice is made in linear time (in contrast to
1-determined case, when no choice was needed). Consequently, we get quadratic running time.
This reasoning applies to both uniform and general cases.

Case 2, alignments are to be computed:When an AUPwith an associative head is getting decom-
posed, we need first to compute alignments and then choose the preferred one among them. The
running time of these two consecutive operations is dominated by the alignment computation,
which is quadratic (computing at most k alignments, each of them in quadratic time) in contrast
to the linear choice in the second step. Hence, it gives cubic running time. This reasoning applies
to both uniform and general cases.

Our rigidity function RA takes a pair of symbol sequences and returns the set of their max-
uniform nontrivial alignments:RA(w1,w2) :=max-unif-ne-align(w1,w2).

The preferred (RA, GA)-choice function uses the linear time procedure Gbase to make a
choice of amin between the various possible alignments. Notice that we use associative decom-
position for {P};∅; Id =⇒∗

GA dec(P, a); S
′;σ ′ and syntactic decomposition in the derivation

dec(P, a); S′;σ ′ =⇒∗
Gbase

∅; S;σa.
When we move to the AU-case, we remove the uniformity restriction and consider a differ-

ent rigidity function:RAU(w1,w2) :=max-ne-align(w1,w2). We will denote by GAU the algorithm
obtained by extending Gbase with Dec-AU-L and Dec-AU-R rules.

Theorem 9. An (RA, PC(RA,GA), GA)-optimal higher-order {A}-refined pattern generalization for a
total uniformly k-determined AUP, k> 1, when all the alignments are given, can be computed in
time O(n2), where n is the size of the AUP.

An (RAU, PC(RAU,GAU), GAU)-optimal higher-order {A, U}-refined pattern generalization for a total
k-determined AUP, k> 1, when all the alignments are given, can be computed in time O(n2), where
n is the size of the AUP.

Proof. Similar to Theorem 6, using Theorem 8.

Theorem 10. An (RA, PC(RA,GA), GA)-optimal higher-order {A}-refined pattern generalization for a
total uniformly k-determined AUP, k> 1, can be computed in time O(n3), where n is the size of the
AUP.

An (RAU, PC(RAU,GAU), GAU)-optimal higher-order {A, U}-refined pattern generalization for a total
k-determined AUP, k> 1, can be computed in time O(n3), where n is the size of the AUP.

Proof. Similar to Theorem 7, using Theorem 8.

Note that we can achieve the same results even if the AUP is not total (uniformly) k-determined,
but our rigidity functions enforce computation of maximum k alignments. For instance, we can
defineRA(w1,w2) as a set consisting of atmost kmax-uniformnonempty alignments ofw1 andw2,
which we denote by max-unif-ne-alignk: RA(w1,w2) :=max-unif-ne-alignk(w1,w2). Similarly,
we can define RAU(w1,w2) :=max-ne-alignk(w1,w2). Then, both Theorem 9 and Theorem 10
hold for such rigidity functions without requiring that the AUPs are k-determined. Moreover, if
we take k= 1, then we can obtain counterparts of Theorem 6 and Theorem 7 without requiring
that the AUPs there are total (uniformly) 1-determined.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 657

8. Commutative and Commutative-Unit Case
The C-theory is the simplest one among our (nonfree) equational theories. Commutative func-
tions have two arguments whose order does not matter, which implies that the notions of
determinedness and uniform determinedness coincide for AUPs with commutative symbols.

For total 1-determined AUPs, we have the result about linear complexity of computing {C}-
and {C, U}-refined generalizations. It does not make a difference whether the alignments are given
or not: it just takes constant time to get them at each commutative decomposition step.

Theorem 11. A higher-order {C}-refined (and {C, U}-refined) pattern generalization for a total
uniformly 1-determined (hence, for a total 1-determined AUP) can be computed in linear time.

Proof. Linear running time follows from linearity of the higher-order pattern generalization
algorithm from Baumgartner et al. (2017).

The obtained generalization is a refined generalization because the alignments guarantee that
all subterms of the syntactic lgg, which are not η-equivalent to generalization variables, occur also
in the generalization we compute. When our generalizations contain no other nonvariable sub-
terms than the syntactic lgg, those AUPs that are generalized by a variable in the lgg end up in
the store of our derivation, and then the Merge rule will make sure that the computed generaliza-
tion is as good as the syntactic lgg. For {C, U}-refined generalizations, we do not require linearity.
Although we do not use Exp-U-L, Exp-U-R, and DH-U rules for them (the syntactic lgg would
anyway use variables to generalize the AUPs to which those rules apply), the merging rule is not
forbidden.4

When the determinedness restriction is lifted, the preferred choice function for commutative
AUPs will have to make a choice among at most two orderless alignments. Hence, one can say that
unrestricted AUPs with commutative functions are the same as total 2-determined AUPs with
commutative functions. Taking this relation into account, we get the following theorem:

Theorem 12. A (RC, C(RC,GC), GC)-optimal higher-order {C}-refined (resp. {C, U}-refined) pattern
generalization for any AUP can be computed in O(n2) time, where n is the size of the AUP.

Proof. Note that we use the same rigidity and choice functions for both {C}- and {C, U}-refined
generalizations. To decide which of the two alignments at the C-decomposition step would lead to
a better generalization, we need linear time. Combining it with the statement of Theorem 11, we
get the overall quadratic running time.

9. Associative-Commutative and Associative-Commutative-Unit Case
9.1 1-determined AC and ACU generalization
Similarly to the associative and associative-unit case, we define a strategy of applying associa-
tive-commutative and associative-commutative-unit decomposition rules guided by a given
max-uniform or maximal orderless alignment. Assume that we are given the state State=
A; S; σ , where A= {X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm)} �A′ for an associative-commutative
(resp., associative-commutative-unit) f . Let o= {{g1[i1, j1], . . . , gn[ik, jk]}} be a max-uniform
orderless alignment (resp. a maximal orderless alignment) of pars(f (t1, . . . , tn)� f (s1, . . . , sm)),
where i1 =min{i1, . . . , in, j1, . . . , jn} (without loss of generality). Then by o− g1[i1, j1], we mean
an alignment {{g2[i2 − 1, j′2], . . . , gn[ik − 1, j′k]}}, where j′l = jl if jl < j1, and j′l = jl − 1 if jl > j1.

Let us denote X(#»x) : f (t1, . . . , tn)� f (s1, . . . , sm) by P. Recall that it is a flattened form of
X(#»x) : f (t1, f (t2, . . . , f (tn−1, tn) · · ·))� f (s1, f (s2, . . . , f (sm−1, sm) · · ·)).

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

658 D.M. Cerna and T. Kutsia

The strategy of eliminating the first alignment element g1[i1, j1] from o is defined below. It is
much simpler than what we did for the associative and associative-unit cases. The Y ’s and Z’s are
fresh variables of appropriate types. For simplicity, we show only P and its successors.

{X(#»x) : f (t1, . . . , ti1 , . . . , tn)� f (s1, . . . , si1 , . . . , sm)}
=⇒Dec-AC-L {Z1(#»x) : f (t1, . . . , ti1−1, ti1+1, . . . , tn)� f (s1, . . . , si1−1, si1+1, . . . , sm),

Y(#»x) : ti1 � si1}.
Hence, after this transformation, we get a new state State1 containing a new problem P1 =

Z1(#»x) : f (t1, . . . , ti1−1, ti1+1, . . . , tn)� f (s1, . . . , si1−1, si1+1, . . . , sm). We also obtain a new align-
ment o1 = o− g1[i1, j1]. Repeating the same process k− 1 times, from f (t1, . . . , tn) (resp. from
f (s1, . . . , sm)), we remove ti1 , . . . , tik (resp. si1 , . . . , sik).When o is a max-uniform alignment, there
are two possibilities: either the terms f (t1, . . . , tn) and f (s1, . . . , sm) got completely eliminated, or
there are some “leftovers” from both of them. The state Statek, obtained after these k− 1 steps,
in the latter case would contain a new problem Pk = Zk(#»x) : t′ � s′, where t′ and. s′ are those
“leftover terms”. The alignment is now empty. Assume t′ = f (t′1, . . . , t′n′) and s′ = f (s′1, . . . , s′m′).
Assume also without loss of generality that n′ ≤m′. Then, we can decompose Pk by applying Dec-
AC-R rule n′ − 2 times, each time removing the first arguments from each side, and then finally
applying it again to get two AUPs of the form t′n′−1 � s′n′−1 and t′n′ � f (s′n′ , . . . , s′m′).

(When f is an ACU-symbol, Pk may have εf in one of its sides. In this case, no decomposition
applies.)

We end up with the state Statek+1, which is the result of total decomposition of P. In Statek+1,
we got rid of at least k occurrences of f compared to State. Moreover, since o was a max-uniform
or maximal alignment, those AUPs in Statek+1, which do not correspond to any of the element
of o, do not have the same root. In the AC case, the only rule that applies to them is Solve. In
the ACU case, except Solve also the unit expansion or DH-U rules may apply, but since we aim at
computing E-refined generalizations, it is enough to transform them by Solve. It means that we
can apply a sequence of Solve rules to Statek+1, which would keep in A only those AUPs whose
root was one of the g’s from o. The other AUPs will move to the store. Let the obtained state be
Congk+2 =Ak+2; Sk+2; σk+2.

Take Y(#»x) : t∗ � s∗ ∈Ak+2. If t∗
= εf , then t∗ was a subterm of f (t1, . . . , tn). The same is true
for s∗ and f (s1, . . . , sn). Let P −Ak+2 be the AUP obtained from P by replacing all such sub-
terms (i.e., the nonunit sides of AUPs from Ak+2) by some constants. Let us call this operation
the subtraction from P the AUPs from Ak+2.

Theorem 13. Given a state A; S; σ , where all AUPs in A are total uniformly 1-determined (resp.
total 1-determined) associative-commutative (resp. associative-commutative-unit) generalization
problems and the size of A is n, we can reach∅; S′; σ ′

— in time O(n), if all the max-uniform (resp. maximal) nonempty alignments are given;
— in time O(n3), if the max-uniform (resp. maximal) nonempty alignments are to be computed.

Proof. First, consider the AC case and assume all max-uniform alignments are given. Since the
problem is total uniformly 1-determined, all those oless-max-unif-ne-align sets are singletons.
For each AUP P in A, we have the following:

— If the root of P is not AC, then using Dec, Abs, and Solve rules, we either eventually elim-
inate all the successor problems of P from A in O(|P|) steps, or reach a new problem P′
with an associative-commutative head in O(|P − {P′}|) steps, where |P − {P′}| is obtained
by subtracting the AUP P′ from P.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 659

— If the root of P is AC, then by the decomposition procedure outlined above, in linearly many
steps in the size of P, we either eliminate all successor problem of P fromA inO(|P|) steps, or
reach a new problem P′ with an AC head in O(|P − {P′}|) steps, where |P − {P′}| is obtained
by subtracting the AUP P′ from P.

It implies that eventually eliminating all AUPs that originate from P takes time O(|P|). Given an
alignment element gl[il, jl], extracting il’th and jl’s subterms from the given AUP can be done in
constant time. Therefore, eliminating all AUPs from A needs time O(n), where n is the size of A.

Now assume the max-uniform alignments should be computed. We do it each time when
we encounter an AUP with an AC head. For each such AUP, there is at most one max-uniform
nonempty alignment. It can be computed in time quadratic in the size of the AUP. Since the num-
ber of steps when we need to apply these computations is bounded linearly in n, we obtain O(n3)
running time in this case.

The ACU case can be proved analogously.

Based on Theorem 13, we obtain the following theorems:

Theorem 14. A higher-order {A, C}-refined (resp. {A, C, U}-refined) pattern generalization for a
total uniformly 1-determined (resp. total 1-determined) AUP, where all max-uniform (resp. max-
imal) orderless alignments are given, can be computed in time O(n) where n is the size of the
AUP.

Proof. Similar to the proof of Theorem 6, using Theorem 13.

Theorem 15. A higher-order {A, C}-refined (resp. {A, C, U}-refined) pattern generalization for a
total uniformly 1-determined (resp. total 1-determined) AUP can be computed in time O(n3), where
n is the size of the AUP.

Proof. Similar to the proof of Theorem 7, using Theorem 13.

9.2 k-determined associative-commutative and associative-commutative-unit generalization
We generalize Theorem 13 from 1-determined to k-determined AUPs. It can be proved similarly
to Theorem 5.

Theorem 16. Given a state A; S; σ , where all AUPs in A are total uniformly k-determined (resp.
total k-determined) associative-commutative (resp. associative-commutative-unit) generalization
problems with k> 1 and the size of A is n, we can reach∅; S′; σ ′

— in time O(n2), if all the max-uniform (resp. maximal) nonempty orderless alignments are
given;

— in time O(n3), if the max-uniform (resp. maximal) nonempty orderless alignments are to be
computed.

For the AC case, we use the rigidity functionRAC(w1,w2) := oless-max-unif-ne-align(w1,w2).
The preferred (RAC, GAC)-choice function uses the linear time procedure Gbase to make a

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

660 D.M. Cerna and T. Kutsia

choice of omin between the various possible alignments. We use associative-commutative decom-
position for {P};∅; Id =⇒∗

GA dec(P, a); S
′;σ ′ and syntactic decomposition in the derivation

dec(P, a); S′;σ ′ =⇒∗
Gbase

∅; S;σa.
For the ACU case, we remove the uniformity restriction and consider a different rigidity func-

tion: RACU(w1,w2) := oless-max-ne-align(w1,w2). The choice function is (RACU, GACU), where
the algorithm GACU is obtained by extending Gbase with Dec-ACU-L and Dec-ACU-R.

Then we get the following counterparts of Theorems 9 and 10:

Theorem 17. An (RAC, PC(RAC,GAC), GAC)-optimal higher-order {AC}-refined pattern generalization
for a total uniformly k-determined AUP with k> 1, when all the orderless alignments are given, can
be computed in time O(n2), where n is the size of the AUP.

An (RACU, PC(RACU,GACU), GACU)-optimal higher-order {A, C, U}-refined pattern generalization for
a total k-determined AUP with k> 1, when all the orderless alignments are given, can be computed
in time O(n2), where n is the size of the AUP.

Theorem 18. An (RAC, PC(RAC,GAC), GAC)-optimal higher-order {AC}-refined pattern generalization
for a total uniformly k-determined AUP with k> 1 can be computed in time O(n3), where n is the
size of the AUP.

An (RACU, PC(RACU,GACU), GACU)-optimal higher-order {A, C, U}-refined pattern generalization for
a total k-determined AUP with k> 1 can be computed in time O(n3), where n is the size of the AUP.

We can achieve the same results even if the AUP is not total (uniformly) k-determined, i.e.
by using rigidity functions which only compute a maximum of k orderless alignments. For
instance, we can defineRAC(w1,w2) as a set consisting of at most kmax-uniform nonempty order-
less alignments of w1 and w2, which we denote by oless-max-unif-ne-alignk: RAC(w1,w2) :=
oless-max-unif-ne-alignk(w1,w2). Similarly, we can define RACU(w1,w2) as RACU(w1,w2) :=
oless-max-ne-alignk(w1,w2). Then, both Theorems 17 and 18 hold for such rigidity functions
without requiring that the AUPs are k-determined. Moreover, if we take k= 1, then we can obtain
counterparts of Theorems 14 and 15 without requiring that the AUPs there are total (uniformly)
1-determined.

10. Conclusion
The higher-order equational anti-unification algorithm presented in this paper combines higher-
order syntactic anti-unification rules with the decomposition rules for associative, commutative,
associative-commutative function symbols, and expansion rules for unit elements. This gives a
modular algorithm, which can be used for problems with different symbols from different theories
without any adaptation.

Higher-order pattern A-, C-, U-, AU-, CU-, AC-, and ACU-anti-unification are finitary (if only
linear generalizations are computed when U is involved). In the presence of U, one needs to take
special care in order to guarentee a terminating algorithm. This is something to investigate in
future work. In practice, often it is desirable to compute only one answer, which is the best one
with respect to some predefined criterion.We defined such an optimality criterion, which basically
means that an optimal equational solution should be at least as good as the syntactic lgg. We
then identified problem forms for which optimal solutions can be computed fast (in linear or
polynomial time) by a greedy approach. The results are summarized in Table 1. They remain
the same, if we lift the determinedness restriction from the input, but make the rigidity function
provide the number of alignments bounded by a predefined constant k≥ 1.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000110

M
athem

aticalStructuresin
Com

puterScience
661

Table 1. E-refined generalizations: equational theories, problem restrictions, running times.

AUPs A AU C CU AC ACU

Total 1-determined, uniform, O(n) – O(n) O(n) O(n) –

given alignments Theorem 6 Theorem 11 Theorem 11 Theorem 14

Total 1-determined, – O(n) O(n) O(n) – O(n)

given alignments Theorem 6 Theorem 11 Theorem 11 Theorem 14

Total 1-determined, uniform, O(n3) – O(n) O(n) O(n3) –

computed alignments Theorem 7 Theorem 11 Theorem 11 Theorem 15

Total 1-determined, – O(n3) O(n) O(n) – O(n3)

computed alignments Theorem 7 Theorem 11 Theorem 11 Theorem 15

Total k-determined, k> 1, uniform, O(n2) – O(n2) O(n2) O(n2) –

given alignments Theorem 9 Theorem 12 Theorem 12 Theorem 17

Total k-determined, k> 1, – O(n2) O(n2) O(n2) – O(n2)

given alignments Theorem 9 Theorem 12 Theorem 12 Theorem 17

Total k-determined, k> 1, uniform, O(n3) – O(n2) O(n2) O(n3) –

computed alignments Theorem 10 Theorem 12 Theorem 12 Theorem 18

Total k-determined, k> 1, – O(n3) O(n2) O(n2) – O(n3)

computed alignments Theorem 10 Theorem 12 Theorem 12 Theorem 18

https://doi.org/10.1017/S0960129520000110 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0960129520000110

662 D.M. Cerna and T. Kutsia

Notes
1 We refer to the higher-order anti-unification algorithm from Baumgartner et al. (2017) as syntactic, although it works
modulo βη-conversion.
2 In U theory rules, when we write an AUP of the form Y(#»x) : t� εf or Y(#»x) : εf � t, it is assumed that t and εf have the
same type.
3 A similar behavior can be observed in a related theory of idempotence, studied in Cerna and Kutsia (2019b).
4 In principle, we could easily incorporate Exp-U-L and Exp-U-R rules in the derivation, if, for example, in the AUP X(#»x) :
t� f (s1, s2) the root of t is the same as the root of s1 or s2, but it is not really necessary for refined generalizations.

References
Alpuente, M., Escobar, S., Espert, J. and Meseguer, J. (2014). A modular order-sorted equational generalization algorithm.

Information and Computation 235 98–136. doi: 10.1016/j.ic.2014.01.006.
Alpuente, M., Ballis, D., Cuenca-Ortega, A., Escobar, S. and Meseguer, J. (2019). ACUOS2: A high-performance system for

modular ACU generalization with subtyping and inheritance. In: Calimeri, F., Leone, N. and Manna, M. (eds.) Logics in
Artificial Intelligence - 16th European Conference, JELIA 2019, Rende, Italy, May 7–11, 2019, Proceedings, Lecture Notes in
Computer Science. vol. 11468. Springer, 171–181. ISBN 978-3-030-19569-4. doi: 10.1007/978-3-030-19570-0_11.

Barendregt, H. (1984). The Lambda Calculus. Its Syntax and Semantics. North Holland.
Barwell, A. D., Brown, C. and Hammond, K. (2018). Finding parallel functional pearls: Automatic parallel recur-

sion scheme detection in Haskell functions via anti-unification. Future Generation Computing Systems 79 669–686.
doi: 10.1016/j.future.2017.07.024.

Baumgartner, A. (2015). Anti-Unification Algorithms: Design, Analysis, and Implementation. PhD thesis, Johannes Kepler
University Linz.

Baumgartner, A. and Kutsia, T. (2014). A library of anti-unification algorithms. In: Fermé, E. and Leite, J. (eds.) Logics
in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014.
Proceedings, Lecture Notes in Computer Science, vol. 8761, Springer, 543–557. ISBN 978-3-319-11557-3. doi: 10.1007/
978-3-319-11558-0_38.

Baumgartner, A. and Kutsia, T. (2017). Unranked second-order anti-unification. Information and Computation 255 262–286.
doi: 10.1016/j.ic.2017.01.005.

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret. A variant of higher-order anti-unification. In F. van Raamsdonk, editor,
24th International Conference on Rewriting Techniques and Applications, RTA 2013, June 24-26, 2013, Eindhoven, The
Netherlands, volume 21 of LIPIcs, pages 113–127. Schloss Dagstuhl, 2013. ISBN 978-3-939897-53-8. doi: 10.4230/LIPIcs.
RTA.2013.113.

Baumgartner, A., Kutsia, T., Levy, J. and Villaret, M. (2017). Higher-order pattern anti-unification in linear time. Journal of
Automated Reasoning 58 (2) 293–310. doi: 10.1007/s10817-016-9383-3.

Besold, T. R., Kuehnberger, K. and Plaza, E. (2017). Towards a computational- and algorithmic-level account of concept
blending using analogies and amalgams. Connection Science 29 (4) 387–413. doi: 10.1080/09540091.2017.1326463

Cerna, D. M. and Kutsia, T. (2018). Higher-order equational pattern anti-unification. In: Kirchner, H. (ed.) 3rd International
Conference on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, LIPIcs,
vol. 108, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:17. ISBN 978-3-95977-077-4. doi: 10.4230/LIPIcs.
FSCD.2018.12.

Cerna, D. M. and Kutsia, T. (2019a). A generic framework for higher-order generalizations. In: Geuvers, H. (ed.) 4th
International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund,
Germany., LIPIcs, vol. 131, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 10:1–10:19. ISBN 978-3-95977-107-8.
doi: 10.4230/LIPIcs.FSCD.2019.10.

Cerna, D. M. and Kutsia, T. (2019b). Idempotent anti-unification. ACM Transactions on Computational Logic 21 (2) 10:1–
10:32. https://doi.org/10.1145/3359060 (To appear).

Dowek, G. (2001). Higher-order unification and matching. In: Robinson, J. A. and Voronkov, A. (eds.) Handbook of
Automated Reasoning, Elsevier and MIT Press, 1009–1062. ISBN 0-444-50813-9.

Eberhard, S. and Hetzl, S. (2015). Inductive theorem proving based on tree grammars. Annals of Pure and Applied Logic 166
(6) 665–700. doi: 10.1016/j.apal.2015.01.002.

Eberhard, S., Ebner, G. and Hetzl, S. (2017). Algorithmic compression of finite tree languages by rigid acyclic grammars.ACM
Transactions on Computational Logic 18 (4) 26:1–26:20. ISSN 1529-3785. doi: 10.1145/3127401.

Ebner, G., Hetzl, S., Leitsch, A., Reis, G. andWeller, D. (2019). On the generation of quantified lemmas. Journal of Automated
Reasoning 63 (1) 95–126.

Hetzl, S., Leitsch, A., Reis, G. andWeller, D. (2014). Algorithmic introduction of quantified cuts. Theoretical Computer Science
549 1–16. doi: 10.1016/j.tcs.2014.05.018.

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

https://doi.org/10.1016/j.ic.2014.01.006
https://doi.org/10.1007/978-3-030-19570-0_11
https://doi.org/10.1016/j.future.2017.07.024
https://doi.org/10.1007/978-3-319-11558-0_38
https://doi.org/10.1007/978-3-319-11558-0_38
https://doi.org/10.1016/j.ic.2017.01.005
https://doi.org/10.4230/LIPIcs.RTA.2013.113
https://doi.org/10.4230/LIPIcs.RTA.2013.113
https://doi.org/10.1007/s10817-016-9383-3
https://doi.org/10.1080/09540091.2017.1326463
https://doi.org/10.4230/LIPIcs.FSCD.2018.12
https://doi.org/10.4230/LIPIcs.FSCD.2018.12
https://doi.org/10.4230/LIPIcs.FSCD.2019.10
https://doi.org/10.1145/3359060
https://doi.org/10.1016/j.apal.2015.01.002
https://doi.org/10.1145/3127401
https://doi.org/10.1016/j.tcs.2014.05.018
https://doi.org/10.1017/S0960129520000110

Mathematical Structures in Computer Science 663

Kutsia, T., Levy, J. and Villaret, M. (2014). Anti-unification for unranked terms and hedges. Journal of Automated Reasoning
52 (2) 155–190.

Libal, T. and Steen, A. (2016). Towards a substitution tree based index for higher-order resolution theorem provers. In:
Fontaine, P., Schulz, S. and Urban, J. (eds.) Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning
Co-located with IJCAR 2016, CEUR Workshop Proceedings, vol. 1635, CEUR-WS.org, 82–94. http://ceur-ws.org/Vol-1635/
paper-08.pdf

Miller, D. (1991). A logic programming language with lambda-abstraction, function variables, and simple unification. Journal
of Logic and Computation 1 (4) 497–536. doi: 10.1093/logcom/1.4.497.

Pfenning, F. (1991). Unification and anti-unification in the calculus of constructions. In: LICS, IEEE Computer Society, 74–85.
Pientka, B. (2009). Higher-order term indexing using substitution trees. ACM TOCL 11 (1). doi: 10.1145/1614431.1614437.
Rolim, R., Soares, G., Gheyi, R. and D’Antoni, L. (2018). Learning quick fixes from code repositories. CoRR, abs/1803.03806.

http://arxiv.org/abs/1803.03806
Schmid, U. (2003). Inductive Synthesis of Functional Programs, Universal Planning, Folding of Finite Programs, and Schema

Abstraction by Analogical Reasoning, Lecture Notes in Computer Science, vol. 2654, Springer. ISBN 3-540-40174-1.
Schmidt, M., Krumnack, U., Gust, H. and Kühnberger, K. (2014). Heuristic-driven theory projection: An overview. In: Prade,

H. and Richard, G. (eds.) Computational Approaches to Analogical Reasoning: Current Trends, Studies in Computational
Intelligence, vol. 548, Springer, 163–194. ISBN 978-3-642-54515-3. doi: 10.1007/978-3-642-54516-0_7.

Cite this article: Cerna DM and Kutsia T (2020). Higher-order pattern generalization modulo equational theories.
Mathematical Structures in Computer Science 30, 627–663. https://doi.org/10.1017/S0960129520000110

https://doi.org/10.1017/S0960129520000110 Published online by Cambridge University Press

http://ceur-ws.org/Vol-1635/paper-08.pdf
http://ceur-ws.org/Vol-1635/paper-08.pdf
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1145/1614431.1614437
http://arxiv.org/abs/1803.03806
https://doi.org/10.1007/978-3-642-54516-0_7
https://doi.org/10.1017/S0960129520000110
https://doi.org/10.1017/S0960129520000110

	Higher-order pattern generalization modulo equational theories
	Introduction
	Preliminaries
	Higher-Order Pattern Generalization in the Empty Theory
	Equational Decomposition Rules: A-, C-, and AC-Theories
	Associative decomposition rules
	Commutative decomposition rules
	Associative-commutative decomposition rules

	Theories with the Unit Element
	Generalization modulo U
	Linear generalization modulo AU
	Linear generalization modulo CU
	Linear generalization modulo ACU
	Combining different theories

	Toward Special Restrictions
	Associative and Associative-Unit Generalization: Special Restrictions and Optimality
	1-determined associative and associative-unit generalization
	Choice functions and optimality
	k-determined associative and associative-unit generalization

	Commutative and Commutative-Unit Case
	Associative-Commutative and Associative-Commutative-Unit Case
	1-determined AC and ACU generalization
	k-determined associative-commutative and associative-commutative-unit generalization

	Conclusion

