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Thin-liquid-film flow on three-dimensional
topographically patterned rotating cylinders
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The coating of rotating discrete objects with surface topography is a problem commonly
encountered in manufacturing processes. Surface topography may induce undesired
disturbances in the coating, leading to coatings of non-uniform thickness. To study this
problem, we model the flow of thin liquid coatings in three dimensions on topographically
patterned cylinders that rotate about their horizontal axes. An evolution equation
describing variations in the coating thickness as a function of the axial coordinate,
the angular coordinate, and time is solved numerically using a variable time-step
finite-difference scheme. In the limit of a rapidly rotating cylinder, we neglect the effects
of gravity and find that liquid accumulates at either pattern crests or pattern troughs. Using
a long-wave analysis, we derive an expression for the critical Weber number that separates
these regimes. If gravity is reincorporated, the accumulation of liquid at crests or troughs
may cause the coating to sag under its weight, leading to the formation of droplets or
rings whose spacing at large rotation rates is controlled by the balance between centrifugal
and surface-tension forces. At lower rotation rates, where gravitational forces dominate,
simulation results indicate that cylinder topography tends to alter the rate at which droplets
form, but does not necessarily systematically affect the spacing between droplets. Flow
visualization experiments yield results that agree quantitatively with predictions of the
simulations and long-wave analysis. We observe the most uniform coatings in experiments
at moderate rotation rates, where disturbances in the coating thickness develop slowly. This
indicates that to obtain nearly uniform coatings in practice, the coating must be solidified
faster than disturbances can develop.
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1. Introduction

The coating of non-planar discrete objects is a common manufacturing step for a wide
variety of products (Castro et al. 2002; Heller et al. 2003; Fujitaka & Kobayashi 2006;
Benjamin et al. 2008; Chen & Ho 2009; Lee et al. 2016; Cade & Xinwe 2017; Chappa,
Bach & Macgregor 2017; Keefer & Bosch 2018). Studying the evolution of coatings on
non-planar objects is difficult due to the complicated shapes of some objects and the large
number of competing forces that govern coating flows. Topography on the object’s surface
may alter the competition between viscous, surface-tension, centrifugal and gravitational
forces that control coating thickness and uniformity. Undesired disturbances to the coating
thickness may arise and grow over time to yield non-uniform coatings.

A commonly studied model problem involves the flow of a thin liquid film on a smooth,
circular cylinder that rotates about its horizontal axis. Some of the earliest work on these
coating flows, conducted by Moffatt (1977) and Pukhnachev (1977), studied thin liquid
films on 2-D cross-sections, where axial flows and curvature variations were neglected.
By considering the balance between viscous and gravitational forces in the absence of
surface tension, Moffatt derived a critical rotation rate above which a steady, smooth, and
asymmetric coating is supported by cylinder rotation (Moffatt 1977):

Ωc =
(

2π

4.443

)2 (H2

R2

)
ρgR
μ

. (1.1)

Here, Ωc is the critical rotation rate, H is the mean coating thickness, R is the cylinder
radius, ρ is the liquid density, g is the acceleration due to gravity and μ is the liquid
viscosity. Pukhnachev determined that surface tension smoothed out discontinuities that
would form in the absence of surface tension (Pukhnachev 1977). Following the early work
by Moffatt (1977) and Pukhnachev (1977), a large body of work has examined different
aspects of this problem, as summarized by Evans, Schwartz & Roy (2005) and Li & Kumar
(2018).

Although much of the research summarized in Evans et al. (2005) and Li & Kumar
(2018) concerns flows on 2-D cross-sections of cylinders, other studies have shed light
on the stability of the coating to axial disturbances. Below the critical rotation rate (1.1),
gravity leads to the formation of a liquid ridge along the cylinder axis which is unstable
to axial disturbances via a Rayleigh–Taylor-like (RT) instability (Evans et al. 2005). The
coating may break up at various points along the cylinder circumference into droplets or
fingers of liquid whose axial spacing is controlled by the balance between gravitational and
surface-tension forces (Fermigier et al. 1992; Evans et al. 2005; Balestra, Brun & Gallaire
2016; Gallaire & Brun 2017; Balestra et al. 2018).

For flow of a thin film on the underside of a stationary planar substrate, the wavelength
of the RT instability (λRT ) is given by the wavelength of the fastest growing sinusoidal
disturbance obtained from a linear stability analysis (LSA):

λRT = 2π
√

2lc, (1.2)

where lc = √
ρg/σ is the capillary length and σ is the surface tension. While the fastest

growing wavelength has been shown to change over time for a stationary non-planar
substrate, previous work has determined that it is initially identical to the wavelength of
the RT instability on the underside of planar substrates (1.2) (Balestra et al. 2016, 2018).
One important goal of this work is to examine the effects of topographical patterning on
the growth of the RT instability on rotating cylinders, where the topography may alter the
forces affecting coating behaviour at low rotation rates.
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For larger rotation rates or sufficiently thin films, the coating is susceptible to the
formation of axially spaced ‘rings’ or ‘bands’ of liquid through a Rayleigh–Plateau-like
(RP) instability (Yih & Kingman 1960; Moffatt 1977; Hynes 1978; Kovac & Balmer 1980;
Evans et al. 2005; Li & Kumar 2018). In the absence of centrifugal forces, destabilizing
pressure gradients imposed by axial variations in the angular curvature of the free surface
compete with the stabilizing effects of the axial curvature of the free surface, causing
disturbances of sufficiently long wavelength to grow. Centrifugal forces further destabilize
the coating, shortening the wavelength where disturbances become unstable (Yih &
Kingman 1960; Hynes 1978; Evans et al. 2005; Li & Kumar 2018). In a manner similar
to the RT disturbance, the wavelength of the RP disturbance is taken to be the wavelength
of the fastest growing sinusoidal disturbance obtained from LSA (Yih & Kingman 1960;
Hynes 1978; Evans et al. 2005; Li & Kumar 2018).

By considering the balance between centrifugal and surface-tension forces in the
absence of gravity, Evans et al. (2005) and Yih & Kingman (1960) independently used
LSA to obtain an expression that predicts the wavelength of the axially spaced rings on
rotating, unpatterned cylinders:

λRP = 2πR
√

2
(

1 + ρΩ2R3

σ

)−1/2

, (1.3)

where angular thickness variations were assumed to be negligible. Here, λRP is the
wavelength of the RP instability and Ω is the cylinder rotation rate. In Hynes (1978), LSA
was used to derive a similar expression for λRP that accounted for gravitational effects
on the coating. The effects of gravity become negligible at sufficiently high rotation rates
and this expression for the RP wavelength reduces to (1.3) (Hynes 1978). In the present
work, another important goal is to examine the effects of topographical patterning on
the behaviour of the coating in the RP regime; here, the effects of surface-tension and
centrifugal forces on the behaviour of the coating may be altered by the presence of
topography, yielding qualitatively different behaviour than what is observed on circular
cylinders.

On topographically patterned objects, variations in the object’s curvature may alter
the shape of the coating and change how instabilities grow. Li, Carvalho & Kumar
(2017) explored the growth of instabilities on 2-D cross-sections of sinusoidally patterned
rotating cylinders. Finite-element method (FEM) simulations of the Stokes equations and
finite-difference simulations of a lubrication-theory-based evolution equation were used to
study this system. In the FEM simulations, inertial effects arising from gravitational and
Coriolis forces were neglected while centrifugal forces were retained. Good agreement was
found between the FEM simulations and lubrication model for sufficiently thin coatings.
In the limit where gravity is negligible, two regimes of coating behaviour separated by a
cutoff rotation rate Ωcut were observed in simulations. Surface-tension forces drive liquid
into pattern troughs below Ωcut, and centrifugal forces drive liquid onto pattern crests
above Ωcut. Li et al. (2017) reasoned that the sinusoidal topography, with wavelength
λθ , would induce a small sinusoidal thickness disturbance of identical wavelength λθ in
the coating. By assuming the topography plays a negligible role in the growth of this
disturbance for short times, an expression for Ωcut was obtained from LSA of a coating on
an unpatterned cylinder:

Ωcut =
√√√√( σ

ρR3
m

(
4π2R2

m

λ2
θ

− 1

))
, (1.4)

918 A12-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.224


C. Parrish, L. Pham and S. Kumar

where Rm is the mean cylinder radius. It was found that (1.4) agrees well with the coating
regimes found in simulations. The capabilities of the LSA used to obtain (1.4) are limited,
however. The LSA does not capture how topography affects the rate at which disturbances
evolve, nor does it capture the effects of substrate and free-surface curvature in the axial
direction on the liquid distribution. A third goal of this work is to address these two open
questions.

In § 2, we present a lubrication-theory-based model to describe the flow of a thin coating
on a rotating, 3-D topographically patterned cylinder. We start with the limiting case
where gravity is neglected in § 3 and reincorporate gravity in § 4. Complementary flow
visualization experiments are presented in § 5, and conclusions are provided in § 6.

2. Mathematical model

We consider the flow of a Newtonian liquid film which fully wets a topographically
patterned cylinder of mean radius Rm rotating clockwise at angular speed Ω . The problem
is defined using cylindrical coordinates (r, θ, z) with basis vectors (er, eθ , ez) in a reference
frame rotating clockwise with the cylinder (Ω = −Ωez, Ω > 0). The thickness of the
liquid film h(θ, z, t) is defined with respect to the cylinder surface as shown in figure 1.
The radial coordinate for the cylinder surface is given by R(θ, z) = Rm + B(θ, z), where
B(θ, z) is a function describing the surface patterning (§ 2.3). For convenience, a new
radial coordinate y = r − Rm − B(θ, z) is defined on the interval 0 ≤ y ≤ h(θ, z, t). The
position vector r and the liquid velocity u are defined as

r = ( y + Rm + B(θ, z)) er + zez, (2.1)

u = urer + uθeθ + uzez. (2.2)

Note that we consider film thicknesses such that h(θ, z, t) possesses only a single value of
h for each θ and z.

2.1. Governing equations
In the rotating reference frame (Ω = −Ωez), the mass and momentum conservation
equations for a Newtonian liquid of density ρ and viscosity μ are

∇ · u = 0, (2.3)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + ρg − ρΩ × (Ω × r) + 2ρΩ × u, (2.4)

where g = −g sin(θ − Ωt)er − g cos(θ − Ωt)eθ is the gravitational acceleration (g =
‖g‖) and p is the liquid pressure. On the cylinder surface, we apply no-penetration and
no-slip conditions for the liquid velocities,

nc · u = 0, (2.5)

tc,i · u = 0 (i = θ, z), (2.6)
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h(θ,z,t) h(θ,z,t)B(θ,z)

θ

Ω

Rm

Rm
r

r

z

(a) (b)

Figure 1. Model geometry. (a) End view. (b) Side view.

where nc and tc,i are the unit vectors normal and tangential to the cylinder surface,

nc =
(

1 +
(

1
r

∂B
∂θ

)2

+
(

∂B
∂z

)2 )−1/2(
er − 1

r
∂B
∂θ

eθ − ∂B
∂z

ez

)
, (2.7)

tc,θ =
(

1 +
(

1
r

∂B
∂θ

)2)−1/2 (1
r

∂B
∂θ

er + eθ

)
, (2.8)

tc,z =
(

1 +
(

∂B
∂z

)2)−1/2 (
∂B
∂z

er + ez

)
. (2.9)

At the liquid–air interface (y = h), we apply interfacial balances for total mass, normal
stress and tangential stress (Delhaye 1974; Burelbach, Bankoff & Davis 1988; Slattery
2007):

(ul − uI) · n = 0, (2.10)

pl − [n · τ · n]l − pv + [n · τ · n]v = σ∇ · n, (2.11)

− [n · τ · ti]l + [n · τ · ti]v = −∇sσ · ti(i = θ, z), (2.12)

where τ denotes the viscous stress tensor and the superscripts l, v and I, respectively,
denote liquid, vapour and interface quantities. Equation 2.10 is the kinematic condition.
The scalar σ is the surface tension of the liquid. The vectors n and ti are the outward unit
normal and tangent vectors of the liquid–air interface, defined as

n = 1
N1/2

(
er − 1

r

(
∂ (h + B)

∂θ

)
eθ −

(
∂ (h + B)

∂z

)
ez

)
, (2.13)

tθ =
[

1
r

∂ (h + B)

∂θ
er + eθ

](
1 +

(
1
r

∂ (h + B)

∂θ

)2)−1/2

, (2.14)

tz =
[
∂ (h + B)

∂z
er + ez

](
1 +

(
∂ (h + B)

∂z

)2)−1/2

, (2.15)
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Constants Order of magnitude

Viscosity, μ (P) 1
Density, ρ (g cm−3) 1.0
Surface tension, σ (dyn cm−1) 10 − 100
Characteristic film thickness, H (cm) 10−2

Mean cylinder radius Rm (cm) 1 − 10
Cylinder rotation rate, Ω (rad s−1) 10

Table 1. Dimensional values for various properties.

Parameter Definition Physical meaning Typical value

M μ/ρ
√

gR3
m Viscous forces/gravitational forces O

(
10−2 − 10−1)

W Ω/
√

g/Rm Centrifugal forces/gravitational forces O
(
10−3 − 10−2)

Bo ρgR2
m/σ Gravitational forces/surface-tension forces O (10 − 100)

We ρΩ2R3
m/σ Centrifugal forces/surface-tension forces O (10 − 100)

β b/Rm Pattern amplitude/cylinder radius O
(
10−3 − 10−1)

Table 2. Dimensionless parameters.

where

N = 1 +
(

1
r

∂ (h + B)

∂θ

)2

+
(

∂ (h + B)

∂z

)2

. (2.16)

2.2. Scaling and evolution equations
In many applications of interest, the characteristic thickness H of the liquid film is much
smaller than the mean cylinder radius Rm. As a result, a small parameter ε = H/Rm � 1
may be defined, and the lubrication approximation may be invoked to simplify the
governing equations. Following Evans, Schwartz & Roy (2004), Evans et al. (2005), Li
& Kumar (2015, 2018), we introduce the following dimensionless quantities, denoted by
tildes

( y, h, B) = H(ỹ, h̃, B̃) (r, z) = Rm(r̃, z̃) t = Υ t̃

u = εUũ v = Uṽ w = Uw̃

p = Pp̃.

⎫⎪⎬
⎪⎭ (2.17)

The characteristic speed U = ρgH2/μ, characteristic pressure P = μU/H and
characteristic time Υ = Rm/U are based on gravitational drainage of the coating.
Order-of-magnitude estimates for select dimensional quantities in (2.17) are listed in
table 1. The dimensionless amplitude of the cylinder topography β, listed in table 2, is
the ratio of the dimensional amplitude b of the topography to the mean cylinder radius Rm
(β = b/Rm). The dimensionless amplitude is assumed to be a small parameter such that
β � 1. Hereafter, we drop the tilde notation from dimensionless variables for simplicity.

We non-dimensionalize (2.3) and (2.4) and the corresponding boundary conditions in
§ 2.1 using the scalings shown in (2.17) and simplify this set of equations by neglecting
terms of O(ε2) and smaller and the dynamics of the air. The following evolution equation
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for the film thickness is obtained:

(1 + εh + εB)
∂h
∂t

= ∂

∂θ

(
cos θr

(
h3

3
+ εh4

2

))
− ε∇̃

·
(

h3

3

[
(W2 − sin θr)∇̃(h + B) + 1

Bo
∇̃(h + B + ∇̃2(h + B))

])
,

(2.18)

where θr = θ − MWε−2t is the angular coordinate in a fixed reference frame. Equation
(2.18) retains the effects of viscous, gravitational, centrifugal and surface-tension forces
on the coating, while the remaining inertial and Coriolis forces are of O(ε2) and neglected
through the lubrication approximation. When the topography amplitude β is of O(0.1),
prior work has demonstrated that (2.18) can capture key qualitative features of the coating
behaviour in two dimensions, based on comparisons with FEM simulations (Li et al. 2017).

Table 2 provides definitions, physical interpretations and typical values of dimensionless
parameters in (2.18). The parameters M and W are the dimensionless viscosity and rotation
rate. The small parameter ε is the dimensionless characteristic film thickness. Lastly, Bo
and We are the Bond and Weber numbers, which, respectively, give the magnitude of
gravitational forces and centrifugal forces to surface-tension forces. When the cylinder is
unpatterned (B(θ, z) = 0), (2.18) reduces to the evolution equation in Evans et al. (2005).
In the limit where axial variations in thickness and topography are neglected (∂/∂z = 0)
and the patterning is a sinusoidal function given by B(θ) = βε−1 sin(kθ θ), where kθ is the
topography wavenumber, (2.18) reduces to the evolution equation in Li et al. (2017).

Given a set of dimensionless parameters (table 2) and initial conditions, (2.18) is solved
using an alternating-direction implicit (ADI) finite-difference scheme similar to that of
Mata & Bertozzi (2011). The spatial domain is discretized using a uniform grid of nθ × nz
points, where the grid spacing is defined as 
x = 2π/nθ and the length of the cylinder is
defined as L = nz
x. An initial time step of 
t0 is set, and an adaptive time-stepping
method similar to that of Mata & Bertozzi (2011) is used to determine the time step
during simulations. Spatial derivatives are approximated using second-order centred finite
differences, while the time-stepping is done using a semi-implicit scheme.

At each time step, an iterative procedure is applied to reduce computational time and to
improve solution accuracy (Mata & Bertozzi 2011; Li & Kumar 2018). Periodic boundary
conditions are applied in both the angular direction (h(θ = 0, z) = h(θ = 2π, z)) and the
axial direction (h(θ, z = 0) = h(θ, z = L)). To properly resolve the topography, upwards
of nθ = 400 grid points are used in the angular direction. The number of grid points in the
axial direction is determined from the desired length L and nθ by

nz = nθL
2π

. (2.19)

The value of L is chosen to be at least three times larger than the wavelength of
disturbances in the coating. Disturbance wavelengths were not known a priori, so L was
increased and simulations were re-run when necessary. For topography with fine features,
the number of grid points was increased until graphical accuracy was obtained, which
typically required nθ ≥ 400 and nz ≥ 1200.

2.3. Topographical patterning
In the derivation of (2.18), the form of the topography has been left as an arbitrary function
B(θ, z). Here, flows are examined on sinusoidally patterned cylinders whose curvature
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2

(a) (b) (c)Angular patterning kθ = 5

2

1

kθ

1

0y

x
z/π

0

–1

–1

–2

–2 0 0.25 0.50 0.75 1.00

2

Axial patterning kz = 5

2

1

kz

1

0

x
z/π

0

–1

–1

–2

–2 0 0.25 0.50 0.75 1.00

2

Screw-shaped patterning kθ = kz = 5

2

1

kzkθ

1

0

x
z/π

0

–1

–1

–2

–2 0 0.25 0.50 0.75 1.00

Figure 2. Topographically patterned cylinders with dimensionless pattern amplitude β = 0.1 of various
shapes: (a) angularly patterned cylinder with kθ = 5, (b) axially patterned cylinder with kz = 5 and (c)
screw-shaped cylinder with kθ = 5 and kz = 5.

varies in the angular direction, the axial direction or combinations thereof. Renderings of
the topographies we examine are shown in figure 2, and a description of these topographies
is provided below.

The simplest, limiting cases comprise topographies which are purely angular (figure 2a)
or purely axial (figure 2b):

B(θ) = β

ε
cos (kθ θ) , (2.20)

B(z) = β

ε
cos (kzz) , (2.21)

where β is the dimensionless pattern amplitude and ki is the wavenumber of the
topography in either the axial (i = z) or the angular (i = θ ) direction. One generalized
form of (2.20) and (2.21) possesses both angular and axial curvature:

B(θ, z) = β

ε
cos (kθ θ + kzz) . (2.22)

When the wavenumbers kθ = 0 or kz = 0, (2.22) reduces to either (2.20) or (2.21).
For non-zero kθ and kz, an object whose topography is described by (2.22) resembles
a screw-shaped cylinder (figure 2c). For any of the topographies shown above, the
dimensionless wavelength of the patterning in each direction (i = θ, z) is given by 2π/ki.

3. Rapidly rotating cylinder

An insightful limiting case involves the coating of cylinders which rotate so rapidly that
gravitational effects are negligible. In the absence of gravity, alternate scales must be
chosen to replace the gravity-based characteristic scales. After neglecting gravitational
terms, we rescale (2.18) using a capillary time T = μRm/σ and capillary velocity U =
σ/μ to obtain a new evolution equation,

(1 + εh + εB)
∂h
∂t

= −ε3∇̃ ·
(

h3

3
[We∇̃(h + B) + ∇̃(h + B + ∇̃2(h + B))]

)
. (3.1)

Here, the Weber number (We = ρΩ2R3
m/σ ) is the ratio of centrifugal forces to

surface-tension forces. Note that the Weber number may also be expressed as We = W2Bo.
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The behaviour of coatings on unpatterned, rapidly rotating cylinders, where B = 0 in
(3.1), has been explored extensively in prior work (Yih & Kingman 1960; Hynes 1978;
Evans et al. 2005; Li & Kumar 2018). In simulations of coatings on rapidly rotating
cylinders, axially spaced rings grow with a wavelength similar to the wavelength of the
RP instability predicted by LSA (1.3) (Evans et al. 2005). The dimensionless wavelength
of the RP instability is given by

λ∗RP = λRP

Rm
= 2

√
2π√

1 + We
, (3.2)

where λ∗RP depends solely on the Weber number We. The growth rate ωm of the RP
disturbance,

ωm = ε3(1 + We)2

12 (1 + ε)
, (3.3)

is proportional to both the characteristic film thickness ε and We. Over time, the spacing
of the rings observed in simulations varies due to the shifting of rings and the formation
of smaller satellite rings at late times (Evans et al. 2005).

For a coating of initially uniform thickness, liquid has been observed to accumulate
either over the pattern crests or in the pattern troughs of 2-D sinusoidally patterned
cylinders (Li et al. 2017). At low We, capillary forces level the coating and drive liquid
into the troughs; at high We, centrifugal forces drive liquid to pattern crests, where the
radius of the object is larger. An expression for the critical Weber number Wec separating
these regimes was inferred from LSA conducted on an unpatterned cylinder (B(θ, z) = 0)
(Li et al. 2017). This expression was found to agree well with 2-D nonlinear simulations
of (3.1) (Li et al. 2017). Here, we more rigorously derive an expression for the critical
Weber number using a long-wave analysis, where the thickness is expressed as a regular
perturbation series in ε. In addition to providing an expression for Wec, the long-wave
analysis yields very general information about the growth rate of disturbances which the
analysis in Li et al. (2017) could not.

3.1. Long-wave analysis
A long-wave analysis, where the coating thickness is expanded as a regular perturbation
series in the small parameter ε = H/Rm � 1, may be used to find an analytical solution to
(3.1). For this analysis, we study the flow of a coating on a screw-shaped topography (2.22),
which allows us to consider curvature in the axial and angular directions simultaneously.
Additionally, the pattern amplitude β must be O(ε) such that β/ε is O(1). We expand the
thickness in (3.1) as a regular perturbation series in ε:

h(θ, z, t) ≈ h0(θ, z, t) + εh1(θ, z, t) + ε2h2(θ, z, t) + ε3h3(θ, z, t) + O(ε4), (3.4)

with the uniform initial condition h(θ, z, 0) = 1. Substituting (3.4) into (3.1) yields

∂h0

∂t
= 0, (3.5)

∂h1

∂t
= 0, (3.6)
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∂h2

∂t
= 0, (3.7)

∂h3

∂t
= −∇̃ ·

(
h3

0
3

[We∇̃(h0 + B) + ∇̃(h0 + B + ∇̃2(h0 + B))]

)
. (3.8)

Equations (3.5)–(3.7) indicate that terms h0, h1 and h2 are independent of time.
Application of the initial condition h(θ, z, 0) = 1 yields h0 = 1 and h1 = h2 = 0. When
∇̃B = 0 (kθ = kz = 0 or β = 0), we note that the solution to (3.8) is trivial, yielding
h3 = 0. The following analysis is carried out for the non-trivial case.

Equation (3.8) is solved by separation of variables, where we express h3 as h3(θ, z, t) =
h̄3(t)ĥ3(θ, z). The resulting differential equation is

dh̄3

dt
= − 1

ĥ3
∇̃ ·

(
h3

0
3

[We∇̃B + ∇̃(B + ∇̃2B)]

)
. (3.9)

The terms on the left- and right-hand sides of (3.9) are equal to a constant, which we
denote with the growth rate ω, and solutions for h̄3(t) and ĥ3(θ, z) can be obtained:

h̄3(t) = ωt, ĥ3(θ, z) = β

ε
cos (kθ θ + kzz) , (3.10a,b)

ω = 1
3
((1 + We)k2 − k4). (3.11)

Here, k =
√

k2
θ + k2

z is a lumped wavenumber. The regular perturbation series solution
with initial condition h(θ, z, 0) = 1 is then

h(θ, z, t) = 1 + ε2βωt cos(kθ θ + kzz) + O(ε4). (3.12)

Recall that β is O(ε), so ε2β is O(ε3).
According to (3.12), the topography induces a disturbance in the coating, as was

observed in Li et al. (2017). For cylinders with k /= 0 and β /= 0, the magnitude of βε2ω
controls the rate at which the disturbance develops, and the sign of ω controls the location
where liquid pools. The induced disturbance grows either in-phase (ω > 0) or out-of-phase
(ω < 0) with the topography depending on the sign of the growth rate ω. When ω > 0,
centrifugal forces dominate and liquid accumulates over pattern crests. When ω < 0,
capillary forces dominate and liquid accumulates in pattern troughs.

For fixed values of kθ and kz where k /= 0, the critical Weber number Wec at which this
transition occurs can be obtained by solving ω(Wec) = 0 (see (3.11))

Wec = k2
θ + k2

z − 1. (3.13)

A similar expression for Wec on 2-D sinusoidally patterned cylinders was inferred in Li
et al. (2017), where the evolution of small-amplitude disturbances on unpatterned cylinders
was likened to the evolution of small-amplitude disturbances induced by a sinusoidal
topography. A special case of (3.13) occurs when kθ = 0 and kz < 1, where Wec is less
than zero. This is unphysical as all of the parameters in We must be greater than zero
(see table 2). When Wec < 0, any realistic Weber number We ≥ 0 yields a positive growth
rate ω (3.11), and the long-wave analysis predicts that liquid will always accumulate over
pattern crests, even when the cylinder does not rotate (We = 0).

918 A12-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.224


Thin-liquid-film flow on three-dimensional topographically

3.0

1.8

0.5

–0.8

–2.0
0 125.0 250.0

t
375.0 500.1

h 3
 (
t)

(×106)

(×102)

Figure 3. Disturbance amplitude h̄3(t) from simulation results (filled symbols) and the long-wave
approximation (solid lines). The growth rates are ω = ±26.67 for We = 20 and We = 10, respectively, with
ε = 0.01 and β = 10−3. The horizontal line marks h̄3(t) = 0. The vertical line marks where the long-wave
analysis deviates noticeably from the simulation results (t = 1.0 × 104).

3.2. Axially patterned cylinders
To probe the limits of the long-wave approximation (3.12), simulations of (3.1) are
presented for a representative case. We consider purely axially patterned cylinders
((2.21), where kθ = 0 with kz = 4) and initially undisturbed coatings of uniform thickness
(h(θ, z, t = 0) = 1). The Weber numbers used in these simulations (We = 20 and 10) sit
on either side of the critical Weber number (Wec = 15) so the growth rates are of equal
magnitude but opposite sign (ω = ±26.67). We extract the amplitude h̄3(t) of the induced
disturbance from simulations by solving (3.12) for ωt at fixed points on the cylinder θ0 and
z0 (e.g. θ0 = z0 = π):

h̄3(t) = ωt = h(θ0, z0, t) − 1
ε2β cos (kθ θ0 + kzz0)

. (3.14)

For all of the simulations in §§ 3.2 and 3.3, ε = 0.01 and β = 10−3 so that the topography
amplitude is 10 % of the characteristic film thickness.

The amplitudes extracted from simulations using (3.14) are compared with those
predicted by the long-wave approximation (3.10a,b) in figure 3. At early times (t <

1 × 104), good agreement is observed between the long-wave approximation and the
simulations. However, deviation between the long-wave approximation and the simulations
develops at later times (t > 1 × 104). Compared with the simulations, the long-wave
approximation underpredicts the disturbance amplitude above Wec and overpredicts it
below Wec. These simulation results also indicate that the rate of levelling below Wec
slows down over time while centrifugation above Wec becomes faster.

Three-dimensional renderings of the coatings for We = 10 and We = 20 are provided
in figures 4(a) and 4(b) at the time denoted by the vertical line in figure 3 (t = 1 ×
104). In these renderings, the upward-moving side of the cylinder faces the reader.
Liquid accumulates in troughs for We < Wec and over crests for We > Wec, as predicted
from the long-wave analysis. We note that the spacing of the rings calculated from
simulations (figure 4a,b) is identical to the wavelength of the axial topography, given by
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Figure 4. The 3-D renderings of the coatings analysed in figure 3 with ε = 0.01 and β = 10−3 at t = 1 × 104

for (a) We = 10 and (b) We = 20. Rescaled film thicknesses (εh) are indicated by the colourbar. Note that the
z-axis is not to scale, and that the topography and film thickness have been exaggerated by 20 times for easier
viewing.
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Figure 5. Film thicknesses for the simulations shown in figures 3 and 4 with ε = 0.01 and β = 10−3 at t =
1 × 106 for (a) We = 10 and (b) We = 20. Rescaled film thicknesses (εh) are indicated by the colourbars.
Dashed black lines are used to denote the position of pattern crests.

λz = 2π/kz ≈ 1.57. This is different than the spacing of rings one would expect on an
unpatterned cylinder, predicted from (3.2) to be λ∗RP = 2.68 and λ∗RP = 1.94 for We = 10
and We = 20, respectively.

At longer times past what is shown in figures 3 and 4, non-uniformities may also
develop along the angular direction, in which the cylinder is unpatterned. To examine these
circumferential variations, ‘unravelled’ coating thicknesses for the simulations shown in
figure 4 have been plotted against the angular and axial coordinates at t = 1.0 × 106.
Dashed black lines are used to denote the position of pattern crests. At We = 10 (figure 5a),
the liquid remains confined in the pattern troughs and noticeable thickness variations
do not develop around the circumference. The stability of these rings is due to the
prevalence of surface-tension forces, which suppress the growth of disturbances in the
angular direction.

When centrifugal forces dominate at We = 20 (figure 5b), each band of liquid over the
pattern crests segregates into angularly spaced droplets. The angular spacing of these
droplets is equal to the spacing predicted by LSA on 2-D cross-sections of unpatterned
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cylinders (Evans et al. 2004). This instability arises because centrifugal forces destabilize
the axially spaced rings to angular disturbances. Over later times for the simulation shown
in figure 5(b), the droplets do not migrate noticeably from their positions at t = 1 × 106.
However, in similar simulations with larger characteristic film thicknesses ε or Weber
numbers We, the droplets that form at later times may migrate and coalesce to form fewer,
larger droplets. The results presented in figures 5(a) and 5(b) demonstrate a difference in
the long-time stability of coatings below and above the critical Weber number that is not
captured by the long-wave analysis.

3.3. Angularly patterned and screw-shaped cylinders
Simulations of coatings on cylinders with angular patterning and screw-shaped patterning
have been conducted under various conditions. We summarize some of the results here as
the behaviour is similar to that shown in figures 3–5. At early times, agreement between
the long-wave approximation and the simulations is observed. At later times, deviations
between the long-wave approximation and the simulations are observed as nonlinearities
become more prevalent. Below Wec, liquid pools in pattern troughs, and the bands of
liquid that accumulate in troughs remain stable to disturbances over time. Above Wec,
liquid collects over pattern crests, but these bands of liquid are unstable to disturbances,
leading to the formation of droplets with fairly regular axial and angular spacing. These
droplets may merge and shift over time, causing variations in droplet sizes and spacings.
We relegate these results to Appendix A.

In summary, when gravitational forces may be neglected, the behaviour of coatings on
topographically patterned cylinders is controlled by the balance between centrifugal and
surface-tension forces. This balance is captured by a critical Weber number above which
centrifugal forces drive liquid toward pattern crests and below which surface-tension forces
drive liquid into pattern troughs. An expression for this critical Weber number Wec (3.13)
has been rigorously derived for flows in three dimensions using a long-wave analysis. The
long-wave analysis also yields a growth rate (3.11) that relates the rate of levelling (We <

Wec) or centrifugation (We > Wec) to the dimensionless characteristic film thickness, the
pattern wavenumbers, the pattern amplitude and the Weber number (ε, kθ and kz, β and
We, respectively). As the growth rate controls the rate at which thickness disturbances
develop, it may be used to estimate the time window during which the coating may be
dried before large non-uniformities develop.

Although the long-wave analysis provides useful information about the growth of
disturbances on topographically patterned cylinders for early times, the results shown in
figures 3, 5 and 20 (see Appendix A) demonstrate that it fails to capture coating evolution
at later times. Results from simulations of (3.1) show the behaviour of coatings at later
times, where coatings tend to break up into individual droplets above the critical Weber
number.

4. Gravitational effects

We now examine the effects of topography on coating behaviour in the presence of
gravity, where the coating may sag under its own weight. Simulations of (2.18) have
been carried out on unpatterned (§ 4.1) and patterned (§§ 4.2 and 4.3) cylinders in the
Rayleigh–Plateau (high W) and Rayleigh–Taylor (low W) regimes. The initial condition
is that of a uniform-thickness coating that has been disturbed by small-amplitude random
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noise G(θ, z):
h(θ, z, 0) = (1 + α (G(θ, z) − 0.5)) , (4.1)

where 0 ≤ G(θ, z) ≤ 1 and α/2 is the mean amplitude. For all simulations in § 4, we set
α = 10−3; other problem parameters are set to values motivated by the flow visualization
experiments in § 5.

4.1. Unpatterned cylinders
As discussed in § 1, axially spaced rings of liquid may form on unpatterned cylinders at
large rotation rates (RP instability), and droplets may form on the underside of unpatterned
cylinders at low rotation rates (RT instability). A useful estimate of the dimensionless
rotation rate Wc that separates the RT and RP regimes on unpatterned cylinders is the
minimum rotation rate needed to support a load of liquid on a rotating cylinder in the
absence of surface tension, given in dimensional form in (1.1) (Moffatt 1977; Hynes 1978;
Evans et al. 2005):

Wc = 2.001ε2/M. (4.2)

Here, ε is the dimensionless characteristic film thickness and M is the dimensionless
viscosity (table 2).

A parameter sweep has been conducted to establish key features of coating behaviour in
the RT (W < Wc) and the RP (W > Wc) regimes. The boundary between the RT and RP
regimes predicted by (4.2) is Wc = 0.141 for this set of simulations.

In figure 6, 3-D renderings of coatings from two representative simulations, one below
Wc (figure 6a,b) and one above Wc (figure 6c,d), are shown at two times to provide
examples of coating evolution on unpatterned cylinders in the RT and RP regimes. Below
Wc, a ridge of liquid supported by cylinder rotation and surface tension forms along the
cylinder axis (figure 6a). Small undulations in the thickness and angular position of this
ridge are present in figure 6(a). Over time, these undulations develop into individual
fingers of liquid with regular spacing (figure 6b), a Rayleigh–Taylor-like instability.
For flows on the underside of stationary, unpatterned cylinders, the dimensionless RT
wavelength λ∗RT is initially equal to that on stationary, planar substrates (given in
dimensional quantities in (1.2)) (Fermigier et al. 1992):

λ∗RT = λRT

R
= 2π

√
2

Bo
, (4.3)

where Bo = ρgR2/σ is the Bond number defined on an unpatterned cylinder. As was
discussed in Evans et al., the spacing of droplets on unpatterned cylinders in the RT regime
tends to be larger than that predicted by (4.3) (Evans et al. 2005); this will be shown clearly
in figure 7.

Above Wc, axially spaced mounds of liquid form with fairly regular spacing (figure 6c).
Over time, centrifugal forces cause these axial thickness variations to develop into axially
spaced rings of liquid which are thicker on the upward-moving side of the cylinder
(figure 6d). Hynes noted that above Wc, key qualitative features of coating behaviour
can be captured in the limit where gravity is neglected (Hynes 1978). In this limit, an
expression for λ∗RP, the dimensionless ring spacing on unpatterned cylinders predicted by
LSA, is provided by (3.2). Here, the spacing depends on the Weber number We = W2Bo
(Hynes 1978; Evans et al. 2005).

The spacing of disturbances in the RT and the RP regimes serves as a good
indicator of the boundary separating these regimes on unpatterned cylinders. In figure 7,
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Figure 6. The 3D renderings obtained from simulations on unpatterned cylinders for M = 0.0695, ε = 0.07
and Bo = 50. The rotation rates are (a,b) W = 0.14 and (c,d) W = 0.8896. The minimum rotation rate predicted
by Moffatt is Wc = 0.141 (4.2) (Moffatt 1977). Rescaled film thicknesses (εh) are indicated by the colourbars.
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Figure 7. The spacing of disturbances calculated from simulations (λ∗sim) of varying rotation rate on an
unpatterned cylinder (blue circles). Other simulation parameters are M = 0.0695, ε = 0.07 and Bo = 50. The
vertical line is Wc = 0.141 (4.2) while the dashed and dotted-dashed lines are the predicted wavelengths of the
RP instability (3.2) and the RT instability on a flat plate with Bo = 50 (4.3).

the wavelength of disturbances calculated from simulations is shown for varying rotation
rates on unpatterned cylinders. The wavelength of disturbances (λ∗sim) is taken to be the
average distance between peaks in the coating thickness. The boundary between the RT
and RP regimes for an unpatterned cylinder, calculated from (4.2) (Wc = 0.141), is given
by the vertical line. The dashed line to the right of Wc is the predicted wavelength of the
RP instability (3.2), and the dashed-dotted line to the left of Wc is the predicted spacing of
the RT instability on the bottom of a flat plate (4.3). The results falling very close to Wc
are for W slightly less than the critical rotation rate (W = 0.14).

In the RP regime (W > Wc), the spacing of the axially spaced rings agrees well with the
wavelength predicted by LSA on an unpatterned cylinder, where the ring spacing decreases
with increasing rotation rate W. In the RT regime (W < Wc), the spacing of droplets on
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unpatterned cylinders is mostly unaffected by the rotation rate, varying between λ∗sim =
1.45 and 1.71 for 0.01 ≤ W ≤ 0.1. Similar to what was observed by Evans et al. (2005),
the spacing in our simulations is larger than the spacing predicted for the RT instability on
a flat plate (λ∗RT = 1.26) for Bo = 50 (figure 7). Near Wc, cylinder rotation better supports
the coating weight and offsets some of the destabilizing effects of gravity. For W = 0.14,
which is slightly less than Wc = 0.141, the spacing between droplets increases by 50 %
from what is observed at lower rotation rates; however, this change in spacing with W is
small compared with the changes observed in the RP regime.

Although computational limitations have prevented us from performing a more
extensive parameter sweep, we briefly comment on how other parameters affect the regime
map (figure 7) for unpatterned cylinders based on prior work and the results of limited
simulations. With an increase in dimensionless viscosity M, the boundary between the RT
and RP regimes Wc decreases (4.2) since a coating of fixed thickness can be supported at
a lower rotation rate as viscous forces increase (Evans et al. 2005; Li & Kumar 2018).
Similarly, a decrease in the characteristic film thickness ε leads to a decrease in Wc.
An increase in the Bond number Bo decreases the spacing of both the RT and the RP
instabilities, as one would expect from the expressions for their predicted wavelengths
((4.3) and (3.2)) (Evans et al. 2005; Li & Kumar 2018).

4.2. Angular topography
It is not obvious a priori how angular topography (2.20) alters coating behaviour,
especially the formation of axial thickness variations. To explore this, a parameter sweep
has been conducted for varying rotation rates W and pattern wavenumbers kθ . In figure 8,
a regime map is presented to highlight the effect of angular topography on the spacing
of disturbances in the RT regime (W < Wc) and the RP regime (W > Wc). Here, the
topography amplitude β = 0.05 is comparable to the film thickness ε = 0.07. Blue
circles denote results obtained for unpatterned cylinders (also shown in figure 7) while
coloured triangles denote results for angularly patterned cylinders. The dashed line and
dotted-dashed line are the predicted spacings of the RP and RT instabilities, respectively,
((3.2) and (4.3)), while the vertical line is Wc = 0.141 (4.2).

Over the range of rotation rates and pattern wavenumbers considered, the spacing of
disturbances on angularly patterned cylinders is nearly identical to the spacing observed
on unpatterned cylinders (figure 8), indicating that angular topography has a negligible
effect on the axial spacing of disturbances. In the RP regime (W > Wc), the spacing
obtained for angularly patterned cylinders also agrees well with the predicted wavelength
of the RP disturbances on unpatterned cylinders. To better understand this, a LSA
was conducted in the limit of negligible gravity for flows on topographically patterned
cylinders (see supplementary material available at https://doi.org/10.1017/jfm.2021.224).
The expressions for the spacing and growth rate of axial disturbances on angularly
patterned cylinders are identical to those predicted by LSA on unpatterned cylinders ((3.2)
and (3.3)).

While the regime map presented in figure 8 demonstrates that the spacing of
disturbances on rotating cylinders is largely unaffected by angular topography, figure 8
does not contain information regarding the effect of angular topography on the time
evolution of these disturbances. To better understand this issue, we examine the results
of a limited set of simulations in the RP regime (W > Wc). Since the experiments in § 5
focus mainly on the RP regime, we relegate simulations for the RT regime to Appendix B.

The maximum axial thickness variation (
h)max, normalized by the amplitude of the
initial random noise α, is calculated over time from simulations (Evans et al. 2005;
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Figure 8. The spacing of disturbances calculated from simulations (λ∗sim) of varying rotation rate for angularly
patterned cylinders (coloured triangles) and unpatterned cylinders (blue circles). For patterned cylinders, the
topography amplitude is fixed to β = 0.05. Other simulation parameters are identical to those listed in figure 7.
The vertical line is Wc = 0.141 (4.2) while the dashed and dotted-dashed lines are the predicted wavelength of
the RP instability (3.2) and the RT instability on a flat plate with Bo = 50 (4.3).
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Figure 9. Normalized maximum axial thickness variation α−1(
h)max over time on an unpatterned cylinder
(blue) and angularly patterned cylinder (red) with kθ = 4 and β = 0.02. Other simulation parameters are α =
10−3 (see (4.1)), M = 0.0695, ε = 0.07, Bo = 41.42 and W = 0.8896. Oscillations in (
h)max have a period
of a single revolution (
t = 2πε2/MW) and arise due to oscillations in the angular position of disturbances.

Li & Kumar 2018). In figure 9, α−1(
h)max is shown on a logarithmic scale for simulations
on an unpatterned cylinder (blue line) and an angularly patterned cylinder (red line).
Dashed lines denote the initial slopes of (
h)max in the linear regions of each simulation.
Oscillations in (
h)max are caused by fluctuations in the maximum coating thickness
and occur with a frequency of a single rotation (ε2M−1W−1); while they appear to be
discontinuous, each oscillation in figure 9 is smooth and contains over 10 000 time steps.
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Figure 10. The 3-D renderings obtained from a representative simulation for W > Wc (4.2) on an angularly
patterned cylinder (kθ = 4 and β = 0.02). Simulation parameters are provided in the caption of figure 9.
Rescaled film thicknesses (εh) are indicated by the colourbar.

Near t = 0 in figure 9, (
h)max drops as the random noise in the initial condition
is smoothed out by surface tension. The maximum axial thickness variation (
h)max
across the cylinder subsequently grows as centrifugal forces lead to the growth of axially
spaced disturbances. A plateau in (
h)max is observed after these thickness variations have
developed into axially spaced rings and ceased growing. For both simulations, (
h)max
reaches roughly the same value at late times, indicating that angular patterning does not
significantly affect the amplitude of the axially spaced rings. However, growth of the
rings occurs much faster on angularly patterned cylinders. The initial growth rate of these
disturbances is twice as large for the angularly patterned cylinder than the unpatterned
cylinder (where the growth rate is slightly smaller than what is predicted by LSA in the
absence of gravity).

From figure 9, it is not immediately obvious why axially spaced rings grow faster on
angularly patterned cylinders than unpatterned cylinders. We examine 3-D renderings of
the simulation results for the angularly patterned cylinder in figure 10 to understand why
this growth rate is larger. At the earliest time (figure 10a), centrifugal forces have caused
the growth of four axially aligned ridges of liquid over crests in the angular topography.
Centrifugal forces are stronger in these ridges of liquid as the coating mass is larger in
these regions. The increase in the growth rate observed in figure 9 is the result of this
process. For the simulation in figure 10, liquid accumulates over pattern crests as the Weber
number We = W2Bo is greater than the critical Weber number Wec = 15 predicted by the
long-wave analysis in § 3.1 (3.13). In simulations in the RP regime for Weber numbers less
than Wec (not shown here), liquid accumulates in the pattern troughs, but this still leads to
a similar increase in the growth rate relative to unpatterned cylinders.

After these axially aligned ridges of liquid form on angularly patterned cylinders, axially
spaced rings grow in a manner similar to what is observed on unpatterned cylinders. Over
time, small variations in the thickness of these ridges (present in figure 10a) grow until the
axially aligned ridges of liquid break up into axially spaced bands of liquid. At t = 34.30
(figure 10b), these bands of liquid are poorly defined; regions of larger thickness connect
each band, and each band contains four angularly spaced lobes of liquid. Over time, these
lobes combine and the separation between the bands becomes well defined, yielding the
axially spaced rings seen in figure 10(c).
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Figure 11. Regime map from simulations on axially patterned cylinders (β = 0.05) for varying wavenumbers
kz and rotation rates W. Other simulation parameters are M = 0.0695, ε = 0.07 and Bo = 50. Black circles
denote simulations where liquid accumulates in pattern troughs while red diamonds denote simulations where
liquid accumulates over pattern crests. The vertical line is Wc = 0.141 (4.2) while the dashed line is the critical
Weber number (3.13) re-expressed as a rotation rate (Wcut = √

(Wec/Bo).

4.3. Axial topography
Flows which arise due to axial variations in cylinder curvature may greatly affect coating
behaviour. In § 3.2, we examined coating behaviour on axially patterned cylinders in the
limit where the cylinder rotates so rapidly that gravitational effects may be neglected. In
this limit, liquid accumulates either at pattern crests when centrifugal forces dominate
(We > Wec) or pattern troughs when surface-tension forces dominate (We < Wec). We
observe similar behaviour when gravity is present. To probe the effect of axial topography
on coating behaviour, a parameter sweep has been conducted for simulations on axially
patterned cylinders of varying rotation rates W and pattern wavenumbers kz. Since for
axially patterned cylinders liquid accumulates at pattern troughs or crests, the vertical axis
of the regime map (figure 11) is set to the pattern wavenumber kz.

Figure 11 provides a regime map of coating behaviour on axially patterned cylinders.
Black circles denote simulations where liquid accumulates in pattern troughs while red
diamonds denote simulations where liquid accumulates over pattern crests. The dashed
line denotes the rotation rate Wcut corresponding to the critical Weber number Wec
predicted in the absence of gravity (3.13), where Wcut = √

Wec/Bo. The vertical line
denotes the critical rotation rate Wc that separates the RP and the RT regimes on
unpatterned cylinders (4.2). For this set of parameters, Wc = 0.141.

We examine the results of the parameter sweep for W > Wc, which lies to the right
of the vertical line in figure 11. Here, the competition between centrifugal forces and
surface-tension forces determines the region of the cylinder where liquid accumulates.
In this case, the boundary between the regimes predicted in the absence of gravity (3.13)
is in excellent agreement with the boundary obtained from simulations.

Below the critical rotation rate, to the left of the vertical line in figure 11, the
accumulation of liquid is controlled by the competition between gravitational forces and
surface-tension forces. At low pattern wavenumbers, flows induced by gravity dominate
over those induced by axial curvature of the cylinder, causing liquid to accumulate at
pattern crests on the underside of the cylinder (in a manner similar to figure 13a). With
increasing wavenumber kz, the axial curvature of the cylinder increases, and pressure
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Figure 12. The 3-D renderings obtained from a representative simulation for W = 0.15, which is greater than
Wc = 0.141 (4.2), on an axially patterned cylinder (kz = 4 and β = 0.05). Simulation parameters are M =
0.0695, ε = 0.07 and Bo = 50. Rescaled film thicknesses (εh) are indicated by the colourbar.

gradients driving liquid toward pattern troughs become stronger. In the range 4 ≤ kz ≤ 6,
surface-tension forces are strong enough that liquid accumulates in the pattern troughs
near the boundary between the RP and RT regimes, where gravitational forces acting
on the coating are weaker. For kz ≥ 7, surface-tension forces drive liquid to the pattern
troughs over all rotation rates explored. Note that when W < Wc, the agreement between
the simulation results and (3.13) is not as good compared with when W > Wc. This is
because (3.13) neglects gravity, which becomes increasingly important as W decreases.

We present a representative simulation result in figure 12 to highlight how gravity may
affect coating behaviour on an axially patterned cylinder (β = 0.05 and kz = 4). At early
times, gravity leads to the accumulation of liquid into lobes centred over crests in the
axial topography (figure 12a,b). Over time, these lobes are dragged up the side of the
cylinder and smoothed out by surface-tension forces, yielding the coating in figure 12(c).
Subsequently, pressure gradients arising from the curvature of the cylinder drive liquid
to the pattern troughs (figure 12d). Liquid continues to accumulate in the pattern troughs
until small droplets form, and these droplets drain toward the underside of the cylinder
(figure 12e, f ).

When the rotation rate W is changed, the balance between surface-tension forces,
centrifugal forces and gravitational forces may shift. In figure 13, 3-D renderings of
simulations are shown for a fixed pattern wavenumber kz at two rotation rates W, one
above and one below the value of W used in figure 13. At the lowest rotation rate, gravity
dominates and liquid accumulates into small droplets over pattern crests on the underside
of the cylinder (figure 13a). Increasing the rotation rate moderately from figure 13(a)
allows the coating to be supported for a short time, and surface-tension forces cause liquid
to accumulate in small droplets in the pattern troughs as was observed in figure 12. At
sufficiently large rotation rates, cylinder rotation again supports the coating for a short
time, and centrifugal forces cause liquid to accumulate in rings centred over the pattern
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Figure 13. The 3-D renderings obtained from simulations for (a) W = 0.10 and (b) W = 0.90 on an axially
patterned cylinder (kz = 4 and β = 0.05). Other fixed simulation parameters are M = 0.0695, ε = 0.07 and
Bo = 50. Rescaled film thicknesses (εh) are indicated by the colourbar.

crests as shown in figure 13(b). For an increase in the rotation rate from figure 13(b),
additional liquid may accumulate in the rings and lead to the formation of axially spaced
droplets, similar to what is seen in figure 12( f ) due to gravity or in figure 5(b) when
centrifugal forces are sufficiently strong.

Computational limitations have prevented us from conducting a comprehensive
parameter sweep, but we make a couple of observations based on limited simulations.
In the RT regime (W < Wc), a decrease in Bo weakens gravitational forces relative to
surface-tension forces, and liquid accumulates in pattern troughs at lower values of kz.
Also, in the RT regime, decreasing the characteristic film thickness ε decreases the mass
of liquid on the cylinder. As a result, gravitational forces acting on the coating become
weaker, and liquid accumulates in pattern troughs at lower values of kz.

5. Flow visualization experiments

To complement the simulation results shown in the previous two sections, flow
visualization experiments have been performed. We provide a description of the
experimental set-up and then examine flows on axially patterned and angularly patterned
cylinders.

5.1. Experimental method
The experimental apparatus is shown in figure 14. Topographically patterned cylinders
were 3-D printed with an ABS (acrylonitrile butadiene styrene) filament at a resolution
(layer height) of 0.2 mm along the cylinder axis and 0.05 mm around the circumference.
Due to the layer-by-layer deposition of material while 3-D printing, the cylinders possessed
a surface roughness of the order of the layer height. The amplitude of the topography
b = βRm was at least 100 times larger than the layer height, so features could be printed
with a surface roughness much smaller than the topography. These cylinders are mounted
to a shaft in a sealed chamber, where the cylinder is rotated using an electric motor and
pulley system. A plastic barrier is mounted over the motor and pulley system to prevent
injury.

Prior to each experiment, the apparatus is levelled using a spirit level to a precision
of 3◦. The cylinders are then coated with a blue-dyed glycerol-water mixture by rotating
the cylinder in a partially filled chamber. Valves present behind the apparatus are opened
to drain the contents of the chamber either by gravity or a peristaltic pump, leaving
behind a coating. After many revolutions, the coating may become so thin in some regions
that dry patches form and the experiments are ended. Occasionally, the experiments are
restarted when air bubbles are entrained into the coating and dry patches form prematurely.
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Figure 14. Picture of the experimental apparatus. A pink background is mounted behind the cylinder to
provide contrast between the background and blue-dyed liquid.

Constant Value

Mean cylinder radius, Rm (cm) 1 − 3
Pattern amplitude, β 0.01 − 0.1
Pattern wavenumber, kθ or kz 1 − 5
Rotation rate, Ω (rpm) 100 − 300
Surface tension, σ (dyn cm−1) 65 − 67
Density, ρ (g cm−3) 1.26
Viscosity, μ (P) 2 − 4

Table 3. Experimental conditions for cylinder geometry and liquid properties.

Additionally, larger disturbances may drift axially over time due to imperfect levelling of
the apparatus.

Experiments were carried out on axially patterned and angularly patterned cylinders
of varying pattern wavelengths, pattern amplitudes and radii to explore the effects of the
Weber number We. Glycerol-water mixtures (95–96 wt% glycerol) were prepared and dyed
with a small amount of blue food colouring. Surface tension and viscosity were measured
using a Wilhelmy plate tensiometer and a Brookfield viscometer, respectively. The density
was determined from tabulated data. Experimental conditions are summarized in table 3.

The expression for We, shown in table 2, depends on the liquid density, surface tension,
mean cylinder radius and rotation rate (in rad s−1). In experiments, We is varied by
changing the cylinder’s rotation rate. A critical rotation rate corresponding to the critical
Weber number may be obtained from (3.13)

Ωc =
√

σ

ρR3
m

(k2
θ + k2

z − 1). (5.1)

We note that (5.1) is obtained from a long-wave analysis for a coating on a patterned
cylinder in the absence of gravity (see § 3.1). However, the results of simulations presented
in § 4.3 demonstrated that (5.1) will likely hold even in the presence of gravity, so long as
the rotation rate is sufficiently large.
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Figure 15. Free surface of the coating on the upward-moving side of an axially patterned cylinder (kz = 2) at
different times for (a,b) We = 1.82, W = 0.314 and (c,d) We = 3.64, W = 0.445 with Wec = 3.00, Bo = 18.41,
M = 0.128 and β = 0.15. The critical rotation rate corresponding to Wec = 3.00 is Ωc = 121 rpm. The dark
area at the bottom of the images is a shadow cast by the cylinder.

5.2. Results and discussion
For axially patterned cylinders (kz /= 0 and kθ = 0), the free surface on the upward-moving
side of the cylinder is shown at different times below the critical rotation rate in
figure 15(a,b) and above the critical rotation rate in figure 15(c,d). The darker and lighter
blue regions of the coating correspond to thicker and thinner liquid films, respectively.

For Ω = 94 rpm (figure 15a,b), liquid pools in the pattern troughs at early times, as is
expected below the critical rotation rate (figures 4a and 11). Under the action of gravity,
liquid in the troughs forms lobes on the upward-moving side of the cylinder (figure 15a).
Over time, these disturbances drift axially to the left, but they are not shed under the
action of gravity (figure 15b). The disturbance shown in figure 15(b) remains relatively
unchanged over a few minutes until the end of the experiment, where dewetting occurs
sporadically along the cylinder axis. In simulations of coating behaviour for the conditions
reported for figures 15(a) and 15(b) (not shown here), an increase in the droplet mass in
the pattern troughs led to the migration of droplets toward the pattern crests, as they are
the lowest point on the cylinder. While this simulation might explain the migration of the
droplets observed in figure 15(b), precise levelling of the apparatus is difficult, and droplet
migration may be caused by a slight inclination of the apparatus.

Above the critical rotation rate, for Ω = 133 rpm (figure 15c, d), liquid collects over the
pattern crests, as is expected from the long-wave theory (see § 3.1) and simulation results
(figures 4b and 11). Eventually, enough liquid collects over pattern crests that droplets form
on the upward-moving side of the cylinder. Unlike the case of Ω < Ωc, these droplets
continue to grow over time and are occasionally shed. While the shedding of the droplets
cannot be captured by our simulations, the continued growth of the droplets is captured
in simulations above the critical Weber number (not shown here). After roughly one
minute, dewetting occurs preferentially in the pattern troughs, where the coating thickness
is smaller, and the experiments are ended.

From the expression for the critical rotation rate Ωc (5.1), we expect liquid to move to
the pattern troughs and crests, respectively, for Ω − Ωc < 0 (We < Wec) and Ω − Ωc > 0
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Figure 16. Experimentally observed regimes of coating behaviour on axially patterned cylinders (symbols)
versus the theoretical cutoff between the regimes, given by the dashed line. Blue circles denote accumulation
of liquid over pattern crests, and red squares denote accumulation of liquid in pattern troughs. Green diamonds
denote conditions where the coating behaviour was unclear, or where it varied significantly over the cylinder.
Excellent agreement is seen between the predicted boundary between the regimes and the experimentally
observed boundary.

(We > Wec), as was observed in § 3.1. On axially patterned cylinders, we test the validity
of this prediction by conducting a series of flow visualization experiments for varying
rotation rates Ω , mean cylinder radii Rm and pattern wavenumbers kz. The results of these
experiments are summarized in figure 16, where Ω − Ωc is plotted against the axial pattern
wavenumber. Experiments where liquid moves to pattern crests and troughs are denoted
by the blue and red symbols, respectively, while experiments where the behaviour of each
coating could not be clearly determined are denoted by the green symbols. Excellent
agreement is observed between the predicted boundary separating the regimes, given
by the dashed line at Ω − Ωc = 0, and the experimentally observed boundary located
between the blue circles and red squares in figure 16.

Flow visualization experiments have also been conducted to study coatings on angularly
patterned cylinders, with a set of representative results shown in figure 17. At low rotation
rates not shown in figure 17, the behaviour of the coating is similar to that observed
on unpatterned cylinders, where small bands of liquid form near the outer edges of the
cylinder and migrate toward the centre over time (Kovac & Balmer 1980). At moderate
rotation rates (figure 17a,b), small bands of liquid form near the outer edges of the cylinder.
Visually, the coating changes little over time, and additional rings do not grow between the
ends of the cylinder (figure 17b). The apparent absence of rings at moderate rotation rates
is consistent with the LSA predictions, where the growth rate of rings is proportional to the
rotation rate (3.3). As a result, the most uniform coatings in our experiments are found at
moderate rotation rates, where the cylinder rotates fast enough to counteract gravitational
drainage but slow enough to prevent significant disturbance growth.

At larger rotation rates (figure 17c,d), axially spaced rings form along the length of the
cylinder with fairly regular spacing, as was observed in simulations in § 4.2 (figure 10).
The spacing between these rings typically decreases and the number of rings increases as
the rotation rate increases. These rings may migrate after a few seconds and occasionally
merge, leading to variations in the ring spacing along the cylinder length. Due to the
accumulation of liquid in the rings and merging of the rings, gravity-induced droplets may
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Figure 17. Free surface of the coating on the upward-moving side of an angularly patterned cylinder (kθ = 4)
at different times for (a,b) We = 8.21, W = 0.445 and (c,d) We = 18.45, W = 0.667 with Bo = 41.43, M =
0.0695 and β = 0.05. The critical Weber number for kθ = 4 is Wec = 15. The dark blue bar at the bottom of
the image is leftover coating liquid which is kept in the apparatus for subsequent visualization experiments.
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Figure 18. Spacing between axially spaced rings on angularly patterned cylinders predicted by (3.2) (Evans
et al. 2005) (λ∗RP; black line) compared to the average spacing measured in experiments (λ∗exp; red circles).
Error bars denote the standard deviation of the measured value. Good agreement is seen between the average
spacing and the prediction.

form on the upward-moving side of the cylinder as was observed on axially patterned
cylinders in figure 15(d).

In § 4.2, we noted that the predicted wavelength of the RP instability on an angularly
patterned cylinder is identical to the one on an unpatterned cylinder (3.2). It was also
observed that the spacing between rings obtained from simulations on angularly patterned
cylinders is fairly close to the predicted wavelength of the RP instability (figure 8).
Here, experiments have been conducted for varying cylinder radii Rm, angular pattern
wavenumbers kθ and rotation rates Ω (see table 3) at pattern amplitudes of 0.05 ≤
β ≤ 0.1 to explore the effects of the Weber number We on the spacing of rings. The
experimentally measured dimensionless ring spacing (λ∗exp = λexp/Rm) is shown against
the Weber number in figure 18, where red circles are the experimental results and the solid
line is the predicted wavelength (3.2). Due to the migrating and merging of the rings,
variations in the ring spacing are observed experimentally, as shown by the error bars
in figure 18. The predicted value of the ring spacing, which is identical for unpatterned
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and angularly patterned cylinders, agrees quite well with the average, experimental ring
spacing at each Weber number, providing additional evidence that the spacing between
the rings is largely unaffected by the presence of angular topography.

Lastly, we have investigated the behaviour of coatings at low rotation rates, where
the coating sags and breaks up into axially spaced droplets under the action of gravity.
Experiments are conducted on axially patterned and angularly patterned cylinders by
lowering the rotation rate of the cylinder to trigger the formation of droplets, as was done in
Evans et al. (2005). Representative examples of the free surfaces of the coating are shown
in Appendix C. Here, we find that there is not a consistent difference in droplet spacing
between unpatterned and patterned cylinders. This is consistent with the simulation results
for flows on angularly patterned cylinders (figure 8), where the angular topography did not
have a significant impact on droplet spacing. For axially patterned cylinders, simulations
indicate that droplet spacing is controlled by the pattern wavelength (figure 11). This is
not observed in the experiments, perhaps because the film thickness (which we cannot
accurately measure) is much larger than the topography amplitude.

6. Conclusions

Liquid flow on the outside of rotating, topographically patterned cylinders serves as a
useful model problem to study flows on the outside of objects that possess varying
surface curvature. A lubrication-theory-based model describing flows on topographically
patterned cylinders in three dimensions has been used to examine this problem. This
study significantly extends prior work investigating flows on 2-D cross-sections of
topographically patterned cylinders, where axial thickness variations and axial substrate
curvature are neglected (Li et al. 2017), and prior work examining flows on 3-D
unpatterned cylinders (Yih & Kingman 1960; Moffatt 1977; Preziosi & Joseph 1988; Evans
et al. 2005; Li & Kumar 2018).

Above the critical rotation rate (1.1), axially spaced rings characteristic of the RP
instability form on unpatterned cylinders with a spacing determined by the balance
between centrifugal forces and surface-tension forces (Yih & Kingman 1960; Moffatt
1977; Hynes 1978; Preziosi & Joseph 1988; Evans et al. 2005; Li & Kumar 2018). When
gravity is neglected, the long-wave analysis and simulations for topographically patterned
cylinders show that surface-tension and centrifugal forces cause liquid to accumulate over
crests at high We or troughs at low We (§ 3). In the absence of gravity, the resulting liquid
ridges may break up into droplets with spacings similar to those predicted by LSA (§ 3,
Appendix A and supplementary material). In the presence of gravity, the coating can sag,
leading to the formation of axially spaced droplets or axially spaced rings on angularly
patterned cylinders (§ 4.2) and axially patterned cylinders (§ 4.3). Regime maps are used
to clearly define conditions where gravitational forces and surface-tension forces compete
to determine coating behaviour (W < Wc), and conditions where surface-tension forces
and centrifugal forces compete to determine coating behaviour (W > Wc).

Simulation results indicate that angular topography does not significantly alter the
spacing of axial disturbances relative to what is observed on unpatterned cylinders (figure 8
and § 4.1). However, angular topography leads to the accumulation of liquid into thicker
bands of liquid at early times (figure 10). As a result, the destabilizing effects of centrifugal
forces at large rotation rates is stronger, which speeds up the growth of axially spaced rings
(figure 9). A similar effect is observed at low rotation rates in the RT regime (Appendix B).
At sufficiently large rotation rates, the spacing of rings on angularly patterned cylinders
predicted by LSA (3.2) is found to agree well with the results of simulations (figure 8) and
the results of flow visualization experiments (figure 18). In experiments, the most uniform
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coatings were observed at moderate rotation rates, where the growth rate of the rings is
slow (3.3).

On axially patterned cylinders, simulation results indicate that the axial topography
leads to the accumulation of liquid at either pattern crests or pattern troughs (§§ 3
and 4.3). Capillary-pressure gradients induced by the axial curvature of the cylinder
drive liquid toward pattern troughs, while gravitational forces at low rotation rates and
centrifugal forces at large rotation rates drive liquid toward pattern crests (figures 11–13).
At large rotation rates, the expression for the critical Weber number obtained from the
long-wave analysis ((3.13) or (5.1)) separating the capillary-dominated regime and the
centrifugal-dominated regime was found to agree well with the results of simulations
(figure 11) and flow visualization experiments (figure 16). In experiments examining the
behaviour of coatings on axially patterned and angularly patterned cylinders at low rotation
rates, neither type of patterning was found to have a reproducible effect on the behaviour of
the coating or the spacing of droplets compared to those observed on unpatterned cylinders
(Appendix C).

Based on the results of the long-wave analysis and the flow visualization experiments,
it would be difficult to completely prevent the undesired growth of disturbances without
solidifying the coating. Here, the long-wave analysis and LSA provide a means to estimate
the time ((3.11) and (3.3)) available to solidify the coating before large disturbances
grow. Additionally, the present work provides a foundation for future work aimed at
understanding how the finite length of discrete objects (e.g. Kang, Nadim & Chugunova
2016, 2017) and rotation about other axes influence coating uniformity.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.224.
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Appendix A. Rapidly rotating cylinder: angular and screw-shaped patterning

Here, we present a few results from simulations on angularly patterned and screw-shaped
cylinders above the critical Weber number Wec (3.13) in the absence of gravity.
Below the critical Weber number, liquid accumulates in pattern troughs, forming ridges
of liquid that are aligned with grooves in the topography. Much like the results shown for
axially patterned cylinders (figure 5a), the ridges do not break up along their length when
gravity is neglected, most likely due to the stabilizing effect of surface tension. Above Wec,
we explore the behaviour of coatings on angularly patterned and screw-shaped cylinders
in more detail. Simulations were conducted with purely angular patterning (kθ = 4 and
kz = 0) and screw-shaped patterning (kθ = 3 and kz = 3) for We = 20 (above Wec = 15
and Wec = 17, respectively). At moderate times (t = 1 × 104), 3-D renderings of coatings
for these simulations are shown in figure 19. Liquid pools over the pattern crests for both
angular patterning (figure 19a) and screw-shaped patterning (figure 19b), as is expected
from the linear theory.

At later times, the bands of liquid over the pattern crests break up into regularly spaced
droplets, as was observed on axially patterned cylinders in figure 5(b). To explore this,
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Figure 19. The 3-D renderings obtained from simulations with We = 20, ε = 0.01 and β = 10−3 at t = 1 ×
104 for (a) kθ = 4, kz = 0 and (b) kθ = 3, kz = 3. Rescaled film thicknesses (εh) are indicated by the colourbar.
Note that the z-axis is not shown to scale.
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Figure 20. The 3-D renderings of coatings for We = 20, ε = 0.01, and β = 10−3 at t = 1.0 × 106 on (a) an
angularly patterned cylinder (kθ = 4, kz = 0) and (b) a screw-shaped cylinder (kθ = 3, kz = 3). The Weber
number is above the critical Weber number in both cases. Rescaled film thicknesses (εh) are indicated by the
colourbars. Dashed black lines are used to denote the position of pattern crests in either the angular patterned
or screw-shaped cylinders.

coatings obtained from the simulations shown in figure 19 are unravelled by plotting the
coating thickness against the angular and axial coordinates at t = 1 × 106. Dashed lines
denoting the crests in cylinder topography are overlaid with the thicknesses shown in
figures 20(a) and 20(b). For the angularly patterned cylinder (figure 20a), the angularly
spaced bands of liquid observed in figure 19(a) break up into axially spaced droplets
with fairly regular spacing. The axial spacing of the droplets λsim = 2.094 is similar to
that predicted for the RP disturbance on unpatterned cylinders λRP = 1.939 (3.2). For
the simulation shown in figures 19(a) and 20(a), the simulation has been carried out to
t = 2.0 × 106, and the droplets shown in figure 20(a) do not merge.

For the screw-shaped cylinder (figure 20b), the bands of liquid aligned over the pattern
crests, denoted by the dashed black lines, continue to grow. Prior to the time depicted
in figure 20(b), these bands of liquid break up into regularly spaced droplets that are
aligned over the pattern crests. The axial and angular spacing of these droplets prior to
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merging correspond to wavenumbers lθ = lz = 4, where l2θ + l2z = 32. This is greater than
the most dangerous wavenumbers lθ,m and lz,m predicted by LSA, given by l2θ,m + l2z,m =
(1 + We)/2 = 10.5 (see supplementary material). This disagreement may arise from the
frozen-base-state assumption made in LSA or from nonlinear effects not accounted for by
LSA.

Over time, a handful of the droplets migrate and merge, yielding three bands of droplets
with varying size and spacing (figure 20b). Note that due to periodicity in the axial and
angular directions, the droplets at the four corners of figure 20(b) are four quadrants of
a single droplet. The instability of the coatings for We > Wec in figures 20(a) and figure
20(b) is due to the destabilizing effect of centrifugal forces, which leads to the growth of
droplets over pattern crests.

Appendix B. Angular patterning: RT regime

At low rotation rates (W < Wc, (4.2)), gravity causes the coating to sag to the underside
of the cylinder, where it forms a ridge of liquid along the cylinder axis. In the absence
of topography, this ridge is unstable to axial disturbances and may form axially spaced
droplets or fingers of liquid (RT instability) (Evans et al. 2005). The spacing of these
droplets on unpatterned cylinders tends to be larger than the predicted spacing of the RT
disturbance on the underside of a flat plate (4.3) and varies negligibly with the rotation rate
W (figure 7). Additionally, the spacing is not significantly affected by angular topography
(figure 8).

However, the growth rate of droplets on rotating cylinders may be affected by angular
topography. It was shown in figure 9 that axially spaced rings may form faster at large
rotation rates (W > Wc) when the cylinder’s angular curvature varies. To explore this in
the RT regime (W < Wc), we examine the results of simulations for flows on angularly
patterned cylinders of fixed wavenumber (kθ = 3) and varying pattern amplitudes β.

In figure 21, renderings of coatings on angularly patterned cylinders of varying pattern
amplitude are shown at two times. Ridges of liquid have formed on the cylinders at
early times, as shown in figures 21(a)–21(c). These ridges break up into axially spaced
droplets at later times (as shown in figure 21d–f ) due to the destabilizing effect of gravity.
Changes in the average spacing of the droplets with pattern amplitude are not systematic –
the average disturbance spacing obtained from simulations is λ∗sim = 1.834, 1.847, 1.950
and 1.645 for β = 0, 10−3, 10−2 and 10−1, respectively. These are all greater than the
predicted wavelength of the RT instability on a flat plate of λ∗RT = 1.28 (4.3). Note that
the largest pattern amplitude β = 10−1 is 10 times the film thickness (β/ε = 10). These
results suggest that topography amplitude exerts a weak effect on the spacing of droplets
on angularly patterned cylinders, as was shown for thicker coatings in figure 8.

The effect of angular topography amplitude on the rate at which axial thickness
disturbances grow at low rotation rates cannot be clearly determined from figure 21. To
better examine this effect, the normalized maximum axial thickness variation across the
cylinder (α−1(
h)max) over time is calculated from the simulation results. In figure 22,
(
h)max is given on a logarithmic scale for simulations of varying topography amplitude
(0 ≤ β ≤ 10−1) and fixed topography wavenumber (kθ = 3). A rapid increase in (
h)max
is observed at early times (t < 10) for all topography amplitudes as a ridge of liquid forms
on the upward-moving side of the cylinder. Over time, axial disturbances in the liquid ridge
grow exponentially until (
h)max plateaus, indicating droplet formation is complete. The
plateau in (
h)max is observed near t = 75 when β = 10−1 as opposed to near t = 150 for
0 ≤ β ≤ 10−2.
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Figure 21. The 3-D renderings obtained from simulations on angularly patterned cylinders (kθ = 3) with W =
3 × 10−3, M = 0.063, ε = 0.01 and Bo = 48 such that MW/ε2 < 2.001. Times shown are (a–c) t = 50 and
(d–f ) t = 200. Topography amplitudes are (a,d) β = 10−3, (b,e) β = 10−2, and (c, f ) β = 10−1. Rescaled
film thicknesses (εh) are indicated by the colourbars. The average dimensionless spacing between droplets is
λ∗sim = 1.847, 1.950 and 1.645 in order of increasing pattern amplitude β.
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Figure 22. Normalized maximum axial thickness variation α−1(
h)max over time for varying pattern
amplitudes 0 ≤ β ≤ 10−1 on angularly patterned cylinders with kθ = 3 and α = 10−3 (see (4.1)). Other
parameter values are the same as in figure 21. Oscillations in (
h)max are present for β = 10−2 (green line)
and become a prominent feature of the disturbances for β = 10−1 (pink line).
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(a) (b)

Figure 23. Free surface of the coating on the upward-moving side of 3-D printed cylinders for (a) an
unpatterned cylinder (β = 0) and (b) an angularly patterned cylinder (β = 0.09 and kθ = 5) with We = 0.531,
W = 0.085, Bo = 73.65 and M = 0.0452. The spacing between the droplets is (a) λ/Rm = 0.992 ± 0.167 and
(b) λ/Rm = 1.02 ± 0.23. The dark blue bar at the bottom of the image is leftover coating liquid which is kept
in the apparatus for subsequent visualization experiments.

Oscillations in (
h)max may be observed with an increase in pattern amplitude (β =
10−2 and 10−1) and are a prominent feature of (
h)max for the largest pattern amplitude
β = 10−1, which is 10 times larger than the film thickness (β/ε = 10). Note that the
period of these oscillations is approximately equal to the period with which a crest in
the topography passes the ridge of liquid on the upward-moving side of the cylinder
(2πM−1W−1ε2k−1

θ ). The oscillations are not discontinuous; one period consists of at least
10 000 time steps.

The quantitative effect of the topography amplitude β on the growth rate of the
instability observed in simulations ωsim may be obtained from figure 22 by calculating
the slope of log10((
h)max) versus time in the region after ridge formation but before
the plateau. The growth rate ωsim at small pattern amplitudes (0 ≤ β ≤ 10−2) varies
non-systematically between ωsim = 3.11 × 10−2 and 3.15 × 10−2. At the largest pattern
amplitude, however, the growth rate nearly doubles to ωsim = 5.82 × 10−2, indicating that
the growth rate of the instability is not strongly affected by angular topography unless
the topography amplitude is large. Evidently in the RT regime, the topography amplitude
needs to be larger to see a significant change in the growth rate, relative to what is observed
in the RP regime (figure 9), likely due to the greater importance of gravitational forces in
the RT regime.

Appendix C. Rayleigh–Taylor experiments

At low rotation rates, hanging droplets may form on the underside of rotating,
topographically patterned cylinders, as has been observed in our flow visualization
experiments. A representative set of images obtained from these experiments is shown
in figure 23 for an unpatterned circular cylinder (figure 23a) and an angularly patterned
cylinder (figure 23b). For this set of experiments, the difference in the spacing between
the droplets, shown in the figure caption, is statistically insignificant. The same behaviour
is observed for flows on axially patterned cylinders.
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