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COMBINATORIAL PROPERTIES OF ASSOCIATED 
ZONOTOPES 

G. C. SHEPHARD 

1. Introduction. Let Su . . . ,Srber line segments, each of non-zero length, 
in w-dimensional euclidean space Kn. If a polytope Z is defined as the vector 
(Minkowski) sum 

(1) Z = S, + . . . + Sr, 

then the segments St will be called the components of Z. Since we do not wish 
to exclude the possibility that some of the components may be parallel, the 
polytope Z may be written in the form (1) in many different ways. For this 
reason it is convenient to define a zonotope to be the polytope Z together with 
some specified set of components {Su • • • » Sr}. Figures 1, 2 and 3 show some 
zonotopes of 1, 2 and 3 dimensions with 4, 5 and 6 components. 

We may assume, without loss of generality, that the origin o is the centre of 
each line segment Si, and therefore also of Z. If 

Si = convj — xu xt}, i = 1, . . . , r, 

for some set X = {xu . . . , # r}, then we write P(Z) for the set of 2 r points 

(2) ± Xi db X2 db . . . dz Xr 

and Z may also be defined as convP(Z) . Yet another definition of Z is the 
following 

Z = {x G Rw|x = XiXi + . . . + \rxr; —1 ^ Xi S l',i = l , . . . , r } . 

The elementary properties of zonotopes, such as the equivalence of the 
above definitions, are easily established, see [2; 3; 6], and the reader is referred 
to these publications for further information. In [2], Coxeter deals mainly 
with 3-dimensional zonotopes or 'zonohedra', and in [3] he introduces pro
jective diagrams for a zonotope, an idea we shall make use of later. In [6] 
McMullen introduces the concept of an 'associated zonotope' which is funda
mental in this paper. For convex poly topes in general we shall, for the most 
part, follow the notations and terminology of [4] and [7]. 

From now on it is convenient to assume that the set X linearly spans Kn so 
that Z is an w-polytope. If X is a linear basis of Kn (card X = n) then Z is 
called a cube. If all the components, with exactly one exception Sk, lie in an 
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v(Z) = 14 b(Z) = 0 i(Z) = 2 

2 3 
/ 4 6 4 1\ 
U 0 0 0 / 

v(Z) = 2 b(Z) = 0 i(Z) = 14 

FIGURE 1. (« = 3, r = 4) 

(« — 1)-dimensional linear subspace of Rw, then Z is called a prism, and S* 
is called an upright of Z. A cubical zonotope is one whose proper faces are all 
cubes. (The zonotopes of Figure 1 are cubical; those of Figures 2 and 3 are not.) 

Other special types of zonotope mentioned in the literature are 'equilateral 
zonotopes' and 'polar zonotopes', see [2, p. 29]. We shall not discuss these here 
since their definitions and special properties are essentially metrical, whereas 
here we are primarily concerned with combinatorial properties. Some photo
graphs of beautiful models of equilateral zonotopes appear in [2, Plate II] . 
These have been constructed in such a way as to maximize the orders of their 
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v(Z) = 20 b(Z) = 4 i(Z) = 8 

45 

9 10 5 1 
5 1 0 0 
1 0 0 0 

v(Z) = 8 b(Z) = 4 i(Z) = 20 

FIGURE 2. (n = 3, r = 5) 

https://doi.org/10.4153/CJM-1974-032-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-032-5


COMBINATORIAL PROPERTIES 305 

15 14 6 r 
15 5 1 0 
6 0 0 0 
1 0 0 0, 

i{Z) = 20 

15 15 6 V 
14 5 0 0 
6 1 0 0 
1 0 0 0, 

v{Z) = 20 b(Z) = 20 i(Z) = 24 

FIGURE 3. (n = 3, r = 6) 
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symmetry groups, and consequently, except in one case, the points P(Z) are 
not all distinct. Here we shall, on the contrary, always assume that P(Z) 
consists of 2 r distinct points. The reason for this assumption is purely technical. 
If we did not make it then it would be necessary to label each point with a 
'multiplicity' according to the number of different ways in which it could be 
expressed in the form (2), and this would lead to trivial, but tiresome, compli
cations. 

For any given Z the set P(Z) may be partitioned into three subsets. First 
we have the vertices of Z, and the number of these will be denoted by v(Z). 
Secondly we have the interior points of Z, and the number of these will be 
denoted by i(Z). Finally we have those points which lie in the boundary of Z, 
but are not vertices of Z. These will be called boundary points, and their 
number will be denoted by b(Z). Thus 

(3) v(Z)+b(Z)+i(Z) = 2'. 

In Figures 2 and 3, boundary points are marked as small open circles. 
I t is easy to show that every face F of Z can be written in the form 

(4) 5.(1) + . . . + £,(,) + £<r(s+l)X<r(s+l) + . . . + 6<r(r)#(7(r) 

where 0 S s ^ r, a is a permutation of (1, . . . , r), and each et = ± 1 . In fact 
(see [6, § 2]), if u is the outward normal to a hyperplane H which supports 
Z in F, then 

(5) (u, xff(i)) = 0 for i = 1, . . . , s, 

(u, €,«)*,(*)) = Mcr(i) > 0 for i = s + 1, . . . , r, 

and the equation of H is 

(U, x) = € . (5+1)^(5+1) + • • • + €<r(r)/Vr)-

Thus every face of a zonotope is itself a zonotope, and, in particular, the 2-
faces are centrally symmetric polygons. The converse statement is also true; 
if Z is any polytope with centrally symmetric 2-faces, then Z must be a 
zonotope [8]. 

Every set which can be written in the form (4) will be called a cell C of Z, 
and Sad), • . . , Sa(S) will be called the components of C. Let us denote by [C] 
the family of 2T~S cells 

(6) 5.(1) + . . . + Sa(s) db Xa(s+i) db . . . zb Xa(T). 

There is just one family of O-dimensional cells, namely P(X), and the family 
[Z] contains only one cell. There are 2T families of cells in all. Every face F 
of Z is a cell of Z, and, unless F = Z, the family [F] always contains at least 
one face of Z other than F, namely the reflection of F in the origin. On the 
other hand, not every family of cells contains faces of Z. The following is easily 
established. 
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(7) The family (6) of cells of Z contains (proper) faces of Z if and only if 
there exists a (proper) linear sub space L of Rn such that 

L C\ X = {^(1), . . . , Xa(8)}. 

In the case of a cubical zonotope, every family of cells of Z of dimension 
strictly less than n contains faces of Z, and every cell of Z of dimension strictly 
less than w i s a cube. 

Coxeter''s first projective diagram for Z [3, p. 141] consists of the set of points 
X, regarded as lying in a projective space Pn-i, together with all the projective 
subspaces of Pn-\ that are spanned by subsets of X. It is thus a projective 
configuration and may be denoted by D(X). In Figures 1, 2 and 3 we reproduce 
the configurations corresponding to each of the six zonotopes illustrated. 
Clearly there is a one-to-one correspondence between the subsets of X and 
the families of cells of Z, and also (on account of (7)) between the (proper) 
projective subspaces of D(X) and the families of (proper) faces of Z of dimen
sion greater than zero. 

It is a simple consequence of Euler's Theorem [2, p. 9; 4, p. 130] that every 
3-polytope must have 2-faces which are &-gons for k < 6 [4, p. 254] and there
fore every 3-dimensional zonotope must have 2-faces which are parallelo
grams. This implies that every projective configuration in the plane must 
contain an 'ordinary' line, that is to say, one which contains exactly two points 
of the configuration. As Coxeter points out [3, p. 142] this provides a proof, 
in fact a very elegant proof, of Sylvester's Theorem. First Motzkin, and later 
Hansen [5] extended Sylvester's Theorem to projective spaces of m ^ 3 
dimensions, and proved that every projective configuration must contain an 
'ordinary' hyperplane, that is to say, a subspace of m — 1 dimensions in which 
the points of the configuration, with exactly one exception, lie in a subspace 
of m — 2 dimensions. In terms of zonotopes, the interpretation of this asser
tion is the following. 

(8) At least two facets of an n-dimensional zonotope are (n — 1)-dimensional 
prisms. 

The name 'zonotope' arises from the fact that the faces of Z lie in 'zones'. 
The &th zone of Z is defined to be the set of all faces of which Sk is a component. 
The combinatorial properties which we shall consider in this paper concern 
the relationships between the cell structure of Z, its faces, and its zones. We 
begin, in § 2, defining an 'associated zonotope' Z whose properties are, in a 
remarkable way, complementary to those of Z. 

2. Associated zonotopes. Let X = {xi,. . . , xT) C Rw be defined as before, 
and let X = {xi, . . . , xr) C Rr-W be a linear representation of X. For the 
definition of a linear representation and its properties see [9] or [6]. Here we 
repeat these briefly in order to make the exposition self-contained. Let us 
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construct an r X r matrix 

[~Xi %i 

(9) M{X) = \\ \ 

where each xt represents a l X w block of elements, namely the coordinates of 
%i relative to some given coordinate system in Rw, and each xt represents a 
1 X (r — n) block of elements. M(X) must be constructed in such a way 
that it is non-singular and also so that each of its first n columns is orthogonal 
to each of its last r — n columns. This can always be done by taking the last 
r — n columns to be a basis of the (r — n)-dimensional linear space of linear 
dependences of the set X [6, § 3]. The set X = {xi, . . . , xr\ C Rr~n is called 
a linear representation of X. I t should be noticed that 

(a) X is only determined within a non-singular linear transformation of 
Rr-W, 

(b) X spans Kr~n linearly, 
(c) there is a canonical one-to-one correspondence between X and X, 

corresponding elements having the same subscript, 
(d) the relationship between X and X is symmetrical, and 
(e) if no r — 1 of the points of X lie in an (n — 1)-dimensional linear sub-

space of Rn, then no vector of X is the zero vector. 
Let us now define 

Z = Si + . . . + Sr C Rr-W 

where 

Si = conv{ —Xi, Xi), i = 1, . . . , r. 

If Z is not a prism then property (e) shows that Z is a properly defined 
(r — n)-dimensional zonotope with components Si, . . . , Sr. We say that Z 
is associated with Z, and note that, because of property (d), Z is also associated 
with Z. Property (a) shows that the construction does not define Z uniquely, 
but that its combinatorial type is determined. If Z is cubical so is Z. Further, 
two components Si and Sj of Z are parallel if and only if there exists an 
(n — 1)-dimensional linear subspace of Kn containing the set X\{xt, Xj}. 
Figures 1, 2 and 3 show three pairs of associated zonotopes. 

Although the above algebraic definition of associated zonotopes is convenient 
for most purposes, the following geometrical interpretation, which is due to 
P. McMullen, is of interest. In R r take any regular r-dimensional cube W and 
any pair of complementary orthogonal subspaces, Ln and Lr_n. Then the 
image of W under orthogonal projection on to Lnj and the image of W under 
orthogonal projection onto LT_n, are associated zonotopes. In fact the cells of 
these zonotopes are the images, under the parallel projections, of the faces of W. 
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H. S. M. Coxeter has pointed out the following elegant example of this 
geometrical interpretation in the case r = 4, n = 2. For a suitable pair of 
complementary two-dimensional subspaces, the images Z, Z of a four-dimen
sional cube W are octagons. Such an octagon Z is illustrated in Figure 4, where 
the cells of Z are also indicated. In this diagram two circuits of one-dimensional 
cells are indicated by thicker lines, namely the boundary of Z and an octagram 

FIGURE 4 

lying in the interior of Z. The inverse images of these circuits are edge-circuits 
of W, each containing 8 edges. They are complementary Pétrie polygons. By 
'complementary' we mean that each vertex of W belongs to precisely one of 
the edge-circuits, and by * Pétrie polygon' we mean that no s consecutive edges 
belong to the same (s - l)-face of W (1 ^ j ^ 4), [2, pp. 223, 244]. Further, 
in the associated octagon Z, the roles of these two Pétrie polygons are inter
changed; the one that projects into the boundary of Z projects into the octa
gram in the interior of Z, and vice versa. 

We now describe some of the geometrical relationships between Z and Z. 
A very brief account of these appears in [6, § 5]. Throughout this section we 
shall assume that every zonotope under consideration is not a prism so that an 
associated zonotope is properly defined. 

Two one-to-one correspondences turn out to be of importance. The first 
correspondence is between cells of Z and cells of Z, mapping 

( 1 0 ) C = Sa(i) + • • • + Sff(t) + € , ( s + i ) X „ ( 5 + i ) + . . . + e<rir)X*(r) 
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on to 

( H ) C = 0«r(i) + . . . + 5v(s) + 6<r(5+i)X<r(s+i) + • • • + e<r(r)X„(r). 

In particular it maps each point 

(12) q = ei*i + . . . + eTxr 

of P{Z) on to the point 

(13) q = €i*i + . . . + erxr 

of P(Z). The second correspondence is between families of cells of Z and 
families of cells of Z. With C defined as in (10), it maps [C] on to [C], where 

(14) C = Xff(i) + . . . + X<r(s) + Sffts+i) + . . . + Sair). 

Thus it maps the family P(Z) on to [Z], and P[Z] on to [Z]. From now on we 
shall use the notations C and C in the above senses without any further 
explanation. 

(15) THEOREM. If the point q defined in (12) is a vertex, boundary point, or 
interior point of Z, then the point q, defined in (13), is an interior point, boundary 
point, or vertex of Z, respectively. 

In the case of cubical zonotopes (which have no boundary points), this 
theorem is due to McMullen [6]. The proof given here is essentially the same 
as in [6]. This theorem shows that our first correspondence interchanges vertices 
and interior points between Z and Z, and so may be thought of as 'turning Z 
inside out' to obtain Z. 

For simplicity of notation let us write 

(16) p = Xi + . . . + xr 

and, to begin with, assume that p is an interior point of Z. Then there is no 
supporting hyperplane of Z containing p, and so, by (5), there exists no vector 
u G Kn such that (u, xt) ^ 0 for 1 ^ i' ^ r. In other words the set X does 
not lie in any closed half-space of Kn bounded by a hyperplane through the 
origin, and this, in turn, implies that 

(17) o Ç int conv X 

Since the algebra is reversible we have established the following. 

(18) Condition (17) is necessary and sufficient for p to be an interior point of Z. 

On the other hand, suppose that p is a relatively interior point of some 
proper face F of Z. Again, for simplicity of notation write 

(19) F = S, + . . . + Ss + xs+1 + . . . + xT. 

Then p is a vertex of Z if s = 0, and a boundary point of Z if s ^ 1. Let u be 
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the outward normal to a hyperplane that supports Z in F so that, by (5), 

(u,Xt) = 0 for i = 1, . . . , s 

(u, xt) = Hi > 0 for i = s + 1, . . . , r. 

If we multiply the first n columns of M(X), defined in (9), by the n com
ponents of u, respectively, and add, we obtain a vector 

( o , o , . . . , O , M S + I , . . . , M , r 

which is a linear dependence of X. Thus 

Hs+1Xs+i + . . . + \XTXT = 0, 

and since each /x* > 0 we see that 

(20) o G rel int conv{xs+i, . . . , xr). 

(In fact, see [6], (20) is a necessary and sufficient condition for F, defined by 
(19), to be a face of Z.) Us ^ 1, then p £ rel int F implies that 

xi + . . . + xs G rel int (Si + . . . + 5,), 

and so, by (18), 

(21) o G rel int convfxi, . . . , xs}. 

As the algebra is reversible we obtain necessary and sufficient conditions, and 
we have established the following general statement. 

(22) A point g = eiXi + . . . + erxr (e* = ± 1 ) is a boundary point of Z if 
and only if 

(23) o Ç rel int convfe^DX^i), . . . , e(T(s)x(Tis)} and 

o G rel int conv{ € (̂5+1)̂ (5+1), . . . , e(T(r)x(r(r)} 

for some 1 ^ s ^ r — 1 and some permutation a of (1, . . . , r). If s = 0 or r 
then one of the two conditions (23) is vacuous and the other condition is necessary 
and sufficient for g to be a vertex, or interior point, of Z, respectively. 

Clearly this statement implies Theorem (15) which is thus proved. The 
following consequence is immediate. 

(24) If Z and Z are associated zonotopes, then 

v(Z) = i(Z), b(Z) = b(Z), i(Z) = v(Z). 

In Figures 1, 2 and 3, the values of these quantities are indicated below the 
diagrams. 

Statement (22) implies a number of other geometrical relationships between 
associated zonotopes, such as the following. 

(25) i j a boundary point q of P(Z) lies on the ith zone of Z, then the correspond
ing boundary point q does not lie on the ith zone of Z. 
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By lq lies on the ith zone of Z' we mean that q lies in the relative interior of 
some proper face of Z of which St is a component. 

(26) If bt(Z) boundary points lie on the ith zone of Z, then b(Z) — bt(Z) 
boundary points lie on the ith zone of Z. 

Theorem (15) can be generalized to cells of dimension greater than zero. 
Extending the notation introduced earlier, for a cell C defined by (10), write 
P(C) for the set of 2s points 

(27) { ix^D db . . . dz x0-(5) + e(r(s+i)X(r(s+i) + . . . + eff(r)X<r(r)}. 

Then the cells of Z may be partitioned into three subsets in the following way. 
The cell C will be called a vertex-cell if P (C) contains vertices, but no interior 
points of Z. If C is a cube then it is a vertex-cell if and only if it is a face of Z. 
The cell C will be called an interior-cell if P(C) contains interior points, but 
no vertices, of Z. The third class consists of all the remaining cells; those for 
which P(C) contains both vertices and interior points, or neither. These will 
be called boundary-cells. The terminology is not very appropriate but it is 
introduced temporarily so that the statement of the following theorem is 
closely analogous to that of (15). 

(27) THEOREM. If a cell C is a vertex-cell, boundary-cell or interior-cell of Z, 
then C is an interior-cell, boundary-cell or vertex-cell of Z, respectively. 

The proof is, of course, immediate from (15). Theorems (15) and (17) 
enable us to derive numerical data about zonotopes in a very simple way. We 
give only one example, since more general results will be given later. 

(28) Let Z be an n-dimensional zonotope with n + 1 components, which is not 
a prism. If we denote by fk the number of k-faces of Z, then 

U= ( W + 1 ) ( 2 " + 1 - * - 2 ) ( 0 < * < » - l ) . 

We note that Z is one-dimensional and so has 2 vertices and 2n+l — 2 
interior points. By Theorem (15) Z has 2n+1 — 2 vertices and therefore the 

ln _i_ \ \ 
above expression holds for k = 0. For k ^ 1 we see that Z has ( , 12n+l~k 

(n+l\ \ * J 
cells with k components, of which 21 , I contain a vertex of Z. From 
these facts, Theorem (27) immediately yields the stated value of fk. 

One problem of particular interest is that of determining the number of 
faces of Z that belong to any given family of cells. Our first result in this 
direction is the following. 

(29) / / a face F Ç [C] contains bF boundary points of Z, then the family [C] 
(related to [C] by the second correspondence) contains bF faces of Z. 
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T h u s in Figure 3, the face X\ + x2 + S3 + 5 4 + 5 5 + S& contains eight 
boundary points and so the family Si + .$2 ± #3 ± XA ± £5 db x6 contains 
eight faces (edges) of Z. In particular (29) implies t ha t if C is a cube then [C] 
contains no proper faces of Z . T o prove (29) we need the following lemma, 
which is of independent interest. 

(30) Let Z be defined by (1) and Z\ by 

Zi = 5<r(l) + . . . + Sa{s) 

where 0 ^ s ^ r and a is a permutation of (1, . . . , r). Then the image of Z, 
under projection in the direction \m{xa{s+i), • • • > #*(*•)} on to a complementary 
subspace, is a zonotope Zi , which is associated with Z\. 

T h e cases s = 0, r are trivial, so in the proof we assume tha t 1 ^ s ^ r — 1. 
We simplify the notat ion by taking a to be the identi ty permutat ion. Let 
Z\ = S\ + . . . + 5 S be /-dimensional (1 ^ t ^ s). We construct the matr ix 
M(X) of (9) by writing down the first n columns, which are determined by 
the points xi} and then the next 5 — t columns are chosen to be a basis of the 
linear space of linear dependences of {xi, . . . , xs\. Finally we complete M(X) 
by adjoining a further (r — n) — (s — t) columns in the usual way. Hence 
we see t h a t the elements mfj of M(X) are zero for 5 + 1 ^ i ^ r, 
n -\- 1 ^ j ^ n + s — t and tha t we can obtain a linear representation of 
{xiy . . . , xs} by deleting the last r — n — s + t coordinates of each of 

Because the first s — t coordinates of each olxs+\, . . . , xr are zero, 
this is equivalent to projecting xi, . . . , xs in the direction lin{x s +i , . . . , xr] 
on to complementary (s — t)-dimensional subspace. Hence the associated 
zonotope Zi is obtained from Z in the manner s tated. In addition we also 
deduce the following which will be required in the next section. 

(31) If t = dim C and C has s components, then 

dim C = r — n — s -\- t. 

Using (30) it is easy to prove (29). Continuing with the same notat ion we 
may suppose t ha t C is a t ranslate of Z\. Then the number of faces of Z in the 
family [C] is equal to the number of vertices of the zonotope which arises by 
projecting Z in the direction l in jx^+i ) , . . . ,xa( r)} on to a complementary 
subspace, t ha t is to say, to the number of vertices of Z\. Bu t by (15) this is 
equal to the number of relatively interior points of Zi , and this is equal to bF. 
T h u s (29) is proved. 

3. Def ic iency a n d excess . For each cell C of Z we define two constants , 
as follows. T h e deficiency d{C) of C is defined by 

(32) d{C) = n - dim C 

and the excess e(C) of C is defined by 

(33) e(C) = s - dim C 
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where s is the number of components of C. Both d(C) and e(C) are measures 
of the 'dependence' of the components of C. Thus e(C) = 0 if and only if C 
is a cube, and 

e(Z) = dim Z, e(Z) = dim Z, d(Z) = d(Z) = 0. 

Since every cell in a given family [C] has the same deficiency and excess we 
define d[C] and e[C] in the obvious manner. 

(34) THEOREM. For any cell C of Z 

d(C) = e(C), e(C) = d(C). 

Using (31) we see that 

d(C) = n — dim C = (r — s) — dim C = e(C), 
and 

e(C) = s — dim C = in — r) — dim C = d(C). 

(In fact, of course, each equality follows from the other because of the sym
metry between Z and Z.) 

Statement (34), along with (30), shows that if C is a translate of Zi, then 
e(C) = dim Z\. Also, if C is a cube d(C) = 0, so C is (r — w)-dimensional and 
therefore [C] contains no proper faces of Z, thus confirming the observation 
made after statement (29). 

(35) For any zonotope Z, 

where the summation is over the 2r families of cells [C] of Z. 

This is an Euler-type relation for the cell-families of Z. To prove it we note 
that the definitions imply 

(36) e(C) — d(C) = (s — dim C) — (n — dim C) = s — n. 

But s — n is even for exactly half of the cell families and is odd for the other 
half. Hence 

o = X)(—i)s_w = Y,(—i)e[C]~d[C] = H(—i)d[C]+e[C]. 

(37) THEOREM. For any zonotope Z 

v{Z) = Z ( - l ) e [ C ] , b(Z) = 2 £ ( 1 - (-l)*[<™*]), 

i(Z) = Z ( - l ) d [ C ] , 

where} in each casef summation is over the 2r cell-families [C] of Z. 

To prove the first equality we construct a set of r hyperplanes 

(38) J T = {Hl9 . . . , Hr) 
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through the origin o f R" with 

Hf = {x e Rn|<*,*<> = o}. 

The number of vertices of Z is then equal to the number of w-dimensional 
cones into which Rw is dissected by Jrff. This number has been shown by 
Winder [10] to be Ne — N0 where Ne is the number of even-degenerate subsets 
ofJ^, that is to say, the number of distinct subsets3^f\ Çk^? for which 

dim(H ffli) ~ n — card $?\ 

is even, and iV0 is the number of odd-degenerate subsets of J^, defined in a similar 
manner. Now if C is defined as in (4) a n d ^ i = {H^D, . . . , H^}, then by 
(33), 

e(C) = cardJft - (n - d i m ( n ^ i ) ) . 

Thus Ne and N0 are the numbers of families of cells of Z for which e(C) is 
even and odd respectively. Thus 

v(Z) =Ne-N0 = E ( - D C [ C 1 

as stated. 
If Z is not a prism then i(Z) = v(Z) by (15) and the first part of the theorem 

shows that v(Z) = Z ( - l ) e [ ^ ] = Z ( - l ) d [ C ] by (34). On the other hand, 
if Z is a prism with upright Si, then for each cell C of Z which does not contain 
the component Si there exists a cell C + Si which contains Si. The corres
ponding terms in the sum XX - l ) d [ C ] cancel out, so that 5Z(—l)d[C] = 0-
Clearly i(Z) = 0, and so the third assertion of the theorem is true in this case 
also. 

For the second part of the theorem we temporarily introduce the notation 
c(o, o) for the number of families of cells for which d[C] and e[C] are odd, 
c(e, o) for the number of families for which d[C] is even and e[C] is odd, and 
so on. Then 

v(Z) = E ( - l ) e [ C ] = c(e, e) + c(o, e) - c(e, o) - c(o, o) 

i(Z) = Z ( - i r [ q = c(e, e) - e(o, e) + c(e, o) - c(o, o) 

and (35) implies 

c(o, o) + c(e, e) = c(e, o) + c(o, e) = 2 r _ 1 . 

Thus, using (3), 

b(Z) =2r - v(Z) - i(Z) = 4c(o, o) = 2 E ( 1 - ( - I ) ^ M C ] ) 

as required, and the proof of the theorem is completed. 

Theorem (37) gives an expression for the number of vertices of Z. This can 
be easily extended to give an expression for the number of faces of Z in any 
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given family of cells. 

(39) Let 

C\ = 5 , (1) + . . . + Sais) + %<r(s+l) + • • • + Xff(r) 

be a cell of the zonotope Z. Then the family \C{\ contains 

( - 1 ) ^ ) £ ( - l ) e [ C ] 

faces of Z, where the summation is over all those families of cells [C] of Z that have 
5<r(i), . . • , Sa(S) as components. 

The proof follows the same lines as that of (29) except that we use (37) to 
determine the number of vertices of Zx. 

4. The deficiency-excess matrix. The results of the previous section can 
be conveniently stated in terms of a matrix A (Z) which we shall call the 
deficiency-excess matrix (d-e matrix) of Z. The (^,j)th term atJ of A(Z) is 
defined to be the number of families of cells [C] of Z for which d[C] = i and 
e[C] = j . Since 0 ^ d[C] ^ n and 0 ^ e[C] â T — n, we see that all the non
zero terms of A (Z) lie in the leading (n + 1) X (r — n + 1) submatrix. 
While it is often convenient to think of A (Z) as consisting of this block of 
elements, we shall tacitly assume that rows and columns of zeros are to be 
adjoined when this is necessary to make the matrices compatible with the 
operations of matrix algebra. In Figures 1, 2 and 3, the d-e matrices of the six 
zonotopes are given. 

Statements (34) and (35) yield the identities 

(40) A(Z) = (A(Z)y 

and 

(41) D (-l)i+1ati = 0. 
if 3 

From (37) we obtain 

(42) v(Z) = £ ( - l ) W i(Z) = £ ( - l ) ' a „ , b{Z) = 4 £ ati 
i , j i , j 

where, in this latter case only, summation is over those terms for which both 
i and j are odd. Also from (36) 

(43) Z o«= L I J-
j-i=P \p -r nJ 

Our next result enables us to construct A (Z) inductively from the d-e 
matrices of zonotopes with fewer components. As usual Z is taken in the form 
(1) and we write, for k — 1, . . . , r, 
(44) Zjk) = Si + . . . + S*_! + 5*+i + . . . + Sr, 

Z(k) = Si + . . . + Sk-i + Sk+i + . . . + Sr. 
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(45) THEOREM. For each k = 1, . . . , r, if Z is not a prism with upright Sk} 

then 

(46) A(Z) =A(Z(k)) + (A(Z(k)))T. 

If, on the other hand, Z is a prism with upright Sk, then 

(47) A(Z) = AA(Z(k)) 

where A is the matrix defined by 

\ i t = \i+i,i = 1 for all i è 0, 
X^ = 0 otherwise. 

Consider any family [C] of cells of Z, where C is defined as in (4). To begin 
with let us suppose that Sk is not parallel to any other component of Z. If Sk 

is not a component of C then there is a uniquely defined family of cells [CJ 
of Z(k) corresponding to [C], namely that with components S ^ D , . . . , S„(S). 
If Z is not a prism with upright Sk then dim Z(k) = n and so 

(48) d[C] = d [ d ] and e[C] = e[d]. 

On the other hand, if Sk is a component of C (say k = a(s)) then write irk 

for parallel projection in the direction Sk on to a complementary hyperplane. 
To [C] there corresponds a uniquely defined family of cells [C2] of irk(Z) 
namely that with components ^(5^(1)), . . . , irk(S0(S-i)). Since dim irk(Z) = 
n — 1 we deduce that 

(49) d[C] = d[C2] and e[C] = e[&]. 

Statements (48) and (49) together imply that 

A{Z) = A(Z(k)) + A(MZ)) 

and statements (30) and (40) together imply that 

AMZ)) = (A(Z(k))V, 

from which (46) follows immediately. If we do not make the restriction that 
Sk is parallel to no other component of Z, then the above argument has to be 
modified slightly but is completely straightforward. 

Secondly, let us suppose that Z is a prism with upright Sk, then, continuing 
with the same notation as above, we see that dimZ(&) = n — 1 and so 
instead of (48) we have 

(50) d[C] = d[d] + 1 and e[C] = e[dl 

Also we may take wk(Z) = Z(k) and hence 

(51) d[C] = d[C2] and e[C] = e[C2]. 

Together, (50) and (51) imply relation (47) between the matrices A (Z) and 
A(Z(k)) and hence the proof of the theorem is completed. 
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If we apply Theorem (45) r — n times to an ^-dimensional zonotope with r 
components we see that we can express the matrix A (Z) in terms of the d-e 
matrices of cubes. These take a particularly simple form since for every family 
of cubes e[C] = 0 and then (43) shows that 

ai0= ( j ) , 

aiS = 0 (allj ^ 1). 

(52) Let Z be any zonotope. If, for some i, j the element atj of A (Z) is zero, 
then akl = 0 for all k ^ i and I ^ j . 

We notice that this assertion is true for the d-e matrices of cubes, and re
mains true if we combine these matrices as in (46) and (47). Hence (52) is 
true generally. 

(53) Z is a cubical zonotope if and only if A(Z) has zero elements everywhere 
except in the first row and in the first column. 

This follows from (52) since clearly an = 0. As in the case of cubes, (53) 
implies that the non-zero entries in A(Z) are binomial coefficients; see, for 
example, the d-e matrices corresponding to the cubical zonotopes of Figure 1. 
Equalities (42) enable us to calculate the number of vertices in this case, 
thus extending statement (28). In fact the number of &-faces of Z (0 ^ k S 
n — 1) can also be determined by noticing that it is equal to twice the number 
of (n — k — 1)-dimensional regions in the (n — 1)-arrangement of hyper-
planes in which ^f (defined in (38)) cuts the hyperplane at infinity. (This is 
Coxeter's second projective diagram [3, § 5].) As Z is cubical, this arrangement 
is simple, and the required numerical values can be determined immediately 
from [4, Theorem 18.1.2]. For further information concerning the connection 
between zonotopes and arrangements, see [1] and [6]. 

We note that, for any zonotope Z the (r — n)th column and nth row of 
A(Z) are of the form (1, 0, 0, . . .). This follows from (52) and the obvious 
equalities 

aotT—n = an,o = 1 and #i,r—n = &n,i = 0. 

5. Cubical dissections of zonotopes. The element a00 of A(Z) has an 
interesting geometrical interpretation. By a cubical dissection of Z we mean 
a cell complex ^ (Z) such that 

(i) set ^ ( Z ) = Z, 
(ii) every cell of të (Z) is a cube, and 

(iii) every cell of & (Z) is a cell of Z. 
By the order of a cubical dissection ^f (Z) we mean the number of w-cells in 
^ ( Z ) , where n = dim Z, and we shall denote this quantity by ord ^ ( Z ) . In 
Figure 5 we indicate cubical dissections of the zonotopes of Figure 2; each of 
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FIGURE 5 

these dissections is of order nine. In the upper figure the 3-dimensional cubes 
have been 'exploded' to show the internal structure of ^ ( Z ) . 

(54) THEOREM. Every zonotope Z admits a cubical dissection, and every such 
dissection has order aoo-

Unless it is a cube every zonotope admits more than one cubical dissection» 
Theorem (54), along with (40), shows that every cubical dissection of Z has 
the same order as every cubical dissection of Z. Thus we obtain another curious 
and surprising geometrical relationship between associated zonotopes. 
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Both assertions of (54) are proved by induction on the dimension n of Z 
and on the number r of its components. The induction starts by noticing that 
both statements are true if either Z is a cube (when the dissection is trivial 
and a0o = 1) or when Z is one-dimensional (when Z can be dissected into 
a0o = r one-dimensional cubes or line segments). In the general case, let us 
suppose that Z, Z(k) and irk are defined as in (44) and the proof of (45). Then 
we can construct a cubical dissection of Z in the following way. We first 
partition Z into two pieces, namely Z(K) — xk and c\(Z\(Z(K) — xk)). The 
first of these admits a cubical dissection by the inductive hypothesis, and we 
shall now show that the second does so also. Write Bk for the union of those 
facets F of Z such that (u, xk) > 0, where u is the outward normal to the 
hyperplane that supports Z in F. Then irk(Bk) = wk(Z). But irk(Z) admits a 
cubical dissection by the inductive hypothesis, and this implies that a cubical 
dissection ^ (Bk) also exists. (Each cell of & (Bk) is the inverse image under irk 

of a cell in a cubical dissection of irk(Z).) Consider the set of w-dimensional 
cubes {C + Sk} where C runs through the set of (n — 1)-dimensional cubes of 
*$ (Bk). These clearly form a partition of cl(Z\(Z(k) — xk)) and hence lead 
to a cubical dissection of this set. The first assertion of the theorem is therefore 
proved. We note also that for this dissection & (Z) we have 

(55) ord <£(Z) = ord <£(Z(k)) + ord tf(irk(Z)), 

from which, using (46), we obtain 

ord & (Z) = a0o 

as required. 
The set of w-dimensional cubes in cl(Z\(Z(k) — xk)) may be called a cup 

of cubes which 'holds' Z(k). In Figure 4 we have indicated by shading in each 
case, a cup of cubes. I t may be conjectured that every cubical dissection of a 
zonotope contains at least one cup of cubes,f and if this could be established 
then the above argument would complete the proof of the theorem. In the 
absence of a proof of this conjecture, it is necessary to modify the procedure 
slightly. 

Let & (Z) be given and any component Sk be chosen. The ^-dimensional 
cubes of ^f (Z) may be partitioned into two classes: 

(i) those that have the component Sk, and 
(ii) those that do not. 

Cubes of the first class project by irk into the (n — 1)-dimensional cubes of 
some dissection *€(irk(Z)), and hence their number is ord cé?(irk(Z)). Cubes 
of the second class, after suitable translation through +xk or —xk are the 
cubes of some cubical dissection of Z(k) and so their number is ord ^(Z(k)). 

fThis conjecture is now known to be incorrect. Consider the projection of a regular tri-
acontahedron, parallel to one of its 5-fold axes of symmetry, on to a plane. The images of its 
2-faces form a cubical dissection of a regular 10-gon with no cup of cubes. 

https://doi.org/10.4153/CJM-1974-032-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-032-5


COMBINATORIAL PROPERTIES 321 

Hence we are led again to (55) and the second statement of the theorem is 
true generally. 

A refinement of the above argument leads to the following slightly stronger 
statement. 

(56) Let ^ (Z) be any given cubical dissection of Z. Then precisely one n-
dimensional cube of 'if (Z) belongs to each of the families of cells [C] of Z for which 
d[C] = e[C] = 0. 

From (56) we immediately obtain the following general expression for the 
volume V(Z) of a zonotope Z. 

(57) V(Z) = 2 » E | d e t ( * i l f . . . , * J | 

where the summation is over all w-membered subsets {ilt . . . , in] of {1, . . . , r]. 

I wish to thank P. McMullen for reading an early version of this paper and 
making suggestions for its improvement. In particular I am indebted to him 
for the footnote on the previous page and also for drawing my attention to the 
above expression (57). 
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