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DENSE SUBSPACES OF PRODUCT SPACES 

TOSHIJI TERADA 

1. Introduction. Unless otherwise specified, all spaces considered here 
are regular Trspaces. A space X is called o-discrete if X is the union of a 
countable family of discrete subspaces. Arhangel'skii [2] showed that the 
class of spaces which contain dense a-discrete subspaces is productive. 
The fact that the class of spaces which contain dense subspaces of 
countable pseudocharacter is productive is obtained by Amirdzanov [1]. 
On the other hand, the class of spaces which contain metrizable spaces as 
dense subspaces is obviously not productive. As a generalized concept of 
metrizable spaces there is the concept of a-spaces [14]. This class of spaces 
has many similar properties to the class of metrizable spaces. However we 
will point out a remarkable difference between the class of metrizable 
spaces and the class of a-spaces by showing that the class of spaces which 
contain a-spaces as dense subspaces is productive. It will be also shown 
that the class of spaces which contain dense subspaces with Gg-diagonals 
and the class of spaces which contain dense subspaces with point-
countable separating open covers are productive. These results have 
applications to the theory of cardinal invariants. 

In Section 3 the following result will be proved: For an arbitrary space 
X, if m is a sufficiently large cardinal, then X™ contains a a-space as a 
dense subspace. Section 4 will be devoted to some remarks. Applications 
to the theory of cardinal invariants will be given in Section 5. In 
particular, the answer to a question of Ginsburg-Woods [9] and 
Arhangel'skii [3] will be obtained. Further a connected left-separated 
space will be constructed. This is also a counterexample for another 
problem of Arhangel'skii [3]. 

Basic cardinal functions used in this paper are found in [11]. 

2. Productive classes. For a space X let Ax be the diagonal of X X X. If 
A^ is Gs in X X X, then it is said that X has a G§-diagonal. In [6], Ceder 
proved that a space X has a Gg-diagonal if and only if there is a sequence 
^i , 2̂> • • • °f open covers of X such that given any point x in X, 
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n {st (x, 9n)\n = 1, 2, . . . } = {*} 

is satisfied, where st (x, @n) is the union of all members of @n containing x. 
Such a sequence of open covers is called Gg-diagonal sequence for X. A 
space X is called a o-space if X has a a-locally finite net [14]. An open 
cover Ql of a space X is called point-countable if every point of X is in at 
most countably many members of <%. An open cover °U is called separating 
if given any distinct points x and y, there is a member of U of ^ such that 
x e £/ and y £ U. These concepts are important in the theory of 
generalized metric spaces (see [5], [12], [14] and etc.). 

It is well known that the class of spaces with G^-diagonals, the class of 
a-spaces and the class of spaces with point-countable separating open 
covers are countably productive but not productive. However we can 
prove the following results. 

2.1. THEOREM. The class of spaces which contain dense subspaces with 
G^-diagonals is productive. 

2.2. THEOREM. The class of spaces which contain o-spaces as dense 
subspaces is productive. 

2.3. THEOREM. The class of spaces which contain dense subspaces with 
point-countable separating open covers is productive. 

Let us recall the construction of Amirdzanov (see [3] ). 

2.4. Construction. Let {Xa:a e A} be an infinite family of spaces 
without isolated points. For each a let pa and qa be distinct points in Xa 

and let 

Let &(A) be the family of all nonempty finite subsets of A. Then, by a 
transfinite induction, we can construct a one-to-one map s\^(A) —> A 
such that s(B) £ B for each member B oî^{A). Now, for each member B 
of 3^(A ), we define a map 

/*: I I {AfcjS e B}^Yl{X;.a G A) 

in the following way: For each element (yp) of I I {Xfefi G B) and each 
member a of A, 

[ ya if a e B 

*<XU'B( (yp) ) ) = H a if a = 5(B) 
I p a otherwise. 

Here 7ra:II {Xa:a G /I } —» Xa is the natural projection. Now let YA be the 
subspace 

https://doi.org/10.4153/CJM-1983-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-054-1


988 TOSHIJI TER A DA 

U {fB(TI{X'ftP e B)):B e&(A)} 

i n l l {Xa:a e A}. 

The following proposition is obvious. 

2.5. PROPOSITION. YA is dense in Yl {Xa:a e A }. 

2.6. PROPOSITION. If Xa has a G ̂ -diagonal for each a in A, then YA has 
also a Gs'diagonal. 

Proof For each a in A let %\, ^ a 2>. . . be a G^-diagonal sequence for Xa. 
Without loss of generality we can assume that ^a/+1 is a refinement of ^a / 

for each /. Let 

&ai = {G- {pa9 qa}:G e #a/} 

for each a and /. Now, for each B in J*~(/t ), let 

% = {I I {£/«:<* e ^ } n YA: 

Ua e ^ for a e J», [/fl = st (<ya, »a/) - {/?«} 

for a = s(B) and Ua = Xa for a ^ A - (B U {s(B) } ) }. 

Further, let 

3 = U {%:£ e F ( ^ ) } . 

Then obviously ^ is an open cover of Y { for each /. Hence we will show 
that ^ ] , 2̂> • • • is a Gô-diagonal sequence for y j . 

Let (xa) be an arbitrary point of YA. We assume that 

<*a) = /*( (yfù )• 

Assertion 1. 

st ( <*«>, 9t) = U {st ( (xa). 9Cl):C c £ } . 

Assume that C is a member oî^F(A ) such that C — B is nonempty. Let a 
be an element in C — B. Let (7be a member of &Ci. Then 7ra(U) is a subset 
of Xa — [pa, qa} since a e C. On the other hand, 7ra( (x a) ) is pa or ga 

since a £ 2?. Hence (x a) is not contained in £/. 
Assertion 2. For each proper subset C of B there is a number nc such 

that (xrt) is not contained in any member of @Ci for each / ^ nc. 
Since 77S.(C)( (xa) ) ^ g.v(<:> there is a number HC such that 

^.v(o( (xa) ) £ st (<fc(C), ^ v ( 0 / ) for each / ^ wc. 

On the other hand, if U is a member of ^<> then 
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*s{C)(U) C s t (&(C> ^s(C)i) 

by the construction of @Ci. Hence (jca) is not contained in any member of 

&a s u c n t n a t i = nc-
From Assertion 1 and Assertion 2 it follows that: 
Assertion 3. 

n {st (<*«>, Vi)-i = 1 ,2 , . . . } 

= n {st ( (xa), 9Bi):i = 1 , 2 , . . . } . 

Assertion 4. 

n {st ( <xa>, %•):/ = 1, 2, . . . } = { (xa) }. 

In fact, for each a in B U {s(i?) }, 

7Ta(n {st ( <xtt>, 9Bi):i = 1, 2 , . . . } ) = {xa}. 

This means that this assertion is true. 
From Assertions 3 and 4 it follows that ^ , &2> . . . is a Gg-diagonal 

sequence for YA. 

2.7. PROPOSITION. If Xa is a o-space for each a in A, then YA is also a 
o-space. 

Proof. For each a in A let Jfa be a a-locally finite net of Xa. We can 
assume that 

•K = U {>"„-:i = 1 , 2 , . . . } 

where each ^ / is locally finite in Jfa and ^Vai c ^ / + i for each /'. We 
assume also that each member of ~4^ is closed in Xa. Let 

^a= {Fejra:Fn {pa,qa} = 0} 

and let 

JVaj = Jvaj \\JVa. 

Then obviously jVr
a\§ a net of X'a. For each member B of fF(A ) let 

^Ta- = {IT {/>:£ G B } : ^ G JT& for each j8 e B). 

Then U {^V> = 1, 2, . . . } is a net of I I {Xfcfi e # } . Let 

^Bi = {fB(F):F e ^ 7 } 
and let 
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Now, we will show t h a t J ^ ^ U {Jf{A = 1, 2 , . . . } is a a-locally finite net 
of YA. It is obvious that ~/Tis a net of YA. Hence we will show that J/] is 
locally finite in YA. 

Let (xa) be an arbitrary point of YA. We assume that 

<*«> = /*(0v>>) toTBm&(A). 
Let I I {Up.jî e B) be a canonical open neighborhood of (yp) in 
I I {Xp.fi e B} which intersects with only a finite number of members of 
^Bi- Since Jf'S(B)i is locally finite in XS(B) and U ^V^B)i does not contain 
#s(#), there is an open neighborhood US(B) of qs{B) such that 

^(S) n ( u ^ B ) I - u { ^ w } ) = 0. 
For each a in A ~ (B U {*(£) } ) let t/a - Xa. Then IT {l/tt:a G A } O 
Y^ is an open neighborhood of (xa) in YA which intersects with only a 
finite number of members of JT^ In fact, 

Assertion 1. If C is a member ol <!F(A) which is distinct from B, then 
each member of JfCi is disjoint from I I {Ua\a e ,4 }. 

Let F be an arbitrary member of JVCI. Since s(C) ¥= s(B), 

by the construction of F. On the other hand, 

*s(B)(Tl {Ua'.CL e A) ) = t/s(fi) 

is disjoint from U *Af'S(B)i u {Ps(B) }• Hence F is disjoint from I I {Ua:a 

Assertion 2. The number of members of JfBl which intersect with 
I I {Ua:a e A} is finite. 

This is obvious since I I {Up.ft e # } intersects with only a finite 
number of members of Jf'B\. This completes the proof. 

2.8. PROPOSITION. If Xa has a point-countable separating open cover, then 
YA has also a point-countable separating open cover. 

Proof. For each a in A let % be a point-countable separating open cover 
of Xa. Let 

&a= [G - {Pa,qaYG G %} 

and let 

<K - {G - {/>«}:?« e G G % } . 

For each # in ^(,4 ) let 
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9B = { I I {Ua:a e A} n YA:Ua e ^ f o r a e £, 
£/a G ^ for a = s(B) and (/„ = Xa for a e ^ - (B U {5(#) } ) }. We 
will show that the family & = U {^:Z? e i 7 ^ ) } is a point-countable 
separating open cover of YA. It is obvious that ^ is an open cover of 

Let (jca> be an arbitrary point of YA. We can assume that (xa) = 
fB( (yp) )• 

Assertion 1. If a member U of ^ c contains (jca), then C is a subset of 
B. 

Assume that there is an element y in C — B. Then 

iry(U) c Xy - [pv qy}. 

On the other hand, 

*y( <•*<*> ) e {/V 4y}-
Hence (jca) £ £/. 

Assertion 2. For each C c B the number of members of &c which 
contain (xa) is countable. 

For each a in C the number of members of ^ which contain xa is 
countable. The number of members of 3%(o which contain .^(C) *s a l s o 

countable. Hence the assertion is obvious by the construction of &c. 
Next, let (xa) and (za) be two distinct points in YA. We assume also 

that (xa) = fs( (Vj8> )• Then it is not so difficult to see that there is an 
element X in B U [s(B) } such that x\ ^ z\. Let U\ be a member of ^ 
such that ^x e U\ and z\ € £/\. Let 

U'x= Ux - {Px,qx} i f A G 5 

and let 

Uk= Ux- {px} if A = s(B). 

Then there is a member of £/ of CSB such that £/ contains (xa) and that 
7Tx(U) = Ux. This shows also that (za) is not contained in U. This 
completes the proof. 

Since the class of spaces with Gg-diagonals, the class of a-spaces and the 
class of spaces with point-countable separating open covers are countably 
productive, we can easily prove Theorems, 2.1, 2.2 and 2.3 by Propositions 
2.5, 2.6, 2.7 and 2.8. 

3. Other properties of infinite products. For a space X the smallest 
cardinality of dense subspaces is called the density of X and denoted by 
d{X). Let us call a space X o-closed-discrete if Xis the union of a countable 
family of closed, discrete subspaces. We will prove the following. 
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3.1. THEOREM. Let X be an arbitrary space. If m is a cardinal such that m 
= d(X), then Xm contains a o-closed-discrete space as a dense subspace. 

3.2. COROLLARY. If m i? d(X), then X™ contains a space with a 
G's-diagonal as a dense subspace. 

3.3. COROLLARY. If m = d(X), then Xm contains a o-space as a dense 
subspace. 

The following is also proved. 

3.4. THEOREM. If m ^ d(X), then X™ contains a space with a 
point-count able separating open cover. 

3.5. Construction. Let {Xa.a e A} be an infinite family of spaces 
without isolated points such that \Xa\ ^ \A\ for each a e A. In the same 
way as the construction 2.4, let/?a, qa be two distinct points in Xa, let X'a = 
Xa — {pa, qa) and le t^(A) be the family of all nonempty finite subsets of 
A. Since \A\ is infinite, there is a disjoint family ê of countably infinite 
subsets of A such that |<f| = \A\. Then, since the cardinality of the set 

U {II {JCfiP e B}.B ^&(A)} 

is not more that \A\, there is a one-to-one map 

t:U { I I {XffP e B}:B e &(A) } -> <£ 

For each 5 in Ĵ (̂ 4 ) we define a map 

A B : I I {X'0.fï E 5 } ^ I 1 {*«:<* e ,4} 

in the following way: For each element (yp) of I I {X'p.ft e B} and each a 
in ^4, 

^ « ( M (j^) ) ) = 
ya if a G 5 
qa if a G /( <J/?> ) - B 
pa otherwise. 

Let ZA be the subspace U {hB(TL{X'p.p e B}):B <E J ^ ) } of I I {Xa: 
a G A}. 

The following proposition is obvious. 

3.6. PROPOSITION. ZA is dense in I I {Xa:a e i } . 

Hence in order to prove Theorem 3.1 it suffices to show the 
following. 
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3.7. PROPOSITION. ZA is o-closed-discrete. 

Proof. Let 

jr„(A) = {B e&(A):\B\ = n) 

for each n = 1, 2, • • • . Let 

Zn = U {hB( n {X>fiP e £ } : £ G J ^ ) }. 

Then obviously ZA = U {Z„:« = 1, 2, • • • }. Hence it suffices to show 
that each Zn is a closed, discrete subspace in ZA. Let (x a) be an arbitrary 
point of Zn. We assume that 

(*a) = M (yp) ). 

For each /? in B let L̂ g be an open neighborhood of xp = yp in Xp such 
that 

Up n {^, ^ } = 0. 

Since /( (y^g) ) is infinite and B is finite, there is an element «o m t( (yp) ) 
— B. Let UaQ be an open neighborhood of xao = qa() in XaQ such that pao £ 
UaQ. For a & A — (B U {a0} ) let Ua = Xa. Now we set 

U = I I {I/„:a e ^ } n Z^. 

Then £/ is obviously an open neighborhood of (xa). Further, 
Assertion 1. U n Zn = { (;ca) }. 
Assume that there is an element (za) of Z„ in £/ which is distinct from 

(xa). Then za is neither pa nor ga for each a in B U {«o}- This shows 
that 

\{a G ^ : z a £ {/?a, #«} }| > n. 

This is a contradiction since (za) is an element of Zn. 
Next, let (wa> be an arbitrary point in ZA — Zn. We can assume that 

<*«> = M (vy) ) for C in &{A) - &n(A). 

Let «i, a2>. . . , an + \ be distinct elements of /( (vy) ) and let Vai be an 
open neighborhood of wai such that/?az £ Fa/- for each / = 1, 2, • • • , « + 1. 
For each a in A — {a1? a2> * ' " » <*«+i} le t Va

 = ^a- Now, let 
V= I l {Fa:a G ^ } n Z ^ 

Then obviously F i s an open neighborhood of (wa) in ZA. 
Assertion 2. F n Zn = 0. 
Since 

'< <y/»> ) n r( <vy> ) = 0 
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for each (yp) G U { I l {Xfp.fi G B}:B G J^ (^ ) }, for every point (za> in 
Zn n F there must be a number / such that za. = /?tt/. This shows V D Zn 

= 0 by the construction of K. 

In order to prove Theorem 3.4 it suffices to show the following. 

3.8. PROPOSITION. ZA has a point-countable separating open cover. 

Proof. For each a in A let Ua be an open neighborhood of qa which does 
not contain pa. Let 

Wa = I I {Va.a G A} D ZA 

where Va = i/a and F^ = Xp for ft ¥= a. Let 

T T = {Wa:a G ^ } . 

Then ^ i s obviously an open cover of ZA. Further, 
Assertion 1. i^is point-countable. 
For each point (xa) in ZA, 

\{a e A\<ira( (xa) ) * pa}\ = N0-

Hence the number of members of #^which contain (xa) is countable since 
Pa £ n^Wa) for each a. 

Assertion 2. i^is separating. 
Let (xa) and (ya) be two distinct points of ZA. We assume that 

(xa) = hB( (up) ) and (ya) = hc( (vy) ). 

Then there is an element a0 in t( (up) ) — (5 U C). Then (x a) is 
contained in WaQ. But (ya) is not an element of WaQ. This completes the 
proof. 

3.9. COROLLARY. Every space is an open perfect image of a space which 
contains a o-space with a point-countable separating open cover as a dense 
subspace. 

Proof Let X be an arbitrary space. Let Y be the product X X r^ where 
/ is the closed unit interval. Then Y contains a a-space with a 
point-countable separating open cover as a dense subspace by 3.7 and 3.8. 
Obviously, the projection 

p:X X 71*1 -» * 

is open and perfect. 
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4. Remarks. A space X is called submetrizable if there is a one-to-one 
continuous map from X onto a metrizable space. This concept is closely 
related to the concept of (/^-diagonal (see [5] ). However we have the 
following. 

4.1. PROPOSITION. The class of spaces which contain dense submetrizable 
subspaces is not productive. 

Proof. It is obvious that each submetrizable space X satisfies the 
inequality \X\ ^ exp (c(X) ). Now, let Z be a countably infinite discrete 
space. Let 

m = (exp3 S0) + . 

Then for each dense subspace Y of Zm, it is satisfied that 

\Y\ > e x p ( | Z | ) and c(Y) ^ \Z\. 

This shows that Y is not submetrizable. Hence Zm contains no dense 
submetrizable subspace. 

By a result of [8] the following proposition is obvious. 

4.2. PROPOSITION. For a space X the following are equivalent. 
(1) X contains a a-closed-discrete space as a dense subspace. 
(2) X contains a o-space as a dense subspace. 
(3) X contains a semi-stratifiable space as a dense subspace. 

From this fact and results in Sections 2 and 3 a question is raised 
naturally: Is it true that the following are equivalent? 

(a) X contains a a-space as a dense subspace. 
(b) X contains a dense subspace with a (75-diagonal. 
(c) X contains a dense subspace with a point-countable separating open 

cover. 
The author does not know whether (b) and (c) are equivalent or not. 

However we can show that (a) and (b), (a) and (c) are not equivalent. More 
precisely there is a space which contains a dense submetrizable subspace 
but which does not contain a a-space as a dense subspace. 

The following lemma is essentially shown by Amirdzanov [1]. 

4.3. LEMMA. Let Y be a submetrizable space such that 

min {|F|:F is a non-empty open subset of Y) = TTW(X) • TTW(Y). 

Then X X Y contains a submetrizable space as a dense subspace. 
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Proof. Let 

m — min {|F|:Fis a non-empty open subset of Y}. 

Let J£"and ^ b e 77-bases of X and Y such that \ & \ = m, \&\ = m. Let 

^"X ^ = {Ua X Fa:a < ra}. 

We can assume that every member of J*"X ^ i s non-empty. Let (x0, j/0) be 
an arbitrary point in U0 X K0. Assume that, for every a < /?, a point (*a, 
>>a) is taken in Ua X Va. Then there is a point j ^ in Vp — {ya:a < /?}• Let 
x̂ g be an arbitrary point in Up. By this transfinite induction we can get a 
subspace 

Z = { (xa,ya):a < m} 

of X X F. It is obvious that Z is a submetrizable dense subspace of X X 
Y. 

Amirdzanov [1] also showed the following result: Let X be a space 
which contains no a-discrete space as a dense subspace. Let Y be a 
separable metrizable space. Then X X Y contains no a-discrete space as a 
dense subspace. Hence, by this result and the above lemma, it follows that 
(fiN — TV) X Z)N° contains a submetrizable space as a dense subspace, but 
it contains no a-space as a dense subspace. 

5. Applications. In this section spaces are completely regular. The 
smallest infinite cardinal K such that every closed, discrete subset of a 
space X has cardinality at most K is called the extent of X and denoted by 
e(X). The diagonal number of a T\-space X, denoted by v(X), is the 
smallest infinite cardinal /c such that A^ is written as the intersection of K 
open subsets of X X X. For a 7^-space X, the point separating weight of X, 
denoted by psw (X), is the smallest infinite cardinal K such that X has a 
separating open cover °U with the property that every point of X is in at 
most K members of °U. Obviously a Tx -space X has a G^-diagonal if and 
only if v(X) = S0. Similarly, a T\-space X has a point-countable 
separating open cover if and only if psw (X) = S0. These cardinal 
functions are found in [4], [9], [10] and etc. 

Ginsburg and Woods [9] proved the following: If X is a T\-space, 
then 

\X\ S exp (e(XHX) ). 

On the other hand, Burke and Hodel [4] proved the following: If X is a 
r,-space, then 
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\X\ ^ exp (e(X) psw (X) ). 

Ginsburg and Woods showed also that there is a Hausdorff space X such 
that |X\ ^ exp (c{X)v{X) ) is not true. And they raised the following 
question: Is there a regular space X such that the inequality \X\ ^ exp 
(c(X)v(X) ) is not satisfied? Arhangel'skii also raised this question in [3]. 
Now, we can show the solution of this question in the following 
manner. 

5.1. THEOREM. For each infinite cardinal K, there is a completely regular 
space TK with the following properties', 

(1) \TK\ = K, 

(2) c(TK) = S0, 

(3) v(TK) = S0, 

(4) psw (TK) = S0, 

(5) 8(7J = S0. 

Proof Let X be a countable metrizable space without an isolated point. 
In Construction 2.4, assume that Xa = Xfor each a in A and that |̂ 4| = /c. 
Let TK be the space y^ constructed in 2.4. Then 

c(TK) = c(XK) = N0 

[11]. By 2.6 and 2.8, 

v(TK) = psw ( r j = S0-

The construction of TK shows also that the cardinality of TK is just /c. Since 
TK is a subspace of the 2-product of a family of first countable spaces, 
d(TK) = S0 by a result of [13]. 

Let us recall that a space X is left separated if it has a well-ordering -< 
such that every initial segment of X under -< is closed [11]. It is obvious 
that every space contains a left separated space as a dense subspace. 
Hence if every left separated space is zero-dimensional in the sense of ind, 
then it follows that every space contains a zero-dimensional dense 
subspace. In fact, Arhangel'skii [3] raised the problem of whether every 
left separated space is zero-dimensional. Here, using Construction 3.5, we 
show that there is a connected left separated space. 

Since [0, l)"-(countable subset) is obviously connected for every natural 
number n ^ 2, where [0, 1) is the usual interval in the real line. The 
following lemma is obvious. 
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5.2. LEMMA. Let A be an infinite set and let Xa = [0, \)for each a G A. 
Let Y be the o-product of {Xa:a G A } with the base point (0). Then Y — K 
is connected for every countable subset K of Y. 

Since every a-closed-discrete space is left separated, it suffices to show 
the following. 

5.3. THEOREM. There is a connected, o-closed-discrete space. 

Proof In Construction 3.5, let \A\ ^ 2S°, let each Xa be the closed unit 
interval [0, 1] and let/?a = 0, qa = 1. Then ZA is a-closed-discrete by 3.7. 
Assume that ZA is not connected. Then there are disjoint nonempty open 
subsets U\9 U2, of ZA such that U\ U U2 = ZA. Let V\, V2 be open subsets 
of I I {Xa:a G A } such that Vx n ZA ~ Uh V2 n ZA = U2. Then Vx and 
V2 are disjoint. Hence, there are a countably infinite subset C of A and 
disjoint open subsets W\, W2 of I I {Xy:y G C} such that 

where 

77C:II {*a:a G A } -> I I {X7:y G C} 

is the natural projection (see [7, 2.7.12] ). Let J^(C) be the family of all 
nonempty finite subsets of C. Let 

H = { <^> G u { n {*££ G £ } : £ G j r ( c ) } : 

t( (yp) ) H C ^ 0}. 

Since C is a countable subset of ^4, / / i s also countable. Now, let Y be the 
a-product of {Xy — {qy}:y G C} with the base point (py). For each 5 G 
^ ( C ) , let 

**:II{*J*j8 G £ } ^ Y 
be the map defined in the following way: For each (yp) G IT {X'fifî G B) 
and y G C, 

Let 

^0 = {kB( {yp) ):(yp) e // , 5 e J^(C) }. 
Then Â 0 is a countable subset of Y. We will show that 

mc(ZA) z> Y - KQ. 

Let (zy) be an arbitrary point oî Y — K0 and assume that 
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<*r> = M <yp) ) 
for some (yp) e I I {A :̂j8 G 5 } . Since (j^) £ # , 

Therefore 

^ r ( M <>/?> ) ) 
= hyify e B 

py if y e C - B. 

This shows that 

M M 0/?>)) = <̂ y>-
(py) e 7rc(Z^) is obvious. Since Y — K0 is connected by 5.2, TTB(ZA) is 
connected. Hence there is a point (xa) in Z^ such that 

This is a contradiction since 7TC(ZA) C WJ U W -̂

5.4. Remark. Since every a-closed-discrete normal space is zero-
dimensional by the countable sum theorem of Ind, the space considered in 
the above theorem is not normal. E. Pol [15] constructed a-closed-discrete 
spaces which are not zero-dimensional. However her examples are not 
connected. 
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