FUNCTIONS WITH UNBOUNDED $\bar{\partial}$-DERIVATIVE AND THEIR BOUNDARY FUNCTIONS

CHEN ZHIGUO, CHEN JIXIU and HE CHENGQI

(Received 15 May 1996; revised 3 January 1997)

Communicated by P. C. Fenton

Abstract

Let $F(z)$ be a continuous complex-valued function defined on the closed upper half plane \bar{H} whose generalized derivative $\bar{\partial} F(z)$ is unbounded. In this paper, we discuss the relationship between the increasing order of $|\bar{\partial} F(x+i y)|$ when $y \rightarrow 0$ and that of $\lambda_{F}(x, t)=|(F(x+t)-2 F(x)+F(x-t)) / t|$, $(x, t \in \mathbb{R})$, when $t \rightarrow 0$.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 30C62.

1. Introduction

Let $F(z)$ be a continuous complex-valued function defined on $\bar{H}=\{z ; \operatorname{Im} z \geq 0\}$. When $\|\bar{\partial} F(z)\|_{\infty}<+\infty$, it is called (in the terminology of Ahlfors [1]) a quasiconformal deformation on H. Denote by $Q_{*}(H)$ the class of quasiconformal deformations on H normalized by $\operatorname{Im} F(x)=0$ when $x \in \mathbb{R}$ and $F(0)=F(1)=$ $\lim _{z \rightarrow \infty} F(z) / z^{2}=0$. The importance of the class $Q_{*}(H)$ lies in the fact that it generates a family of quasiconformal mappings $w=f_{t}(z), t \geq 0$, of H onto itself with $0,1, \infty$ three fixed points, which is the solution of the differential equation

$$
\begin{equation*}
\frac{d w}{d t}=F(w), \quad w \in H \tag{1.1}
\end{equation*}
$$

with initial condition $w(0)=z$. In addition, the dilatations $K_{t}(z)$ of $f_{t}(z)$ are controlled by $K_{t}(z) \leq e^{2\|\bar{\partial} F\|_{\infty} t}$.

A continuous real-valued function $F(x)$ defined on \mathbb{R} is said to belong to Zygmund

[^0]class Λ_{*} [9] if
\[

$$
\begin{equation*}
\lambda_{F}(x, t)=\left|\frac{F(x+t)-2 F(x)+F(x-t)}{t}\right| \tag{1.2}
\end{equation*}
$$

\]

is bounded for all $x \in \mathbb{R}$ and $t>0$. Define the Zygmund norm of $F(x)$ by $\|F\|_{z}=$ $\sup _{x, t \in \mathbb{R}} \lambda_{F}(x, t)$. It was proved independently by Gardinar and Sullivan [5] and Reich and Chen [7] that the necessary and sufficient condition for a real-valued function $F(x)$ on \mathbb{R} to have a quasiconformal deformation extension to \bar{H} is that $F(x) \in \Lambda_{*}$. In [4] and [5], the relationship between $\|F\|_{z}$ and $\|\bar{\partial} F\|_{\infty}$ was discussed and estimations of them were obtained. In this paper, we will discuss the situation when $\lambda_{F}(x, t)$ and $\bar{\partial} F(z)$ are unbounded. It is based on the following consideration: when $\bar{\partial} F(z)$ is unbounded, equation (1.1) will not have a quasiconformal mapping solution, but it might have as solution an orientation-preserving homeomorphism of \bar{H} onto itself, which is almost everywhere quasiconformal in the sense of Lehto [6] (see Section 4). So it is of interest to study the relationship between $\lambda_{F}(x, t)$, where $x, t \in \mathbb{R}$, and $\bar{\partial} F(z)$, where $z \in H$. In Section 2 , under the assumption that $\bar{\partial} F(z) \in L^{p}(H)$ ($p>2$), we obtain an estimate of the increase of $\lambda_{F}(x, t)$ when $t \rightarrow 0$, which is sharp in the order. In Section 3, using the Beurling-Ahlfors extension, we obtain an estimate of the increase of $|\bar{\partial} F(x+i y)|$ when $y \rightarrow 0$, over that of $\lambda_{F}(x, t)$ when $t \rightarrow 0$.

2. The estimation of $\lambda_{F}(x, t)$

When $F(z) \in Q_{*}(H)$, we know from [5] that

$$
\begin{equation*}
F(z)=-\frac{z(z-1)}{\pi} \iint_{H}\left(\frac{\mu(\zeta)}{\zeta(\zeta-1)(\zeta-z)}+\frac{\overline{\mu(\zeta)}}{\bar{\zeta}(\bar{\zeta}-1)(\bar{\zeta}-z)}\right) d \sigma_{\zeta} \tag{2.1}
\end{equation*}
$$

where $\mu(z)=\bar{\partial} F(z) \in L^{\infty}(H)$. We firstly prove that when $\mu(z) \in L^{p}(H)(p>2)$, (2.1) still holds.

Define

$$
\hat{\mu}(z)= \begin{cases}\mu(z), & z \in H \tag{2.2}\\ \overline{\mu(\bar{z})}, & z \in L\end{cases}
$$

where L represents the lower half plane. Then $\hat{\mu}(z) \in L^{p}(\mathbb{C})(p>2)$. By an integral operator P defined by Ahlfors [2],

$$
\begin{equation*}
(P \hat{\mu})(z)=-\frac{1}{\pi} \iint_{\mathbb{C}} \hat{\mu}(z)\left(\frac{1}{\zeta-z}-\frac{1}{\zeta}\right) d \sigma_{\zeta} \tag{2.3}
\end{equation*}
$$

we have

Lemma 2.1. [2]. For $\hat{\mu}(z) \in L^{p}(\mathbb{C})(p>2)$, the relation

$$
\begin{equation*}
(P \hat{\mu})_{\bar{z}}(z)=\hat{\mu}(z) \tag{2.4}
\end{equation*}
$$

holds in the distributional sense.

LEMMA 2.2. Let $F(z)$ be a continuous complex-valued function on \bar{H} normalized by $\operatorname{Im} F(x)=0$ when $x \in \mathbb{R}$ and $F(0)=F(1)=\lim _{z \rightarrow \infty} F(z) / z^{2}=0$. If $\mu(z)=\bar{\partial} F(z) \in L^{p}(H)(p>2)$, then (2.1) still holds.

Proof. Set

$$
\begin{equation*}
Q(z)=(P \hat{\mu})(z)-z(P \hat{\mu})(1)=-\frac{z(z-1)}{\pi} \iint_{\mathbb{C}} \frac{\hat{\mu}(\zeta)}{\zeta(\zeta-1)(\zeta-z)} d \sigma_{\zeta} \tag{2.5}
\end{equation*}
$$

Then $Q(0)=Q(1)=0$, and by Lemma 2.1, $\bar{\partial} Q(z)=\hat{\mu}(z)$. Hence $F(z)=$ $Q(z)+\phi(z)(z \in H)$, where $\phi(z)$ is a holomorphic function in H. Since $\operatorname{Im} F(x)=0$ and $\operatorname{Im} Q(x)=0$ when $x \in \mathbb{R}, \phi(z)$ can be extended by the reflection principle to be a holomorphic function in \mathbb{C} with normalization $\phi(0)=\phi(1)=0$. When $z \rightarrow \infty$, we have

$$
\begin{aligned}
|Q(z)| \leq & \frac{|z(z-1)|}{\pi} \iint_{|||\leq|z| z| 2} \frac{|\hat{\mu}(\zeta)|}{|\zeta(\zeta-1)(\zeta-z)|} d \sigma_{\zeta} \\
& \quad+\frac{|z(z-1)|}{\pi} \iint_{|\zeta|>|z| / 2} \frac{|\hat{\mu}(\zeta)|}{|\zeta(\zeta-1)(\zeta-z)|} d \sigma_{\zeta} \\
= & I_{1}+I_{2} .
\end{aligned}
$$

Let

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=1 \quad(p>2,1<q<2) \tag{2.6}
\end{equation*}
$$

It follows from $|\zeta| \leq|z| / 2$ that $|\zeta-z| \geq|z| / 2$. Hence

$$
\begin{aligned}
I_{1} & \leq \frac{2|z-1|}{\pi} \iint_{|\zeta| \leq|z| / 2} \frac{|\hat{\mu}(\zeta)|}{|\zeta(\zeta-1)|} d \sigma_{\zeta} \\
& \leq \frac{2|z-1|}{\pi}\left(\iint_{\mathbb{C}}|\hat{\mu}(\zeta)|^{p} d \sigma_{\zeta}\right)^{1 / p}\left(\iint_{\mathbb{C}}\left|\frac{1}{\zeta(\zeta-1)}\right|^{q} d \sigma_{\zeta}\right)^{1 / q} \\
& \leq c_{1}|z| .
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & \leq \frac{2|z-1|}{\pi} \iint_{|\zeta|>|z| / 2} \frac{|\hat{\mu}(\zeta)|}{|(\zeta-1)(\zeta-z)|} d \sigma_{\zeta} \\
& \leq \frac{4|z-1|}{\pi} \iint_{|\zeta|>|z| / 2} \frac{|\hat{\mu}(\zeta)|}{|\zeta(\zeta-z)|} d \sigma_{\zeta} \\
& \leq \frac{4|z-1|}{\pi}\left(\iint_{\mathbb{C}}|\hat{\mu}(\zeta)|^{p} d \sigma_{\zeta}\right)^{1 / p}\left(\iint_{|\zeta|>|z| / 2}\left|\frac{d \sigma_{\zeta}}{\zeta(\zeta-z)}\right|^{q}\right)^{1 / q} .
\end{aligned}
$$

Substituting $z \tau$ for ζ in the last integral, we have

$$
\begin{aligned}
I_{2} & \leq \frac{4|z-1|}{\pi}\left(\iint_{\mathbb{C}}|\hat{\mu}(\zeta)|^{p} d \sigma_{\zeta}\right)^{1 / p}\left(\iint_{|\tau|>\frac{1}{2}} \frac{d \sigma_{\tau}}{|z|^{2 q-2}|\tau(\tau-1)|^{q}}\right)^{1 / q} \\
& \leq \frac{4|z-1|}{\pi|z|^{2 / p}}\left(\iint_{\mathbb{C}}|\hat{\mu}(\zeta)|^{p} d \sigma_{\zeta}\right)^{1 / p}\left(\iint_{\mathbb{C}} \frac{d \sigma_{\tau}}{|\tau(\tau-1)|^{q}}\right)^{1 / q} \\
& \leq c_{2}|z| .
\end{aligned}
$$

Therefore we have $Q(z)=O(|z|)$ when $z \rightarrow \infty$. It follows from $\lim _{z \rightarrow \infty} F(z) / z^{2}=0$ that $\lim _{z \rightarrow \infty} \phi(z) / z^{2}=0$, which implies $\phi \equiv 0$. Hence

$$
\begin{aligned}
F(z)=Q(z) & =-\frac{z(z-1)}{\pi} \iint_{\mathbb{C}} \frac{\hat{\mu}(\zeta)}{\zeta(\zeta-1)(\zeta-z)} d \sigma_{\zeta} \\
& =-\frac{z(z-1)}{\pi} \iint_{H}\left(\frac{\mu(\zeta)}{\zeta(\zeta-1)(\zeta-z)}+\frac{\overline{\mu(\zeta)}}{\bar{\zeta}(\bar{\zeta}-1)(\bar{\zeta}-z)}\right) d \sigma_{\zeta} .
\end{aligned}
$$

THEOREM 2.3. Suppose $F(z)$ satisfies the condition in Lemma 2.2; then for the boundary function $F(x)$, we have

$$
\begin{equation*}
\lambda_{F}(x, t) \leq c t^{-2 / p} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
c & =\frac{2}{\pi}\left(\iint_{H}|\mu(\zeta)|^{p} d \sigma_{\zeta}\right)^{1 / p}\left(\iint_{H} \frac{d \sigma_{\zeta}}{|\zeta(\zeta-1)(\zeta+1)|^{q}}\right)^{1 / q} \\
& =\frac{2}{\pi}\|\mu\|_{p}\left\|\frac{1}{\zeta(\zeta-1)(\zeta+1)}\right\|_{q} .
\end{aligned}
$$

Proof. By [5], we have

$$
\begin{aligned}
\lambda_{F}(x, t) & =\left|\frac{F(x+t)-2 F(x)+F(x-t)}{t}\right| \\
& =\frac{2}{\pi}\left|\iint_{H} \frac{\mu(x+t \zeta)}{\zeta(\zeta-1)(\zeta+1)} d \sigma_{\zeta}\right| \\
& \leq \frac{2}{\pi}\left\|\frac{1}{\zeta(\zeta-1)(\zeta+1)}\right\|_{q}\left(\iint_{H}|\mu(x+t \zeta)|^{p} d \sigma_{\zeta}\right)^{1 / p} .
\end{aligned}
$$

Substituting τ for $t \zeta$ in the last integral, we obtain

$$
\lambda_{F}(x, t) \leq c t^{-2 / p} .
$$

The increasing order $t^{-2 / p}$ when $t \rightarrow \infty$ is sharp; because we can choose

$$
\mu(\zeta)= \begin{cases}\zeta^{-\alpha / p}, & \zeta \in\{|\zeta| \leq 1\} \cap\{\operatorname{Im} \zeta>0\} \tag{2.8}\\ 0, & \zeta \in\{|\zeta|>1\} \cap\{\operatorname{Im} \zeta>0\}\end{cases}
$$

where $p>2, \alpha<2$. Then $\mu(\zeta) \in L^{p}(H)$. It is not difficult to show that

$$
\lambda(0, t)=\frac{2}{\pi}\left|\iint_{|\zeta|<1 . \operatorname{Im} \zeta>0} \frac{d \sigma_{\zeta}}{\zeta^{1+\alpha / p}(\zeta-1)(\zeta+1)}\right| t^{-\alpha / p} .
$$

Since α can approach 2 from below as close as we choose, the constant $-2 / p$ cannot be improved.

Directly from this theorem we can easily obtain
Corollary 2.4. Let $F(z)$ be a continuous complex-valued function on \bar{H} normalized by $\operatorname{Im} F(x)=0$ when $x \in \mathbb{R}$ and $F(0)=F(1)=\lim _{z \rightarrow \infty} F(z) / z^{2}=0$. If $\mu(z)=\bar{\partial} F(z) \in L^{\infty}(H) \oplus L^{p}(H)(p>2)$, that is, $\mu(z)=\mu_{1}(z)+\mu_{2}(z)$, where $\mu_{1} \in L^{\infty}(H), \mu_{2} \in L^{p}(H)(p>2)$, then

$$
\begin{equation*}
F(z)=-\frac{z(z-1)}{\pi} \iint_{H}\left(\frac{\mu(\zeta)}{\zeta(\zeta-1)(\zeta-z)}+\frac{\overline{\mu(\zeta)}}{\bar{\zeta}(\bar{\zeta}-1)(\bar{\zeta}-z)}\right) d \sigma_{\zeta} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{F}(x, t) \leq c_{1}+c t^{-2 / p} \tag{2.10}
\end{equation*}
$$

where

$$
c_{1}=\frac{2}{\pi}\left\|\mu_{1}\right\|_{\infty}\left\|\frac{1}{\zeta(\zeta-1)(\zeta+1)}\right\|_{1}, \quad c=\frac{2}{\pi}\left\|\mu_{2}\right\|_{p}\left\|\frac{1}{\zeta(\zeta-1)(\zeta+1)}\right\|_{q} .
$$

3. The estimation of $\bar{\partial} F(x+i y)$

Let $F(x)$ be a continuous real-valued function on \mathbb{R} with $\lim _{x \rightarrow \infty} F(x) / x^{2}=0$. Suppose $\lambda_{F}(x, t)$ is unbounded; then for any extension of $F(x)$ to H, its $\bar{\partial}$-derivative must be unbounded. Let $F(z)=u(x, y)+i v(x, y)$, where $z \in H$, be the BeurlingAhlfors extension of $F(x)$:

$$
\begin{align*}
& u(x, y)=\frac{1}{2 y} \int_{x-y}^{x+y} h(t) d t \tag{3.1}\\
& v(x, y)=\frac{1}{y}\left(\int_{x}^{x+y} h(t) d t-\int_{x-y}^{x} h(t) d t\right)
\end{align*}
$$

It is obvious that $F(z) \in C^{1}(H)$, and

$$
\begin{align*}
& u_{x}=\frac{1}{2 y}(F(x+y)-F(x-y)) \tag{3.2}\\
& u_{y}=-\frac{1}{2 y^{2}} \int_{x-y}^{x+y} F(t) d t+\frac{1}{2 y}(F(x+y)+F(x-y)), \\
& v_{x}=\frac{1}{y}(F(x-y)-2 F(x)+F(x+y)) \\
& v_{y}=-\frac{1}{y^{2}}\left(\int_{x}^{x+y} F(t) d t-\int_{x-y}^{x} F(t) d t\right)+\frac{1}{y}(F(x+y)-F(x-y)) .
\end{align*}
$$

Now we have

Theorem 3.1. Suppose there exists $\delta>0$, such that

$$
\begin{equation*}
\lambda_{F}(x, t) \leq \lambda(t) \tag{3.3}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$ and $0<t<\delta$, where $t \lambda(t) \in L^{1}(0, \delta)$. Then for the $\bar{\partial}$-derivative of the Beurling-Ahlfors extension of $F(x)$,

$$
\begin{equation*}
\left|\bar{\partial} F\left(x_{0}+i y_{0}\right)\right| \leq \frac{1}{2} \lambda\left(y_{0}\right)+\sigma\left(y_{0}\right) \tag{3.4}
\end{equation*}
$$

holds for all $x_{0} \in \mathbb{R}$ and $0<y_{0}<\delta$, where

$$
\begin{equation*}
\sigma\left(y_{0}\right)=2 \int_{0}^{1 / 2} t \lambda\left(2 y_{0} t\right) d t=\frac{1}{2 y_{0}^{2}} \int_{0}^{y_{0}} t \lambda(t) d t \tag{3.5}
\end{equation*}
$$

Proof. Let $F^{*}(x)=F\left(2 y_{0} x+x_{0}-y_{0}\right) / 2 y_{0}+c x+d$, and denote the Beurling Ahlfors extension of $F^{*}(x)$ by $F^{*}(z)$. Then

$$
\begin{equation*}
\lambda_{F^{*}(x, t)}=\lambda\left(2 y_{0} x+x_{0}-y_{0}, 2 y_{0} t\right) \leq \lambda\left(2 y_{0} t\right), \quad 0<t<\delta / 2 y_{0}, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{*}(z)=\frac{1}{2 y_{0}} F\left(2 y_{0} z+x_{0}-y_{0}\right)+c z+d \tag{3.7}
\end{equation*}
$$

From the fact that $\bar{\partial} F^{*}(z)=\bar{\partial} F\left(2 y_{0} z+x_{0}-y_{0}\right)$, we have

$$
\begin{equation*}
\bar{\partial} F^{*}\left(\frac{1+i}{2}\right)=\bar{\partial} F\left(x_{0}+i y_{0}\right) \tag{3.8}
\end{equation*}
$$

So to estimate $\bar{\partial} F\left(x_{0}+i y_{0}\right)$, it suffices to estimate $|\bar{\partial} F(z)|$ at only one point $z=$ $(1+i) / 2$ with the condition that

$$
\begin{equation*}
\lambda_{F}(x, t) \leq \lambda\left(2 y_{0} t\right) \tag{3.9}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$ and $0<t<\delta / 2 y_{0}$.
Since the constants c and d can be chosen arbitrarily, we can also assume $F(0)=$ $F(1)=\lim _{x \rightarrow \infty} F(x) / x^{2}=0$. Then it follows from (3.2) that
(3.10) $|\bar{\partial} F((1+i) / 2)|^{2}=H(X, Y, Z)=4(X-Y)^{2}+(X+Y+2 Z)^{2}$, where

$$
\begin{cases}X= & \int_{0}^{1 / 2} F(t) d t \tag{3.11}\\ Y & =\int_{1 / 2}^{1} F(t) d t \\ Z= & F(1 / 2)\end{cases}
$$

We now need the following lemma.

LEMMA 3.2. For the expressions in (3.11), we have

$$
\begin{equation*}
-\sigma\left(y_{0}\right) \leq Y-3 X \leq \sigma\left(y_{0}\right) \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
-\sigma\left(y_{0}\right) \leq X-3 Y \leq \sigma\left(y_{0}\right) \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{1}{4} \lambda\left(y_{0}\right) \leq Z \leq \frac{1}{4} \lambda\left(y_{0}\right) . \tag{3.14}
\end{equation*}
$$

Proof. Let $x \in(0,1 / 2)$, then by (3.9),

$$
-x \lambda\left(2 y_{0} x\right) \leq F(2 x)-2 F(x)+F(0) \leq x \lambda\left(2 y_{0} x\right)
$$

Integrating the above inequality with respect to x from 0 to $1 / 2$, we obtain (3.12).
Let $x \in(1 / 2,1)$, then by (3.9)

$$
-(1-x) \lambda\left(2 y_{0}(1-x)\right) \leq F(1)-2 F(x)+F(2 x-1) \leq(1-x) \lambda\left(2 y_{0}(1-x)\right)
$$

Integrating the above inequality with respect to x from $1 / 2$ to 1 , we obtain (3.13).
The inequality (3.14) follows directly from the inequality $\lambda_{F}(1 / 2,1 / 2) \leq \lambda\left(y_{0}\right)$.

Now we continue the proof of Theorem 3.1. By Lemma 3.2, we know that the point (X, Y, Z), where X, Y, Z are defined by (3.11), lies in the closed parallelepiped bounded by planes $X-3 Y= \pm \sigma\left(y_{0}\right), Y-3 X= \pm \sigma\left(y_{0}\right)$ and $Z= \pm \lambda\left(y_{0}\right) / 4$. It is easy to see that $H(X, Y, Z)$ is convex, and hence reaches its maximum at one of the eight vertexes of the parallelepiped.

After some computation, we obtain

$$
H(X, Y, Z) \leq H\left(\sigma\left(y_{0}\right) / 2, \sigma\left(y_{0}\right) / 2, \lambda\left(y_{0}\right) / 4\right)=\left(\sigma\left(y_{0}\right)+\lambda\left(y_{0}\right) / 2\right)^{2}
$$

Hence

$$
\left|\bar{\partial} F\left(x_{0}+i y_{0}\right)\right| \leq \lambda\left(y_{0}\right) / 2+\sigma\left(y_{0}\right)
$$

which completes the proof of Theorem 3.1.

The following corollaries follow directly from the above theorem.

COROLLARY 3.3. Let $F(x)$ be a continuous real-valued function on \mathbb{R} with $\lim _{x \rightarrow \infty}$ $F(x) / x^{2}=0$. If

$$
\begin{equation*}
\lambda_{F}(x, t) \leq M|\log t| \tag{3.15}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$ and $0<t<\delta$, then for the $\bar{\partial}$-derivative of the Beurling-Ahlfors extension of $F(x)$,

$$
\begin{equation*}
|\bar{\partial} F(x+i y)| \leq \frac{3}{4} M|\log y|+c \tag{3.16}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$ and $0<t<\delta$, where $c=M(1+4 \log 2) / 8$.

Corollary 3.4. Let $F(x)$ be a continuous real-valued function on \mathbb{R} with $\lim _{x \rightarrow \infty}$ $F(x) / x^{2}=0$. If

$$
\begin{equation*}
\lambda_{F}(x, t) \leq M / t^{\alpha} \quad(\alpha<2) \tag{3.17}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$ and $0<t<\delta$, then for the $\bar{\partial}$-derivative of the Beurling-Ahlfors extension of $F(x)$,

$$
\begin{equation*}
|\bar{\partial} F(x+i y)| \leq c / y^{\alpha} \tag{3.18}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$ and $0<y<\delta$, where $c=(3-\alpha) M /(2(2-\alpha))$.

4. An example

In Section 1, we stated that if $\bar{\partial} F(z)$ is unbounded in H, where $F(z)$ is continuous on \bar{H} and is normalized by $\operatorname{Im} F(x)=0(x \in \mathbb{R})$ and $\lim _{z \rightarrow \infty} F(z) / z^{2}=0$, equation (1.1) might have as solutions a family of almost everywhere quasiconformal homeomorphisms of H onto itself. The following is an example:

$$
\begin{equation*}
F(z)=z(\log |z|)^{2 / 3}, \quad z \in \bar{H} . \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{\partial} F(z)=\frac{1}{3} \frac{z}{\bar{z}}(\log |z|)^{-1 / 3} \in L^{\infty}(H) \oplus L^{p}(H), \tag{4.2}
\end{equation*}
$$

where $2<p<3$.
From $d w / d t=F(w), w(0)=z$, we have

$$
\begin{equation*}
\frac{d \log |w|+i d \arg w}{(\log |w|)^{2 / 3}}=d t, \quad w(0)=z, \tag{4.3}
\end{equation*}
$$

which is equivalent to the system of equations

$$
\begin{cases}\arg w & =\arg z \tag{4.4}\\ \int_{0}^{t} \frac{d \log |w|}{(\log |w|)^{2 / 3}} & =\int_{0}^{t} d t .\end{cases}
$$

The solution is

$$
\begin{equation*}
w=f_{i}(z)=\frac{z}{|z|} e^{\phi(z, t)}, \quad t \geq 0 \tag{4.5}
\end{equation*}
$$

where $\phi(z, t)=\left[(\log |z|)^{1 / 3}+t / 3\right]^{3}$.

It is obvious that for any $t>0, w=f_{t}(z)$ is a homeomorphism of H onto itself. After some computation, we have

$$
\begin{equation*}
\left|\frac{\bar{\partial} f_{t}(z)}{\partial f_{t}(z)}\right|=\left|\frac{\left[(\log |z|)^{1 / 3}+\frac{1}{3} t\right]^{2} /(\log |z|)^{2 / 3}-1}{\left[(\log |z|)^{1 / 3}+\frac{1}{3} t\right]^{2} /(\log |z|)^{2 / 3}+1}\right|<1 \tag{4.6}
\end{equation*}
$$

and $\left|\bar{\partial} f_{t}(z) / \partial f_{t}(z)\right| \rightarrow 1$ only when $|z| \rightarrow 1$. Hence $\left\{w=f_{t}(z), t>0\right\}$ is a family of almost everywhere quasiconformal homeomorphisms of H onto itself. But there remains an open problem: under what general conditions on $\bar{\partial} F \in L^{\infty}(H) \oplus$ $L^{p}(H)(p>2)$, does equation (1.1) have solutions which are almost everywhere quasiconformal homeomorphisms.

References

[1] L. V. Ahlfors, 'Quasiconformal deformations and mappings in \mathbb{R}^{n} ', J. Analyse Math. $\mathbf{3 0}$ (1976), 74-97.
[2] ——, Lectures on quasiconformal mappings (Wadsworth, Belmont, 1987).
[3] J. Chen, Z. Chen and C. He, 'Boundary correspondence under $\mu(z)$-homeomorphisms', Michigan Math. J. 43 (1996), 211-221.
[4] J. Chen and H. Wei, 'On some constants of quasiconformal deformation and Zygmund class', Chinese Ann. of Math. Ser. B. 16 (1995), 325-330.
[5] F. Gardiner and D. Sullivan, 'Symmetric structures on a closed curve', Amer. J. Math. 114 (1992), 683-736.
[6] O. Lehto, 'Homeomorphism with a given dilation', in: Proceedings of the 15th Scandinavian congress, Oslo (1968)
[7] E. Reich and J. Chen, 'Extensions with bounded $\bar{\partial}$-derivative', Ann. Acad Sci. Fenn. Ser. A. I Math. 16 (1991), 377-389.
[8] H. Reimann, 'Ordinary differential equations and quasiconformal mappings', Invent. Math. 33 (1976), 247-270.
[9] A. Zygmund, Trigonometric series, 2nd edition (Cambridge Univ. Press, Cambridge, 1959).

Institute of Mathematics and
Department of Mathematics
Fudan University
Shanghai, 200433
P. R. China

[^0]: Research supported by Grants from National Science Foundation of China
 (c) 1997 Australian Mathematical Society $0263-6115 / 97 \$$ A2.00 +0.00

