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COMPARING COUNTING PROCESSES AND QUEUES

WARD WHITI,* Bell Laboratories

Abstract

Several partial orderings of counting processes are introduced and applied
to compare stochastic processes in queueing models. The conditions for the
queueing comparisons involve the counting processes associated with the
interarrival and service times. The two queueing processes being compared are
constructed on the same probability space so that each sample path of one
process lies below the corresponding sample path of the other process.
Stochastic comparisons between the processes and monotone functionals of
the processes follow immediately from this construction. The stochastic com-
parisons are useful to obtain bounds for intractable systems. For example, the
approach here yields bounds for queues with time-dependent arrival rates.

QUEUEING; STOCHASTIC ORDER; STOCHASTIC COMPARISONS; COUNTING PROCESS;

POINT PROCESS ON THE LINE; BOUNDS

1. Introduction and summary

A rather obvious proposition about queueing systems is that the congestion
should increase if the customers arrive more quickly or are served more slowly.
However, when we try to make this proposition precise, we discover that there
are many ways to define what is meant by both the conclusion and the
conditions, and without the proper combination the proposition need not be
valid. The purpose of this paper is to further clarify and amplify this basic
proposition. We determine conditions under which a very strong form of the
conclusion is valid. In particular, we find conditions under which it is possible
to construct the two queueing stochastic processes being compared on the same
underlying probability space so that each sample path of one process lies below
the corresponding sample path of the other process. The possibility of such a
construction has been shown by Kamae, Krengel and O'Brien (1977) to be
equivalent to stochastic order of all the finite-dimensional distributions. The
artificial construction of course immediately implies many stochastic compari-
sons. For example, various monotone functionals such as first-passage times
will be stochastically ordered. Stochastic order for the limiting distributions is
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208 WARD WHfIT

also a consequence of the sample-path orderings, but it is often possible to
obtain this conclusion under weaker conditions; e.g., see p. 1628 of Jacobs and
Schach (1972). The various stochastic comparisons are useful to obtain bounds
for intractable systems. In fact, this research was largely motivated by the
desire to obtain bounds for queueing systems in which the arrival rates are
non-stationary. For this reason, the counting processes in Section 2 and the
arrival processes of the queueing systems in Sections 3 and 4 are often arbitrary.
It is helpful to think of non-homogeneous Poisson processes.

The investigation of sample-path comparisons for queues here is a sequel to
the recent work of Sonderman (1978), (1979a, b). We obtain new results for
queues principally by applying comparisons involving conditional failure rate
functions; see Definition 1. These comparisons extend recent comparison
results for renewal processes and semi-Markov processes by Miller (1979) and
Sonderman (1980). Roughly speaking, the idea is to say that arriving faster
means the arrival rate conditional on any history in one system is greater than
the arrival rate conditional on any history in the other system. Of course, for
two Poisson processes, this notion reduces to a simple comparison of the
constant rates. The use of conditional failure rates makes it possible to
compare queueing systems with not only non-Poisson arrival streams but also
non-renewal arrival streams. The ordered conditional failure rates allow us to
construct the slower counting process by thinning the faster counting process,
so that the sequence of event epochs associated with the slower process
becomes a subsequence of the sequence of event epochs associated with the
faster process. This general thinning idea goes back at least to Jensen (1953)
and has been used frequently for queueing comparisons in recent years, e.g., p.
1630 of Jacobs and Schach (1972), Miller (1979), Sonderman (1980) and
references there. However, we use it in a more general way. Moreover, we
believe the approach using conditional failure rates makes the essential proper-
ties transparent. However, the strong path-order conclusions we obtain in this
paper require quite restrictive conditions. It is also important to study weaker
conclusions that hold under less restrictive conditions. An account of related
work that does this is contained in Stoyan (1977).

We now indicate how the rest of this paper is organized. We begin in Section
2 by defining several different partial orderings for counting processes, the
strongest being the one discussed above involving the conditional failure rates.
For the most part, Section 2 is a review, but we believe it provides a useful
overview. In Section 3 we apply the partial orderings for counting processes to
obtain sample-path comparisons for queueing processes. In Section 4 we
extend the comparison results to queueing systems with a series or an acyclic
network of stations. We obtain positive comparison results in this setting by
introducing an appropriate partial ordering on the m-dimensional state space.
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Comparing counting processes and queues 209

We conclude the paper in Section 5 by observing that the methods here can be
used to compare generalized semi-Markov processes.

Since the arguments required here are similar to those displayed by Jacobs
and Schach (1972), Miller (1979) and Sonderman (1979a, b), (1980), we
frequently omit proofs.

2. Comparing counting processes

Let Ai =={Ai(t), t~O} be a counting process (point process on the positive
half line), i.e., a stochastic process with non-decreasing right-continuous non-
negative integer-valued sample paths, for i == 1, 2. Let ~ == {~(n), n ~ O} be the
associated sequence of event epochs, defined by

~(n) == inf {s~ 0: Ai(s) ~ n}, n~l,

with ~(O)==O and ~(n)==+oo if Ai(t)<n for all t. We shall use several
different partial orderings of counting processes. To express them, let L(AJ
represent the probability law (distribution) of the stochastic process Ai on the
space of its sample paths. Also recall that a non-negative random variable has a
failure rate r(t) if its c.d.f. F(t) is absolutely continuous with respect to
Lebesgue measure and has a density f(t); then r(t) == f(t)/(I- F(t)) for all t such
that F(t) < 1, see p. 53 of Barlow and Proschan (1975). (It is also possible to
have discrete failure rates when F(t) is absolutely continuous with respect to
counting measure and has a probability mass function. Where failure rates are
used in the following discussion, the results can be extended to cover this case
as well as mixtures of the two.)

Definition 1. For j == 1, · .. , 5, the ordering A 1~jA2 means:
(j == 1) The conditional distributions P([~(Ai(t)+ 1) - t]~ u IAi(s), O~ s ~ r)

have failures rates for each t and i (almost surely with respect to AJ,
and for some A(t) the failure rate for i == 1 (i == 2) is bounded above
(below) by A(t), t ~ O.

(j == 2) It is possible to construct on a common probability space two new
counting processes A1 and A2 with associated event epoch sequences
T1 and T2 such that L(AJ == L(AJ for each i, the sequence
{T1(n), n ~ I} is a subsequence of {T2 (n ), n ~ I} and A1(r) - A1(t-) ~
A 2(t) - A 2(t-) for all t ~ 0 and all sample paths.

(j == 3) It is possible to construct on the same probability space two counting
processes A1 and A2 with associated event epoch sequences T1 and T2

such that L(Ai)==L(Ai) for each i and T1(n)-T1(n-l)~

T2(n ) - T2(n -1) for all n ~ 1 and all sample paths.
(j == 4) It is possible to construct on the same probability space two new
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210 WARD WHITT

counting processes Al and A2 such that L(Ai ) = L(Ai ) for each i and
AI(t)~A2(t) for all t~O and all sample paths.

(j = 5) For all t ~ 0, Al (r) is stochastically less than or equal to A 2 (t), i.e.,
P(AI(t)~X)~P(A2(t)~X) for all x and t.

Remarks. (1) We use the term 'partial ordering' loosely. As binary relations,
the ordering ~5 is not antisymmetric and the ordering ~l is not reflexive. If
L(Al) = L(A2), then Al ~2A2. However, L(AI) = L(A2) and Al ~lA2 both
hold if and only if Al and A 2 are Poisson processes with common intensity.

(2) This list of orderings does not include all the possibilities. For example,
with respect to ~5' it is possible to define other stochastic orderings between
random variables; see Kirstein (1976) and Stoyan (1977) and references there.

(3) For the conditional probability distribution in the ordering ~l to be well
defined, we need to work with regular conditional probabilities; see Section 4.3
of Breiman (1968) or Chapter V of Parthasarathy (1967). However, the sample
paths of the counting processes belong to the function space D[O,oo); the
function space D[O,oo) with the usual topology is metrizable as a complete
separable metric space; and the Borel o-field generated by this topology agrees
with the standard notions of measurability; see Lindvall (1973) and Section VII
of Parthasarathy (1967). Hence, the probability space we are dealing with is a
standard Borel space, so that regular conditional probabilities exist.

We now indicate how the orderings are related. Let i~ j mean that ordering
~i implies ordering ~j but they are not equivalent and let i~ j mean the two
orderings are equivalent.

Theorem 1. (a) In general 1~ 2~ 4~ 5 and 3~ 4.
(b) For two renewal processes,

1~2~3~4~5.

We briefly discuss Theorem 1 instead of providing a detailed proof because it
contains only a minor extension of results in the literature. In particular, these
orderings have been considered before for renewal processes. Miller (1979)
showed that the ordering ~l implies the ordering ~2 for renewal processes.
Similar reasoning shows that implication holds in the more general setting
here: If Al ~lA 2 , then the process Al can be constructed by thinning the
process A 2; i.e., if the conditional failure rates at time tare 'l(t) and r2(t) and
an event occurs in process 2 at time t, then let an event also occur at time t in
process 1 with probability r l (t)/'2(t), and adjust the conditional failure rates to
reflect the events which do occur. The orderings ~l and ~2 were also applied to
the comparison of queuing processes and semi-Markov processes by Sonder-
man (1979a,b), (1980). Miller (1979) introduced ordering ~l as a condition to
get ordering ~2. However, for results here and in Sonderman (1980) the
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stronger properties of ordering ~1 are needed; ordering ~2 is often not
sufficient.

The ordering ~3 for renewal processes follows from a well-known construc-
tion for real-valued random variables; see Lemma 1 of Sonderman (1979a).
The ordering ~3 was applied in queueing by Jacobs and Schach (1972). The
ordering ~4' which we also use for stochastic processes that do not have
non-decreasing sample paths, was extensively studied and shown to be equival-
ent to the usual stochastic order of all finite-dimensional distributions by
Kamae, Krengel and O'Brien (1977). Schmidt (1976) showed that the ordering
~5 does not imply the ordering ~3 in general.

To express the simple conditions for the orderings ~1 and ~3 for renewal
processes, we use the following orderings for non-negative random variables
x, and X 2 •

Definition 2. (a) The ordering X, ~rX2 means that the distributions of X,
and X2 have failure rates 'l(t) and '2(t), and infc~o 'l(t) ~SUPt~O r2(t).

(b) The ordering X1~stX2 means that X, is stochastically less than or equal
to X 2, i.e., P(X1~X)~P(X2~X) for all x.

It is not difficult to see that for renewal processes two of the orderings of
counting processes are characterized by these two orderings for. random
variables applied to the time between renewals.

Theorem 2. Suppose A 1(A2) is a renewal counting process for which X 1(X2)
is a time between renewals. Then

(a) A 1~1 A 2 if and only if X, ~rX2;
(b) A 1~3A3 if and only if X, ~stX2'

We now illustrate the ordering ~r with a few examples.

Examples. (1) Let E(A) be an exponentially distributed random variable
with mean A-1. Obviously, E(A1) ~rE(A2)' E(A1)~stE(A2) and A1~A2 are
equivalent.

(2) Let G(A, a) be a random variable with a gamma distribution, i.e., with
the density gAo aCt) = Aata- 1e- At/f (a ), t ~ O. Then G(A b a 1) ~r G(A2, a 2 ) if and
only if A1 ~ A2 and a 1~ 1~ a2; see pp. 73-75 of Barlow and Proschan (1975).

(3) The sum E(A1) + · .. +E(~) of independent exponential random vari-
ables, often called a hypoexponential random variable, is IFR (increasing failure
rate), p. 100 of Barlow and Proschan (1975). For n ~ 2, the failure rate
increases from a to min {Ab • • . ,~}. Hence, E(A1)+ ... +E(~) ~rE(A) if
and only if A~min {A1, ... , An}.

(4) Let M(p1' ... , Pn; Ab ••• , ~) be the mixture of n exponential random
variables with parameters A1 , ••• ,~ and weights Pb .. · ,Pn' having density

https://doi.org/10.2307/1426475 Published online by Cambridge University Press

https://doi.org/10.2307/1426475
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L~=l PiAie-Ai
\ t ~ O. This mixture, often called a hyperexponential random

variable, is DFR (decreasing failure rate), p. 103 of Barlow and Proschan (1975).
The failure rate decreases from L~=l PiAi to min {Ab ... , ~}. Hence,

E(A) ~rM(Pb ... , Pn; Ab ... , ~) ~rE(A)

if and only if A~min {Ab ... , ~} and L~=l PiAi ~ A.
(5) The Wei bull distribution with c.d.f. F(t) == 1- e-(At)o< has a failure rate

aA(At)a-t, t > 0, a 1= 1. Hence, for a =1= 1, this distribution has no upper bound
and only the trivial lower bound 0 in the ~r partial ordering.

We close this section by noting that all the partial orderings. for counting
processes except ~3 extend to superpositions.

Theorem 3. For i == 1, 2, let Au, j == 1, · .. ,n, be independent counting
processes. For k == 1, 2, 4 or 5, if A lj ~kA2j for all j, then All + ... +
A ln~kA21 + ... + A 2 n ·

Proof. For k == 2, 4 and 5, the result is trivial. For k == 1, note that the
conditioning events for each superposition process form a sub-sigmafield of the
conditioning events for each vector of component processes. Hence, first
condition on the vector of component processes and then integrate. The basic
principle is that E(X I~l) ~ A a.s. if X is an integrable random variable,
E(X I~2) ~ A a.s. and ~l is a sub-sigmafield of the sigmafield ~2.

3. Comparing queueing models

In the queueing systems we consider, customers are served in order of their
arrival by the first available server without defections after entering the system.
If there is a finite waiting room and the system is full when a customer arrives,
that customer leaves without receiving service or affecting future arrivals. We
also assume that the service-time distributions are independent of the arrival
process. We use the notation A/A/e/k to refer to such a system with e servers
and a waiting room of size k - e, 1~ e ~ k ~ 00. The A's mean that the arrival
process and the service process are arbitrary. We substitute G, M, etc. for A in
the usual way when the counting process is renewal, Poisson, etc. By having
arbitrary arrival processes instead of renewal arrival processes, we are able to
treat systems with stations in series where the arrivals at one station are the
departures from the one before; see Theorem 12 and its corollary.

In this section, we first compare discrete-time queueing processes (Theorems
4-7) and then continuous-time queueing processes (Theorems 8-11). The
conditions are expressed in terms of the counting processes Ai =={Ai(t), t~O}
and S, == [S, (r), t ~ O} associated with the interarrival and service times in
the ith system. Let {~(n), n ~ I} and {vi(n), n ~ I} be the sequences of interar-
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rival times and service times, where we associate the service times with
successive arrivals. Then Ai and S, are defined as

Ai(t)=max{n~0:~(1)+··· +~(n)~t}, t~O,

and

Si(t)=max{n~0:Vi(1)+... +vi(n)~t}, t~O.

Note that Ai(t) represents the number of arrivals in the interval [0, t], but Si(t)
does not represent the number of service completions in [0, t] because there
may be several servers and these servers typically will be idle from time to
time.

In the following theorems, we use all the orderings in Definition 1. Each
time ordering ~j appears as a condition it is possible to show by counterexam-
ple that ordering ~j+l would not suffice. We also use the orderings ~4 and ~5

in Definition 1 for stochastic processes without non-decreasing sample paths.
We begin by considering the sequence of waiting time (not counting service

times) of successive customers in an AlAlcl» system. Let ~={~(n),n~O}
represent this sequence in the ith system. We also use the orderings ~4 and ~5

for such discrete-time processes. One of the most elementary comparison
results is the following.

Theorem 4. If Al ~3A 2 and SI ~3 S2 in an AIAIc/oo system, then WI~4 W2·

Theorem 4 is essentially due to Kiefer and Wolfowitz (1955); it was proved
by Jacobs and Schach «1972), Theorem 2.2), but they only stated the following
corollary.

Corollary. If Al ~3A2 and SI ~3 S2 in a GIGlc/oo system, then WI ~5 W2.

The proof also yields the ordering ~4 for the Kiefer-Wolfowitz vector of
workloads facing each server at successive arrival epochs, and thus also for the
total workload in service time remaining in the system at arrival epochs.
Related results when independence is relaxed have been proved by O'Brien
(1975).

It is significant that Theorem 4 is not valid if the ordering ~3 for either Ai or
S, is replaced by ~4. As a contrast, consider the sequence {L(n), n ~O}
where L(n) represents the total work in service time to enter the system just
prior to the arrival of the nth customer. It is trivial that L I ~4L2 if Al ~4A2
and SI~4S2.

We now consider comparisons of embedded queue-length processes. Let
Qt(n) be the number of customers in the ith system at the epoch of the arrival
of the nth customer (but not including the nth customer). Jacobs and Schach
«1972), Theorems 3.1 and 3.2) concluded that the ordering Qf~5Q~ is valid
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in a G/G/c/oo system assuming that A1~3A2 and Sl~3S2. However, Theorem
3.2 there seems to be incorrect. Their proof of Theorem 3.1 yields the
following result.

Theorem 5. If L(A1)==L(A2) and Sl~3S2 In an AlAlci» system, then
Qf~4Q~.

However, A 1 ~3A2 and L(Sl) == L(S2) do not seem to be enough for
Qf~5 Q~ in a Gl Glc!» system.

Counterexample. Consider two G/D/1/oo systems with P(v1(1) == 2) ==
P(v2(1) == 2) == 1, P(u1(1) == 0) == P(u2(1) == 1) == 1- 8 and P(u1(1) == 6·1) ==
P(u2(1) == 6·1) == 8. Then

P(Qf(4) == 0) == (1- 8 )28 +0(8 2
)

and

while

P( Qf(4) ~ 3) == (1- 8)4> P( Q~(4) ~ 3) == o.

Hence, for sufficiently small 8, Qf(4) and Q~(4) are not stochastically compar-
able, i.e., Qf~5 Q~ fails.

The following positive result and its proof are similar to Theorem 1 of
Sonderman (1979b). We now let the queueing systems have finite waiting
rooms.

Theorem 6. If C1 ~ C2, C 1 + k 1~ C2 + k2, A 1~3A2 and Sl ~1 S2 in two A/A/c/k
systems, then Of ~4 O~.

Proof. The argument is similar to the argument for Theorem 1 of Sonderman
(1979b). We construct two new queueing systems on the same probability
space with embedded sequences at and at so that ot(n) ~ ot(n) for all n

and all sample points and L(at) == L(Qt) for each i. To do this, use any two
arrival processes A1 and A2 such that T1(n+1)-T1(n)~T2(n+1)-T2(n)for
all n with L(Ai ) == L(Ai ) for each i, which exist by the assumed ordering ~3.

Suppose all the arrivals and service completions have been generated for the
two systems up to the epochs T 1(n) and T 2(n), respectively, so that Ot(k)~
d~(k), O~k~n.We show how to guarantee that Ot(n+1)~Ot(n+1)while
keeping the correct distributions. Let the conditional failure rates of the
residual service times be consistent with the histories up to times T1(n ) and
T2(n), respectively. Using any construction after ~(n), let U(n) be the elapsed
time after these epochs, if any, until the numbers of customers in the two
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systems first agree, i.e., let Qi(t) be the number of customers in the ith system
at time t and let

U(n) == inf {s~ 0: Q1(T1(n) + s) == Q2(T2(n) + s)}.

If U(n) ~ T2(n + 1) - T2(n), there is no problem because Q~(n+ 1)~ Qf(n + 1)
is guaranteed. If U(n) < T2(n + 1) - T2(n), then make a special construction in
the two systems beginning at times T1(n) + U(n) and T2(n) + U(n), respec-
tively. Construct successive departures in the first system consistent with the
conditional failure rates. Then use the orderings 51 ~1 52 and e1~ e2 to
construct the departures in the second system after T2 (n ) + U(n) by thinning
the departure sequence for the first system after T1(n)+ U(n). Perform this
careful construction whenever the number of customers in the two systems are
the same, but carry out any construction consistent with the conditional failure
rates whenever the number of customers in the first system is strictly less than
the number in the second system. Since T1(n + 1) - T 1(n) ~ T2(n + 1) - T2(n) for
each n, this procedure guarantees that Q~(n+ 1)~Qf(n + 1).

A slightly stronger result follows by the same reasoning if the service times
are exponentially distributed.

Theorem 7. If e1+k1~e2+k2' A1~3A2' /-L1~/-L2 and e1/-L1~e2/-L2 in two
A/M/e/k systems where /-L-;-1 is the mean service time in the ith system, then
0~~40f.

We now consider the continuous-time queue-length process. Let O, (r) be the
number of customers in the ith system at time t. There is plenty of evidence to
show that 0 1~5 O2 need not hold if A 1~3A2 and 51~3 52 in a G/G/e/k
system; see p. 1628 of Jacobs and Schach (1972) and the counterexamples in
Sonderman (1978). The following comparison result is a generalization of
Theorems 4.2 and 6.3 of Jacobs and Schach (1972) which follows by a minor
modification of their proofs.

Theorem 8. If A 1~2A2 and 51 ~3 52 in an A/G/e/oo system, then 0 1~4 O2.

Proof. The ordering 51~3 52 means that the service times i\ (n) can be
constructed so that v1(n)~v2(n) for all n. However, do not assign the service
times in order of arrival in system 2. Instead, let the service times 13 1(n) and
v2(n) satisfying v1(n) ~ v2(n) be assigned to the customers arriving at T1(n).
Let the extra arrivals in system 2 be assigned service times from an indepen-
dent copy of 52. Since 52 is assumed to be a renewal process independent of
A 2 , this does not alter the distribution of 52 or the associated queueing
processes. After this construction, all the arrivals in system 1 are matched by
arrivals in system 2 with longer service times. Moreover, there may be extra
arrivals in system 2. Then apply a slight modification of the proof of Theorems
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2.2 and 3.1 in Jacobs and Schach (1972) to show that first the waiting times
and then the departure points of the matched customers are ordered, which
implies the desired result.

Remark. It is apparent from the proof above that if L(A l ) = L(A2 ) instead
of Al ~2A2 in Theorem 8, then the result holds for an AlAlcl» system.

It is easy to construct examples showing that Theorem 8 is not valid for a
system with a finite waiting room, even if L(Sl) = L(S2)' The following positive
result requires stronger conditions than both Theorems 6 and 8. It is the
natural generalization of the comparison result for M/M/c/k systems that
follows immediately from Theorem 5.1 of Kirstein (1976) or Theorem 3.2 of
Sonderman (1980).

Theorem 9. If Cl~C2' Cl+kl~C2+k2' Al~2A2 and Sl~lS2 in two A/A/c/k
systems, then 0 1 ~4 O2 ,

Proof. Do a construction similar to the one outlined for Theorem 6. In
particular, it is possible to piece together constructions for the subintervals
[T1(n), T1(n + 1)). Both systems have an arrival at T 1(n). As long as the
number in the first system is strictly less than the number in the second system,
use any construction consistent with the conditional failure rates. However,
whenever the number of customers in the two systems is equal, construct the
successive departures in the second system by thinning the departures in the
first stream. The assumption Sl ~1 S2 implies that departures occur one at a
time, so that the number of customers in the second system will never jump
below the number in the first. Moreover, the orderings C1 ~ C2 and Sl ~l S2
imply that the conditional failure rates are ordered as needed for the thinning
when the number in each system is the same.

Just as with Theorems 6 and 7, a somewhat stronger result follows by the
same reasoning in the case of exponentially distributed service times.

Theorem 10. If C1 + k1~ C2 + k2, Al ~2A2' ILl ~ 1L2 and C11L1 ~ C21L2 in two
A/M/c/k systems, then 0 1 ~402'

With the aid of Theorem 3, it is easy to extend Theorem 9 to systems with
multiple heterogeneous arrival channels and service channels, as in Iglehart
and Whitt (1970). For this model, the service times are associated with the
server and all the channels are independent. Let M(A) be a Poisson process
with intensity A.

Theorem 11. Consider two multiple channel systems in which each has m
arrival channels, but the first has C 1 servers and k1 extra waiting spaces while
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the second has C2 and k2 with C1+ k1~ k2. Suppose A 1j ~2A2j' 1 ~j < m;
Slj~lM(A1j)' 1~j~C1; and S2j~lM(A2j)' l~j~c2. Let the servers be
labeled so that All ~ · · . ~ A1cl, and '\21~ .. · ~ A2c2· If A1cl+ ... + Al(Cl-j) ~
A21+ ... + A2{j+1) for 0 ~ j < min {cb C2}, then 0 1~4 O2.

As a corollary to Theorem 11, we obtain 0 1~4 O2 if the first system is an
AlMl i]» system where the single server works at rate IL and the second system
is an A/M(c)/c/oo system with L(A1)= L(A2) and c heterogeneous servers
working 'at rates ILb · . · , ILc with IL ~ ILl + . · · + ILc. In other words, Theorem
11 contains Theorems 1 and 2 of Stidham (1970) and the first half of (7) in
Theorem 4 of Yu (1974). Since Yu (1974) works with Erlang distributions, it is
necessary to first work with exponential phases.

4. Tandem queues

We now compare systems with several stations in series. We assume that the
sequences of service times associated with the different stations are indepen-
dent. One result follows immediately from a comparison of departure processes
in a single station; see Section 4 of Stoyan and Stoyan (1976). Let D, ==
[D, (r), t ~ O} be the counting process recording departures from a single station
in the ith system.

Theorem 12. (a) If A 1~3A2 and L(Sl) = L(S2) in two A/A/l/oo systems,
then D 1~3D 2 •

(b) If A1~4A2 and Sl~3S2 in two AlAlcl» systems, then D1~4D2.

(c) If k.,~ k2, A 1~lA2 and Sl ~3 S2 in two A/G/c/k systems, then D 1~4·D2.

Proof. (a) Let d;(n) be the interval between the nth and (n + l)th departures
in the ith system. Since

di(n) = ~(n) + ~(n + 1) - ~(n) + vi(n + 1) - vi(n)

= vi(n + 1) +max {O, ~(n) + vi(n) - ~(n)}- (~(n) + vi(n) - ~(n))

=vi(n+1)-min{0, ~(n)+vi(n)-~(n)},

d1(n) ~ d2(n) if W 1(n)~ W2(n) and u1(n)~ u2(n). Hence, Theorem 4 together
with the conditions gives the desired result.

(b) Proceed by induction, using the vector-valued departure sequence in
(2.1) of Sonderman (1979a).

(c) Apply Theorems 1 and 2 of Sonderman (1979a) after extending Theorem
2 to the non-Markovian arrival processes using the ordering ~1.

Remarks. It is easy to construct examples showing that Theorem 12(a) does
not hold for multiserver systems. For further comparisons of departure proces-
ses, see Sonderman (1979a, b).
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Now consider m stations in series. Let Sij be the service counting process at
the jth station in system i and let ~j be the waiting-time sequence at the jth
station in the ith system, i.e., ~j(n) is the time the nth arriving customer must
wait at the jth station before beginning service there in the ith system.
Theorems 4 and 12(a) immediately imply the following corollary due to Niu
«1977), Section 3.6).

Corollary. If A l ~3A2' L(Sij) = L(S2j) for j = 1, ... , m -1, and Slm ~3S2m

in two A/A/l/oo~ /A/l/oo~ ... ~ lAlcl» systems, then ~j ~4W2j for each i.
1~j~m.

Remarks. Notice that in the corollary all stations but the last must have only
one server, but the last can be general. Theorems 6 and 7 can be extended in
the same way since the arrivals at each station are ordered by ~3.

Notice that in order to obtain faster departure processes in Theorem 12 we
had to assume that the services as well as the arrivals occur more quickly. As a
consequence, the corollary comparing waiting times in tandem queues holds
only when the service processes at all but the last station of the two systems are
identical. We can obtain more interesting comparisons for tandem queues by
considering the total waiting time before beginning service at the jth station
instead of the waiting time at each station separately. Let ~j(n) =

~l(n)+vil(n)+ ~2(n)+ ... + ~j(n) where vij(n) is the service time of the
nth customer at the jth station in the ith system.

Theorem 13. If Al~3A2 and Slj ~3S2j for j= 1,···, m in two A/A/l/oo--:,.
/A/1/oo --:,. ... --:,. /Alc!» systems, then Ylj ~4 Y 2j for j = 1, ... , m.

Proof. We display the argument only for two single-server stations. For the
case we treat, proceed by induction. Since the first station is covered by
Theorem 4, we focus on ~2. Note that

Yi2(n + 1) = ~l(n + 1)+ vil(n + 1)+ ~2(n + 1)

= ~l(n + 1)+ vil(n + 1)+max {a, ~2(n) + vi2(n) - Uj(n) - ~l(n + 1)

- vil(n + 1)+ ~l(n) + vil(n)},

= ~l(n + 1)+ vil(n + 1)+max {a, ~2(n) + vi2(n) - Uj(n) - ~l(n + 1)

- vil(n + 1)},

so that ~2(n+ 1) is a non-decreasing function of ~l(n + 1) and vil(n + 1) as
well as ~2(n), vi2(n) and -~(n). Assuming that ul(n) ~ u2(n), vll(n) ~
v2l(n), vl2(n)~v22(n) and Wll(n)~W2l(n) for all n and Yl2(j)~Y 22(j ) for
j ~ n, we have Y l 2(n + 1)~ Y 22(n + 1) as desired.

Remark. It is easy to construct examples showing that Wlj ~5 W2j for each j
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need not hold under the conditions of Theorem 13. It is also easy to construct
examples showing that Theorem 13 does not hold for multiserver stations
because customers need not depart in the same order as they arrive.

For other processes and stronger conditions, it is possible to obtain compari-
son results for a series of multiserver stations. For example, we now state the
generalization of Theorem 6. For this purpose, let o: == (Qii, ... , Q~) be the
vector-valued process representing the number of customers at each station at
successive arrival epochs. For vectors x == (xb ... ,xm ) and y == (YI' , Ym),
introduce the partial ordering x ~sY which means that Xl + + xj ~

YI + . . . + Yj for j == 1, · .. , m. Then the ordering Qf ~4o: is the extension of
the ordering ~4 to vector-valued processes using the ordering ~s on R":

Theorem 14. If c l j ~ C2j, c l j + k l j~ c2j+ k2j and Slj ~l S2j for j == 1, ... , m,
and AI~3A2 in two A/A/CI/kl~/A/C2/k2~ ... ~/A/cm/~ systems. Then
Qf~4Q:t.

Proof. The orderings Slj ~l S2j guarantee that at most one departure occurs
in each system at any time. The thinning argument used in the proof of
Theorem 6 applies again here.

Remarks. Corresponding generalizations of Theorems 7-11 are also easy to
state and prove. In the same way, acyclic networks of queueing stations can be
compared.

5. Generalized semi-Markov processes

The queueing models studied here can all be represented in the framework
of (denumerable-state) generalized semi-Markov processes (GSMPs); see
Schassberger (1976) plus references there. Moreover, the comparison results
here can also be expressed in that framework, but we shall not do so to avoid
the complicated notation. Comparisons of GSMPS can be viewed as generaliza-
tions of _comparisons of semi-Markov processes as treated by Sonderman
(1980). When the state space of the GSMP is one-dimensional, the comparison
results are similar to those in Section 3 here, especially Theorem 11. When the
state space is multidimensional, we introduce a partial ordering to obtain
positive results, as in Theorem 14 in Section 4.
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