
LMS J. Comput. Math. 13 (2010) 164–191 Ce2010 Authors

doi:10.1112/S1461157009000035

Constructing maximal subgroups of orthogonal groups

Derek F. Holt and Colva M. Roney-Dougal

Abstract

In this paper we construct the maximal subgroups of geometric type of the orthogonal groups
in dimension d over GF(q) in O(d3 + d2 log q + log q log log q) finite field operations.

1. Introduction

With only two families of exceptions, the subgroups of the almost simple extensions of the finite
simple classical groups are divided into nine (not mutually exclusive) classes by Aschbacher’s
theorem [1]. The maximal subgroups in the first eight of these classes are the geometric maximal
subgroups, and are described in detail in [14]. The ninth class, S, consists roughly of absolutely
irreducible groups that are almost simple modulo scalars, other than classical groups in their
natural representation.

The two families of exceptions to Aschbacher’s theorem are: almost simple extensions of
PSp(4, 2e) containing the graph automorphism, whose maximal subgroups are described in [1];
and almost simple extensions of PΩ+(8, q) containing the triality graph automorphism, whose
maximal subgroups are described in [13]. Although Aschbacher’s theorem does not apply
to these families (the specified graph automorphism interchanges subgroups from different
Aschbacher classes), we shall call a subgroup of such a group geometric if its intersection with
the simple group is geometric.

This paper describes algorithms for writing down generators of the geometric maximal
subgroups of the finite simple orthogonal groups and their almost simple extensions. More
precisely, we write down canonical generators of the pre-images in Ωε(d, q) of the intersections
of these maximal subgroups with PΩε(d, q). This paper builds on [10], where we presented
similar algorithms for the other almost simple classical groups.

The two main papers on the computation of maximal subgroups of an arbitrary finite
permutation group G are [4, 7]. These both show that the problem can effectively be reduced
to the case that G is almost simple. The vast bulk of the cases that arise for G almost
simple can then be handled using the methods that we describe here and in [10], and this
was our principal motivation for developing these techniques in a uniform fashion. Of course,
the maximal subgroups in S still need to be dealt with; a complete list of quasisimple groups
in S is known for degree d 6 250 [9, 15], although the question of maximality is still in general
open.

The algorithms presented in this paper construct the geometric maximal subgroups of
the (quasi)simple orthogonal groups. They can be combined with the subgroup conjugacy
information in [1, 13, 14], and with explicit descriptions of when the groups of each type are
maximal, to produce the geometric maximal subgroups of every group G with Ωε(d, q) �G 6
CΓOε(d, q) = NΓL(d,q)(Ωε(d, q)), and similarly for their projective counterparts, as well as the
geometric maximal subgroups of eight-dimensional orthogonal groups of plus type. Note that
if (d, ε) 6= (8,+), then PCΓOε(d, q) = Aut(PΩε(d, q)).
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Our algorithms have been implemented in Magma [2] and are publicly available as
part of the standard release of Magma. They can be used in two ways. The function
ClassicalMaximals constructs the geometric maximal subgroups of Ωε(d, q), SOε(d, q),
GOε(d, q) or COε(d, q) (= NGL(d,q)(GOε(d, q))) in their natural representations (as well as
producing the maximal subgroups of the classical groups that are studied in [10]). It runs
in under a minute on an average laptop machine for d less than around 70 and moderate q.

Secondly, our algorithms are combined with representations of groups in S to construct the
maximal subgroups of orthogonal groups in low dimensions over an arbitrary finite field. This
algorithm uses constructive recognition algorithms [12] to set up a homomorphism between an
arbitrary (black box) representation of the group G and a standard copy of the matrix group.
So, our algorithms are applicable to black box classical groups.

The subgroups that we construct are canonical in the sense that different calls to the same
algorithm will return the same generating matrices each time. To create canonical subgroups,
we will need certain canonical field elements for their matrix entries, and by this we mean that
different calls to the same algorithm will return the same field element each time. This is often
useful, for example, when investigating containments between subgroups, and removes one of
the major problems with randomised algorithms: the non-reproducibility of the output.

The following theorem is our main result.

Theorem 1.1. Let G be a group with PΩε(d, q) 6G 6 Aut(PΩε(d, q)), where d > 7. Let
M be the set of geometric maximal subgroups of G, up to conjugacy in PCOε(d, q). Let M1

be the set of intersections of groups in M with PΩε(d, q) and let M2 be the set of pre-images
in Ωε(d, q) of groups in M1. Then canonical generators of all groups in M2 can be calculated
and written down in O(d3 + d2 log q + log q log log q) elementary operations in GF(q).

We calculate representatives up to conjugacy in PCOε(d, q) because [1, Theorem B∆] states
that, except in the type + dimension eight case, the orbits of PCOε(d, q) on conjugacy classes
of subgroups are the same as those of Aut(PΩε(d, q)), and that these groups are transitive on
each of the ‘types’ of group for each Aschbacher class; see also [14, Proposition 4.0.2]. The
types in each class are presented at the beginning of the corresponding section of this paper.
We deal with the exceptional dimension eight case separately. Note that if d < 7, then Ωε(d, q)
is either not simple or is isomorphic to a classical group of linear, symplectic or unitary type
and hence has been dealt with in [10].

To write down generators of maximal subgroups of SOε(d, q), GOε(d, q) and COε(d, q) in
their natural representations, we need appropriate elements of these groups that lie outside of
Ωε(d, q) and normalise the intersection of the maximal subgroup with Ωε(d, q). Generally, this
is straightforward, and often these normalising elements are already used in our algorithms.
When their construction is not so clear (Lemmas 5.5 and 6.4), we explain it briefly in a remark
following the proof.

The layout of this paper is as follows. In § 2, we introduce some notation and state a number
of general lemmas. We then present various results on classical groups and forms in § 3. In
the remaining sections, we present our algorithms for each of the seven geometric families of
subgroups of PΩε(d, q), before finishing with the additional geometric subgroups of extensions
of Aut(PΩ+(8, q)) that contain the triality automorphism. We will frequently refer to [14], and
the reader may find it useful to have a copy to hand.

2. Notation and mathematical preliminaries

In this section we collect our notation, as well as giving some basic results on finite fields and
complexity.
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Throughout, let p be a prime and set q = pe. Let ζ be a primitive multiplicative element
of GF(q) and let ξ denote a primitive element of GF(q2) with ξq+1 = ζ. Let V = GF(q)d with
standard basis v1, . . . , vd.

We measure our complexity in terms of the number of elementary finite field operations,
namely addition, negation, multiplication and inversion. So, whenever we say that an operation
involving matrices over GF(q) is O(f(d, q)), we mean that it can be carried out using O(f(d, q))
elementary field operations in GF(q). So, for example, elements of GL(d, q) can generally be
constructed in O(d2) field operations. Matrix multiplication, and other basic operations such
as matrix inversion, nullspace and determinant computation, are O(dω) field operations (see
for example [3]). The current best known bounds for ω are 2 6 ω 6 2.376 [5], whilst Magma
uses the ω = log2 7 algorithm of [19] (for sufficiently large d, depending on the value of q). We
shall not assume the availability of discrete logarithms.

We assume that primitive polynomials, together with associated primitive (multiplicative)
field elements, are fixed for all finite fields that arise, so that ζ and ξ are canonical. The elements
of GF(pe) are represented as polynomials in 1, ζ, . . . , ζe−1 with coefficients in GF(p). Assume
that all defining polynomials respect inclusion of finite fields in one another, so that if f | e
then ζ(pe−1)/(pf−1) is the chosen primitive element of GF(pf ). Further, assume that defining
polynomials are known for all extensions of finite fields that we encounter.

By ordering the elements of GF(p) as 0, . . . , p− 1, we can order the elements of GF(q) by
lexicographically ordering the polynomials by their coefficients. Thus, if we know the roots of
some polynomial over GF(q), then we can fix a canonical root by taking the first root with
respect to this ordering.

Lemma 2.1.

(1) If α ∈GF(p2e) = GF(q2) lies in GF(q), then α can be represented as an element of GF(q)
in O(e) field operations in GF(q).

(2) Let α ∈GF(pse) = GF(qs) and let ν be the primitive element of GF(qs). Then α can be
written as a GF(q)-linear combination of 1, ν, . . . , νs−1 in O(s2e) field operations in GF(q).

Proof.
(1) Let x2 − βx− γ with β, γ ∈GF(q) be the minimal polynomial of ξ over GF(q). So,

ξ2 = βξ + γ. We are given α= a0 + a1ξ + a2ξ
2 + . . .+ a2e−1ξ

2e−1, with ai ∈GF(p) for all i.
To represent α as a polynomial of degree e in ζ, calculate the powers ξ2 = βξ + γ, ξ3 =
(β2 + γ)ξ + βγ, . . . , ξ2e−1, multiply by the appropriate coefficients and sum. Since α ∈GF(q),
the coefficients of ξ will sum to zero, thus representing α as an element of GF(q).

(2) We are given the minimal polynomial of ν over GF(q), and hence we can write νs as a
GF(q)-linear combination of 1, ν, . . . , νs−1 in O(s) field operations. Let α= b0 + b1ν + . . .+
bse−1ν

se−1, with bi ∈GF(p) for all i. For s+ 1 6 i 6 se− 1, write biνi = biνν
i−1, then substitute

the found expression for νi−1. This requires O(s) field operations for each step, so O(s2e) field
operations in total.

Lemma 2.2. Let d ∈ N.

(1) The number of distinct prime divisors of d is O(log d).
(2) The number of divisors of d is O(dε) for every real ε > 0.

Proof. The first statement is clear: if d is a product of k distinct primes, then d > 2k. For
the second, see [8, Theorem 315].

Let (a, b) denote the greatest common divisor of integers a and b, and [a, b] their least common
multiple. Write Diag[a1, . . . , ad] for the d× d matrix B with bii = ai and bij = 0 for i 6= j, and
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write AntiDiag[a1, . . . , ad] for the matrix B with bi,d−i+1 = ai and 0 elsewhere. Define the
elementary matrix Ei,j to be square, with 1 in position (i, j) and 0 elsewhere. A matrix A is
block diagonal if the non-zero blocks of A are X1, . . . , Xs with s > 1, and the main diagonals
of X1, . . . , Xs are on the main diagonal of A. We write A=X1 ⊕ . . .⊕Xs. As usual, Id is the
identity of GL(d, q) and Jd = AntiDiag[1, . . . , 1] ∈GL(d, q). If A denotes a matrix, then AT

denotes the transpose of A.
The Kronecker product A⊗B of a k × k matrix A and an l × l matrix B is the kl × kl matrix

C, where the ((i− 1)l + s, (j − 1)l + t)th entry of C is AijBst for 1 6 i, j 6 k and 1 6 s, t 6 l.
The ⊗ operation is associative, and (A⊗B)(C ⊗D) =AC ⊗BD. The matrix A⊗B can be
written down in O(k2l2).

By constructing a group, we mean producing a set of generating elements for the group: this
will generally be a set of matrices. When describing groups, the symbol [n] denotes a soluble
group of order n.

3. Classical groups and forms

In this section we define various concepts needed for the orthogonal groups, as well as presenting
results on generation of the classical groups and the construction of similarities from one form
to another. See [20] for more background information on this section.

3.1. Quadratic forms and standard bases

Definition 3.1. A map F : V × V →GF(q) is a symmetric bilinear form if F (u, v) =
F (v, u) and F (u+ λv, w) = F (u, w) + λF (v, w) for all u, v, w ∈ V and λ ∈GF(q). A map
Q : V →GF(q) is a quadratic form if Q(λv) = λ2Q(v) for all v ∈ V and λ ∈GF(q) and the
polar form FQ(u, v) :=Q(u+ v)−Q(u)−Q(v) is a symmetric bilinear form. The form F
is non-degenerate if F (u, v) = 0 for all v ∈ V implies that u= 0, and the quadratic form Q is
non-degenerate if and only if its polarisation FQ is non-degenerate.

For F bilinear, define the matrix MF of F by mij = F (vi, vj). Then F (u, v) = uMF v
T for

all u, v ∈ V (recall that T denotes transpose). For Q quadratic, define the matrix TQ of Q by
setting tii =Q(vi), tij = FQ(vi, vj) for i < j and tij = 0 for i > j, so that Q(v) = vTQv

T. Then
MFQ = TQ + TT

Q . We write F for FQ when the quadratic form Q is clear. We abuse notation
and often refer to MF and TQ as forms, rather than matrices of forms: we also write F and Q
for MF and TQ, when the context is clear. If q is odd then Q and FQ determine each other,
but if q is even then FQ does not determine Q.

Let (V, Q) be a vector space equipped with a non-degenerate quadratic form Q and
corresponding bilinear form F . A subspace U 6 V is non-degenerate if, whenever F (u, v) = 0
for some fixed u ∈ U and all v ∈ U , then u= 0; otherwise, U is degenerate. A vector v ∈ V is
singular if Q(v) = 0 and the subspace U is totally singular if F (u, v) =Q(u) = 0 for all u, v ∈ U .
If W 6 V , then W and U are isometric if there exists an invertible linear map f : U →W such
that Q(uf) =Q(u) for all u ∈ U .

Two quadratic forms Q1 and Q2 are similar if there exist g ∈GL(d, q) and λ ∈GF(q) such
that Q1(vg) = λQ2(v) for all v ∈ V . If λ= 1 then they are isometric. If d is odd, then there is
a single similarity type of non-degenerate quadratic form, denoted ◦, but two isometry types.
However, if a group G 6 GL(2m+ 1, q) preserves a quadratic form Q, then G also preserves
λQ for all λ ∈GF(q), so every group preserving a non-degenerate quadratic form preserves
one of each isometry type. If d is even, then there are two similarity types of non-degenerate
quadratic form, corresponding to two isometry types. One type has all maximal totally singular
subspaces of dimension d/2, and is type +. The other has all maximal totally singular subspaces
of dimension d/2− 1, and is type −.
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Denote the stabiliser in GL(d, q) of a quadratic form Q by GO(d, q, Q). The normaliser of
GO(d, q, Q) in GL(d, q) is the conformal group CO(d, q, Q), consisting of those elements
of GL(d, q) that transform Q to λQ for some λ ∈ F .

We define the following standard bases and corresponding standard forms, denoted Qεd(q)
and F εd(q), where ε ∈ {◦,+,−}. We omit q when the context makes it clear. Let m= bd/2c.

dq odd: {e1, . . . , em, z, fm, . . . , f1} such that F ◦d = Jd and Q◦d is antidiagonal, with m
entries 1, then one entry 1/2 and then m entries 0.

d even and ε= +: {e1, . . . , em, fm, . . . , f1}, with F+
d = Jd and Q+

d antidiagonal, with m
entries 1 and then m entries 0.

d even and ε=−: {e1, . . . , em−1, x, y, fm−1, . . . , f1}, with

Q−2 = (Q−d )〈x,y〉 =
(

1 1
0 γ

)
F−2 = (F−d )〈x,y〉 =

(
2 1
1 2γ

)
.

If q is even, then γ is chosen such that x2 + x+ γ is irreducible; a canonical γ may be
constructed in O(log q) field operations [16]. If q is odd then γ = ξq+1(ξ + ξq)−2 (recall that ξ
is the primitive element of GF(q2)) [16]. The matrix Q−d is a block matrix with top right entry
Jm−1, middle 2× 2 block Q−2 and all other entries 0. The matrix F−d is a block matrix with
top right and bottom left entries Jm−1, middle 2× 2 block F−2 and all other entries 0.

When a group preserves one of our standard forms, then we will omit the form from the
description, writing for instance GOε(d, q) instead of GO(d, q, Qεd(q)).

A second set of symmetric bilinear forms that we will use in odd characteristic are the
identity matrix, denoted F S

d , and the form (ζ)⊕ Id−1, denoted FN
d : see Definition 3.2 for an

interpretation of the symbols S and N.

3.2. The discriminant and spinor norm

In this subsection we define two important maps associated with the orthogonal groups and
recall some of their properties.

Definition 3.2. For q odd, the discriminant D(Q) or D(F ) of a quadratic form or its
polarisation is square, written D(Q) = S, if det(MFQ) is a square in GF(q). Otherwise, it is
non-square, written D(Q) = N.

The structure of the geometric maximal subgroups of PΩε(d, q) is presented in detail in [14].
It is straightforward to deduce the structure of their inverse images in Ωε(d, q) using the
following lemma.

Lemma 3.3 [14, Propositions 2.5.10, 2.5.13].
(1) A form of plus type has square discriminant if and only if d(q − 1)/4 is even. A form of

minus type has square discriminant if and only if d(q − 1)/4 is odd.
(2) The scalar subgroup of GOε(d, q) is 〈±I〉. If d is even, then −I ∈ Ωε(d, q) if and only if

D(F εd(q)) = S.

It is well known (see for instance [14, Proposition 2.5.6]) that if (d, q, ε) 6= (4, 2,+), then
every element of GOε(d, q) is a product of reflections. The following definition can be extended
to GO+(4, 2), but we omit the details.

Definition 3.4. Let r be a reflection in a non-singular vector v and let α= F (v, v). For
q odd, let sp(r) = 1 if α ∈GF(q)×2 and sp(r) =−1 otherwise. For q even, let sp(r) =−1.
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Let sp(r1 . . . rk) = Πk
i=1sp(ri). Then sp : GOε(d, q)→{±1}× is a homomorphism called the

spinor norm. Furthermore, the kernel of the restriction of sp to SOε(d, q) is Ωε(d, q).

Lemma 3.5.

(1) Let q be odd and let g ∈GOε(d, q, F ). Define A(g) = {v ∈ V : there exists an n ∈ N
such that v(Id + g)n = 0}, B(g) =

⋂∞
n=1 V (Id + g)n, and α(g) = det(FA(g)) det( 1

2 (Id + g)B(g)).
Then the spinor norm of g is 1 if and only if α(g) ∈GF(q)×2.

(2) For q even, the spinor norm of g ∈GO(d, q, Q) is 1 if and only if the rank of (g + Id) is
even.

(3) Suppose g ∈GO+(d, q, Q) stabilises W1 and W2, two maximal totally singular subspaces
with trivial intersection. Then g ∈ Ω+(d, q, Q) if and only if detW1(g) is square.

Proof. For (1), see [21], for (2) see [6] and for (3) see [14, Lemma 4.1.9].

Proposition 3.6 [16]. Let Q and g ∈GO(d, q, Q) be given. Then sp(g) can be found in
O(dω) if q is even and O(dω + log q) if q is odd.

3.3. Canonical isometries

Let G= 〈g1, . . . , gs〉 6 GO(d, q, Q). By converting G to preserve the form Q′, we mean
producing a set of s canonical matrices that generate a GL(d, q)-conjugate of G
that preserves Q′. Similarly, by converting Q to Q′, we mean producing a matrix A such that if
G preserves Q, then GA preserves Q′. Recall the definitions in § 3.1 of Qεd, F

ε
d and F kd , where

ε ∈ {◦,+,−} and k ∈ {N, S}.
The following result is proved in [16] for q odd and in [10, Proposition 3.4] for q even.

Proposition 3.7. The group G= 〈g1, . . . , gs〉 6 GO(d, q, Q) can be converted to preserve
Qεd in O(sdω + d log q) field operations if q is odd and O(sd3 + d log q) field operations if q is
even.

In most situations that arise in this paper, the form Q has a very restricted structure. The
following proposition enables us to perform the conversion more efficiently in these cases.

Proposition 3.8. Let Q= (qij) with G= 〈g1, . . . , gs〉 6 GO(d, q, Q) and let F =Q+
QT = (fij). Assume that, after a permutation of the basis vectors, the space V on which
G acts decomposes as an orthogonal direct sum of two-dimensional spaces Wi (1 6 i 6 t) and
a (d− 2t)-dimensional space W , where the matrices QWi , representing the restrictions of Q to
the two-dimensional spaces, are all the same.

(1) Suppose that the matrices F ′ and Q′ define a form isometric to and satisfying the same
hypotheses as F and Q, and that QW = (Q′)W ′ . Then G can be converted to preserve Q′ in
O(std+ log q) field operations.

(2) Let q be even and suppose that FW and QW both have at most one non-zero entry in
each row and in each column. Then G can be converted to preserve Qεd in O(sd2 + log q) field
operations.

(3) Let q be odd and suppose that FW has at most one non-zero entry in each row and in
each column, and that at most c values from GF(q) occur in Q. Then G can be converted to
preserve F kd or F εd in O(sd2 + c log q) field operations.

Proof. In all cases, we begin by reordering the basis of V to exhibit the direct sum
decomposition V =W1 ⊕ . . .⊕Wt ⊕W , and in Part 1 we do the same for the second form,

https://doi.org/10.1112/S1461157009000035 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157009000035


170 D. F. HOLT AND C. M. RONEY-DOUGAL

to give V =W ′1 ⊕ . . .⊕W ′t ⊕W ′. This involves up to 4t row and column swaps, and is an
O(std) operation.

(1) Since Q is non-degenerate, QWi
is non-degenerate for each i. To effect the form

conversion, if the types of QW1 and Q′W ′1
are the same, then simply convert one to the other,

whereas, if they are different, then convert the 4× 4 matrix representing the action of Q on
W1 ⊕W2 to the corresponding matrix for Q′. In either case, this can be done in O(log q) field
operations by [10, 3.3, 3.4]. (The log q in the complexity is for finding square roots.) Since
the restrictions of Q to the Wi are all the same, and similarly for Q′, only one 2× 2 or 4× 4
form transformation matrix need be calculated, so the conversion requires O(log q + st) field
operations, and the result follows.

(2) Since Q is non-degenerate and q is even, the single non-zero entry hypothesis implies
that the diagonal entries of QW are all zero. If q2t+1,d 6= 0, then replace vd by q−1

2t+1,dvd to
get q2t+1,d = 1. Otherwise, if q2t+1,i is the non-zero entry in row 2t+ 1, where i > 2t+ 1,
then interchange vd and q−1

2t+1,ivi to produce a form R= (rij), where r2t+1,d = 1 and RW and
(R+RT)W still have at most one non-zero entry in each row and each column. Iterating,
convert QW to the standard form matrix of plus type in O(sd2) field operations. The 2-spaces
are converted as in Part 1 (except that, for forms of minus type, convert to t− 1 2× 2 blocks
of plus type and one of minus type), and a final basis permutation completes the conversion
to Qεd.

(3) We first describe how to diagonalise F . Convert all of the 2× 2 blocks to diagonal, as in
Part 1, in O(std+ log q) field operations. Note that at most two distinct values will be placed
on the diagonal during this process, since all 2× 2 blocks are identical. If f2t+1,2t+1 6= 0, there
is nothing to do to row 2t+ 1. Otherwise, there exist i > 2t+ 1 and α := f2t+1,i = fi,2t+1 6= 0.
Replace v2t+1 by v2t+1 + vi and vi by v2t+1 − vi to diagonalise rows 2t+ 1 and i. Apply this
diagonalisation process to rows 2t+ 1 to d in O(sd2) field operations. Since each such conversion
replaces each non-zero entry of F by two non-zero entries, there are still O(c) distinct values
in the new form matrix F ′ = (f ′ij) after the conversion.

Now we convert the diagonal form F ′ to F kd with k ∈ {S, N}. If f ′ii = λ2, replace vi by λ−1vi
(using canonical roots). If f ′ii is non-square, find a second non-square entry f ′jj , and convert
f ′jj to equal f ′ii, similarly to the square case. Let ν = 2ξ(q+1)/2(ξ − ξq)−1. Then 1 + ν2 is non-
square in GF(q). Replace vi by vi + νvj and vj by νvi − vj in O(sd+ log q). Now both diagonal
form entries are square, and can be converted as before to 1. If the form is now F S

d , then stop.
Otherwise, a single non-square entry remains, so interchange the corresponding vector with v1

and scale it to produce FN
d . A total of O(c) square roots need be found, so the whole process

requires O(sd2 + c log q) field operations.
By using the method just described, we can convert F εd to F kd with k ∈ {S, N} using at most

2d steps, each of which involves only a 1× 1 or 2× 2 basis change matrix. These can all be
inverted in O(1), so we can also perform the reverse conversions from F kd to F εd in O(sd2 + log q)
field operations.

3.4. Generation of classical groups

We will consistently use the following symbols for canonical generators of the orthogonal groups
preserving our standard form. The two generators of Ωε(d, q) are Aεd(q) and Bεd(q), where
Bεd(q) = I2 if d= 2. Our canonical elements of SOε(d, q) \ Ωε(d, q) and of GOε(d, q) \ SOε(d, q)
are denoted by Sεd(q) and Gεd(q), where Gεd(q) is undefined if q is even, and sp(Gεd(q)) = 1 if q
is odd. We denote by Dε

d(q) a generator for COε(d, q) modulo GOε(d, q). When q is clear, it
will be omitted.

Recall that m= bd/2c, and that ζ and ξ are primitive multiplicative elements of GF(q) and
GF(q2), respectively.
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Theorem 3.9. Canonical matrices Aεd(q), Bεd(q), Sεd(q), Gεd(q) and Dε
d(q) can be

constructed in O(d2 + log q) field operations. In each case, they have O(d) non-zero entries,
and the number of values in GF(q) taken by their entries is bounded above by a constant that
does not depend on d or q.

Proof. We first consider Aεd and Bεd. Our strategy is to use matrices Aεd and Bεd as given
in [18], which generate a group conjugate to Ωε(d, q) that preserves a form which we will denote
by Qεd. There are two main modifications that we must make to the work of [18]. Firstly, we
need to convert Qεd to Qεd: we discuss how to do this on a case-by-case basis. Secondly, Aεd and
Bεd are sometimes defined in [18] as a product of matrices: to get complexity O(d2 + log q) we
must show that in each case this product can be computed in O(d2) field operations and that
each matrix entry can be constructed in O(log q) field operations.

Explicit matrices Aεd and Bεd are given in [18] for (ε, d, q) equal to: (◦, 3, q), (◦, d, 3), (+, 2, q),
(+, 4, q), (+, even m> 2, 2) and (+, odd m> 2, q 6 3). In each case the result holds, since Q+

d

is equal to Q+
d and, except for Q◦d(z) = 1, the form Q◦d is equal to Q◦d.

If d > 3 and q > 3, then A◦d is diagonal with entries in {1, ζ±1} and B◦d has all entries in
the subset {n mod p | n ∈ Z, −6 6 n 6 6} of GF(p) and, apart from a central 3× 3 block,
has one non-zero entry in each row, equal to ±1. Both A◦d and B◦d can be computed in
O(d2) field operations. The form Q◦d is converted to Q◦d in O(d+ log q) field operations by
Proposition 3.8(3). There is at most one non-zero entry in each row of A◦d and B◦d outside their
central 3× 3 blocks, so the result holds.

Since the form Q+
d is equal to Q+

d , the matrices satisfy A+
d =A+

d and B+
d =B+

d . If m> 2
is even and q > 2, or m> 2 is odd and q > 3, then A+

d is diagonal with entries in {1, ζ±1}.
In the former case, let X = I + Em−2,m−1 − Em+1,m−1 + Em+2,m − Em+2,m+3, and in the
latter case let X = I − Em−1,m+1 + Em,m+2. Then B+

d is the product of X with a matrix
with O(d) non-zero entries, all equal to ±1; hence, A+

d and B+
d can be constructed in O(d2)

field operations.
The form Q−d is the same as Q−d , except on 〈x, y〉. Here A−d = Im−2 ⊕X ⊕ Im−2, where

X is a 4× 4 matrix whose entries can be constructed, using Lemma 2.1(1), in O(log q)
field operations. Finally, B−d has a non-trivial central 4× 4 block, three non-zero entries in
{bi1 :m− 1 6 i 6m+ 2}, with bmd 6= 0, and exactly one non-zero entry, equal to ±1, in every
other row and column. Convert A−d and B−d to preserve Q−d in O(d+ log q) field operations by
Proposition 3.8(1).

This completes the cases for Aεd and Bεd.
If (d, ε) = (2,−) and q is odd, let R0 and R1 be the reflections in x and y, respectively, if

2 ∈GF(q)×2, and y and x, respectively, otherwise. Otherwise, if q is odd, let R0 and R1 be the
reflections in e1 + (1/2)f1 and e1 + (ζ/2)f1. Then let Sεd =R0R1 and Gεd =R0. If q is even, let
Sεd be the reflection in e1 + f1 or in x (in the (2,−) case).

By [16], we can let D◦d = ζ2Im ⊕ (ζ)⊕ Im and D+
d = ζIm ⊕ Im. We let D−2 = AntiDiag[ξ +

ξq, ζ(ξ + ξq)−1] and, for d > 2, we let D−d = ζIm−1 ⊕D−2 ⊕ Im−1.

If q is odd, then ∗Xε
d(q), where X ∈ {A, B, S, G, D}, denotes a conjugate of Xε

d(q) that
preserves FD(F εd (q))

d . The following is a consequence of Theorem 3.9 and Proposition 3.8(3).

Corollary 3.10. The matrices ∗Xε
d(q), where X ∈ {A, B, S, G, D}, may all be con-

structed in O(d2 + log q) field operations.

Note that Gεd and ∗Gεd have order two and hence are inverted in O(1). Furthermore, the
inverses of Sεd and ∗Sεd can be constructed in O(d2 + log q) field operations by multiplying the
reflections R0 and R1 in a different order.

We briefly record some information about standard generators and forms for other classical
groups. See [17] for more information.
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Theorem 3.11. Canonical generators L1 and L2 = Diag[ζ, 1, . . . , 1] of GL(d, q) can be
constructed in O(d2) field operations, with det(L1) = 1. A canonical matrix L3 such that
SL(d, q) = 〈L1, L3〉 can be constructed in O(d2) operations. Canonical generators of Sp(d, q)
can be constructed in O(d2) field operations, preserving the symplectic form with matrix

AntiDiag[1, . . . , 1,−1, . . . ,−1].

Canonical generators of GU(d, q) and SU(d, q) can be constructed in O(d2 + log q) field
operations, preserving the unitary form with matrix Jd. In the linear and symplectic cases,
all entries lie in S := {0,±1,±ζ±1}, whilst in the unitary case they lie in

S ∪ {ξ±q, ξq−1, ξ±(q+1)/2,±(1 + ξq−1)±1}.

If q is odd, then GL(d, q) has a unique subgroup of index two, denoted by 1
2GL(d, q). For

q 6= 3, the group 1
2GL(d, q) is generated by L1 and L2

2, which can be computed in O(d2) field
operations since L2 is diagonal. If q = 3 then 1

2GL(d, 3) = SL(d, 3). Note that L1 and L2 each
have O(d) non-zero entries, and so may be inverted in O(d2) field operations.

4. Reducible groups

Sections 4 to 10 all have a similar structure. They each concern the groups that arise in
Theorem 1.1 in one of the seven non-empty geometric Aschbacher classes, and they start with
a proposition stating the complexity of their construction. In each of these propositions, by
‘the subgroups of G that arise’ we mean the pre-images in Ωε(d, q) of the intersections of these
subgroups with PΩε(d, q).

After stating the proposition, we describe the types of group that arise in the relevant
Aschbacher class, and then present generating matrices for canonical representatives of each
such group. We assume throughout that d > 7 and that q is odd if d is odd, since if either of
these fails then PΩε(d, q) is either not simple or is isomorphic to another classical group. In
each of these cases, the results of [10] are therefore applicable.

When constructing generating matrices of some maximal subgroup H, we usually will start
by constructing some large subgroup K = 〈A1, . . . , An〉 of H. By adjoining a generator X to
K we mean creating the group K1 = 〈A1, . . . , An, X〉.

In this section we shall prove the following proposition.

Proposition 4.1. Let PΩε(d, q) �G 6 PCΓOε(d, q). Canonical representatives of the
reducible subgroups of G that arise in Theorem 1.1 can be constructed in O(d3 + d log q)
field operations.

The groups to be constructed are described in Table 1 (see [14, Table 4.1.A]). Recall that
m= bd/2c. In the table, a group is of type Pk if it is the stabiliser of a totally singular subspace
U of dimension k. A group is of type GOε1(k, q)⊥GOε2(d− k, q) if it is the stabiliser of a non-
degenerate subspace U of dimension k and type ε1. Such groups automatically also stabilise a
subspace W of dimension d− k and type ε2, such that F εd(u, w) = 0 for all u ∈ U, w ∈W , and
U ∩W = {0}. A group is of type Sp(d− 2, q) if it is the stabiliser of a non-singular vector v
(recall that v is non-singular if Qεd(v) 6= 0).

Lemma 4.2. A canonical subgroup H of Ωε(d, q) of type Pk, where k is as in Table 1, can
be constructed in O(d2 + log q) field operations.

Proof. Let H be the stabiliser of 〈e1, . . . , ek〉 in Ωε(d, q). We first generate a complement
to the p-core of H. Let L1 and L2 be the standard generators of GL(k, q) as defined in
Theorem 3.11.
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By [14, Proposition 4.1.20], if q is even, then d is even and

H ∼= [qkd−k(3k+1)/2]:(GL(k, q)× Ωε(d− 2k, q)).

For i= 1, 2, let Hi = Li ⊕ Id−2k ⊕ JkL−T
i Jk and, if k 6=m, let H3 = Ik ⊕Aεd−2k ⊕ Ik and

H4 = Ik ⊕Bεd−2k ⊕ Ik. A short calculation shows that H1 and H2 preserve Qεd, and they lie in
Ωε(d, q) because H1 + Id and H2 + Id have even rank. It is clear that H3 and H4 lie in H.

By [14, Proposition 4.1.20], if q is odd and k =m, then

H ∼= [qk(k+t)/2]: 1
2GL(k, q),

where t=−1 if d is even and +1 otherwise. We construct the subgroup 1
2GL(k, q) of H.

Let L1 and L2 generate 1
2GL(k, q) in its natural representation and, for i= 1, 2, let Hi =

Li ⊕ I1 ⊕ JkL−T
i Jk if d is odd, and Hi = Li ⊕ JkL−T

i Jk otherwise. Since in this representation
GL(k, q) 6 SOε(d, q), its unique subgroup 〈H1, H2〉 of index 2 is contained in Ωε(d, q).

Otherwise,

H ∼= [qkd−k(3k+1)/2]:( 1
2GL(k, q)× Ωε(d− 2k, q)).2.

First construct a subgroup of H that projects onto GL(k, q). Let L1, L2 be the standard
generators of GL(k, q). Define H1 := L1 ⊕ Id−2k ⊕ JkL−T

1 Jk and note that H1 ∈ Ωε(d, q),
as SOε(d, q) contains GL(k, q) acting on 〈e1, . . . , ek〉. Define H2 := L2 ⊕ Sεd−2k ⊕ JkL

−T
2 Jk.

We show that H2 ∈ Ωε(d, q) by calculating the spinor norm of H∗2 = L2 ⊕ Id−2k ⊕ JkL−T
2 Jk.

To do this, note that if q 6= 3 then, in the notation of Lemma 3.5(1), A(H∗2 ) = {0} and
B(H∗2 ) = GF(q)d: so sp(H∗2 ) =−1 if and only if det( 1

2 (Id +H∗2 )) is non-square. Now,

det( 1
2 (Id +H∗2 )) = (4ζ)−1(1 + 2ζ + ζ2),

so sp(H∗2 ) =−1. If q = 3, then A(H∗2 ) = 〈e1, f1〉 and det((F εd)A) =−1, which is non-square,
while det( 1

2 (Id +H∗2 )B(H∗2 )) = 1. Therefore, in both cases sp(H∗2 ) = 1, so sp(H2) = 1, and
hence H2 ∈ Ωε(d, q). Then 〈H1, H2〉 projects onto GL(k, q). Define H3 = Ik ⊕Aεd−2k ⊕ Ik and
H4 = Ik ⊕Bεd−2k ⊕ Ik. It is clear that both H3 and H4 lie in Ωε(d, q), so 〈H1, . . . , H4〉 is a
complement to the p-core of H.

In all cases, we now add Op(H). The Sylow p-subgroups of GOε(d, q) lie in Ωε(d, q), so, if
a matrix M of p-power order fixes Qεd(q), then M ∈ Ωε(d, q). The p-elements are generated in
two sets. The first set is acted on by both Ωε(d− 2k, q) and SL(k, q). Its elements have non-
zero off-diagonal entries in the first k columns of rows k + 1, . . . , d− k, balanced by entries in
columns k + 1, . . . , d− k of rows d− k + 1, . . . , d. The second set is acted on only by SL(k, q),
and contains matrices with non-zero off-diagonal entries in the first k columns of the last k
rows.

If k = 1, then |Op(H)|= qd−2, and the normal closure of H5 = I + E2,1 − Ed,d−1 under
〈H3, H4〉 has order qd−2, as required.

Next suppose that 1< k <m− 1 for d even, or 1< k <m for d odd. Generate Op(H) with
H5 = I + Ed−1,1 − Ed,2 for the subgroup acted on by 〈H1, H2〉, and H6 = I + Ek+1,1 − Ed,d−k

Table 1. Types of reducible group.

ε Type Conditions

◦,+,− Pk 1 6 k 6m, k <m if ε=−
◦ GO◦(k, q)⊥GOε1 (d− k, q) 1 6 k < d, k odd, ε1 ∈ {+,−}
+ GOε1 (k, q)⊥GOε1 (d− k, q) 1 6 k <m, ε1 ∈ {◦,+,−},

q odd if k odd
− GOε1 (k, q)⊥GO−ε1 (d− k, q) 1 6 k 6m, ε1 ∈ {◦,+,−},

(k, ε1) 6= (m, ◦), q odd if k odd

+,− Sp(d− 2, q) q even
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for the subgroup acted on by 〈H1, . . . , H4〉. Since the action on each p-group is irreducible,
〈H5, H6〉H has order qk(d−2k) · qk(k−1)/2 = qk(d−(3k+1)/2), as required.

Next suppose that d is even and k =m− 1> 1. If ε= +, then generate Op(H) with H5 =
I + Ed−1,1 − Ed,2, H6 = I + Ek+1,1 − Ed,d−k and H7 = I + Ek+2,1 − Ed−k−1,1. Even though
the action of Ω+(2, q) is reducible, the order of 〈H6, H7〉H is q2k, as required. For ε=−, one
may check that the matrix

H6 = I + Ek+1,1 + γ(1− 4γ)−1Ed,1 + 2γ(1− 4γ)−1Ed,k+1 − (1− 4γ)−1Ed,k+2

preserves Q−d . The p-core is generated as a normal subgroup by H5 and H6.
Finally, suppose that k =m. The normal closure P1 of H5 = I + Ed−1,1 − Ed,2 under

〈H1, H2〉 has order qk(k−1)/2, as before. If d is odd, then |Op(H)|/|P1|= qk, otherwise P1 =
Op(H). For odd d, one may check that H6 = I + Ek+1,1 − Ed,d−k − (1/2)Ed,1 preserves Qεd.
The order of P2 = 〈H6〉〈H1,H2〉 is qk and P1 ∩ P2 = {1}, so we are done.

In each case H has O(1) generators, which are calculated in O(d2 + log q) field operations.

Lemma 4.3. The stabiliser H in Ωε(d, q) of a canonical non-degenerate k-space, as in
Table 1, can be constructed in O(d2 + log q) field operations.

Proof. If k = 1 or q is even, then H ∼= (Ωε1(k, q)× Ωε2(d− k, q)).2, and otherwise H ∼=
(Ωε1(k, q)× Ωε2(d− k, q)).[4], by [14, Proposition 4.1.6].

If q is even, then k is even. Construct generators H1, . . . , H4 as block matrices in the obvious
manner. Define H5 := Sε1k ⊕ S

ε2
d−k. The resulting group preserves Qε1d1 ⊕Q

ε2
d2

, which, together
with the matrix of its polar form, has at most one non-zero entry in each row and column
apart from at most two blocks which form −2-spaces. So, it can be converted to preserve Qεd
in O(d2 + log q) field operations by Proposition 3.8(2).

Now assume that q is odd, and let F1 = F ε1d1 ⊕ F
ε2
d2

. Construct block diagonal matrices
H1, . . . , H4 for Ωε1(k, q)× Ωε2(d− k, q), as for q even. Now create the normalising elements,
by first letting H5 =Gε1k ⊕G

ε2
d−k. Since Gε1k and Gε2d−k have spinor norm 1 and determinant

−1, the matrix H5 ∈ Ω(d, q, F1). If k > 1, let H6 = Sεk ⊕ Sεd−k ∈ Ω(d, q, F1). Finally, convert F1

to F εd , in O(d2 + log q) field operations, by Proposition 3.8(3), since F1 has at most two blocks
of dimension two and otherwise a single entry 1 in each row and column.

Lemma 4.4. A canonical subgroup H of Ωε(d, q) of type Sp(d− 2, q), as in Table 1, can
be constructed in O(dω + d log q) field operations.

Proof. By [14, Proposition 4.1.7], H ∼= Sp(d− 2, q). Recall that q is even. Let w = v1 + vd
and let W = 〈w〉 be the space to stabilise, where Qεd(w) = 1. We generate a group isomorphic to
Sp(d− 2, q) acting on U := 〈w, v2, . . . , vd−1〉=W⊥ that preserves the restriction of Qεd to U .

The group Sp(d− 2, q) acts naturally on U/W , preserving a symplectic form F1 = Jd−2 =
F+
d−2 given by F1(a+W, b+W ) = F εd(a, b). The isomorphism from Sp(d− 2, q) to H is given

by mapping g ∈ Sp(d− 2, q) to the unique h ∈ Ωε(d, q) that fixes w and, for 2 6 j 6 d− 1, sends
vj to the only wj in (vj +W )g with Qεd(vj) =Qεd(wj).

Let L1 and L2 be the standard generators of Sp(d− 2, q) from Theorem 3.11. For i= 1, 2,
let H∗i = [0]⊕ Li ⊕ [0] and let Ni =Qεd +H∗i Q

ε
d(H

∗
i )T, calculated in O(dω). For 2 6 j 6 d− 1,

let wj (which will be the image of vj) be the sum of row j of H∗i and α
1/2
j w, where

α
1/2
j is the canonical square root of the (j, j)th entry of Ni. Then wj ∈ vjH∗i +W and
Qεd(wj) =Qεd(vjH

∗
i ) + (Qεd(vj) +Qεd(vjH

∗
i ))Qεd(w) =Qεd(vj), since F εd(vjH∗i , w) = 0 for all i

and j. Furthermore, a short calculation shows that F εd(wi, wj) = F εd(vi, vj), as required. The
vectors w2, . . . , wd−1 are constructed in O(dω + d log q) field operations.
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Next use linear algebra to find a vector z 6∈ U that is orthogonal to w2, . . . , wd−1 and such
that F εd(w, z) = 1, in O(dω) field operations. Let α be a root of x2 + x+Qεd(z). Then, setting
wd = z + αw, one may check that Qεd(wd) =Qεd(vd) = 0, F εd(w, wd) = 1 and F εd(wj , wd) =
F εd(vj , vd) = 0 for 1 6 j 6 d− 1. Note that the existence of α is guaranteed by the isomorphism
between H and Sp(d− 2, q). Let Hi have w + wd, w2, . . . , wd−1, wd as rows. Then Hi preserves
Qεd and fixes w = v1 + vd. Calculate the spinor norm of Hi in O(dω + log q) field operations by
Proposition 3.6, and replace Hi by its product with the reflection in w2 if Hi 6∈ Ωε(d, q). Then
H = 〈H1, H2〉, as required.

Proposition 4.1 now follows from the fact that there are O(d) classes of groups of type Pk
and of type GOε1(k, q)⊥GOε2(d− k, q), and O(1) groups of type Sp(d− 2, q).

5. Imprimitive groups

A group is imprimitive if it stabilises a direct sum decomposition of V into t > 1 subspaces of
dimension m:

V = V1 ⊕ . . .⊕ Vt.

In this section we shall prove the following proposition.

Proposition 5.1. Let PΩε(d, q) �G 6 PCΓOε(d, q). Canonical representatives of the
imprimitive subgroups of G that arise in Theorem 1.1 can be constructed in O(d2+ε +
d1+ε log q) field operations, for every real ε > 0.

The types of imprimitive group are in Table 2, taken from [14, Table 4.2.A]. Here the symbol
o denotes a wreath product, so that

GOε1(m, q) o Sym(t)∼= (GOε1(m, q)× . . .×GOε1(m, q)):Sym(t),

with the Sym(t) permuting the t copies of GOε1(m, q).

Lemma 5.2. A set of canonical representatives of the subgroups of Ωε(d, q) of type
GOε1(m, q) o Sym(t) with m> 1, satisfying the conditions of Table 2, can be constructed in
O(d2+ε + dε log q) field operations, for every ε > 0.

Proof. There are O(dε) such groups, by Lemma 2.2(2). For fixed m and ε1, we construct
the corresponding group in O(d2 + log q) field operations.

If q is even, then

H ∼= Ωε1(m, q)t.2t−1.Sym(t),

Table 2. Types of imprimitive group.

Case Type Description of Vi Conditions

◦,+,− GOε1 (m, q) o Sym(t) Non-degenerate, m even ⇒ ε= εt1;
m> 1 m odd and t even

⇒ D(F εd) = S

◦,+,− GO(1, q) o Sym(d) Non-degenerate q = p> 3; D(F εd) = S
if d even

+ GL(d/2, q).2 Totally singular

+,− GO◦(d/2, q)2 Non-degenerate, qd/2 odd, D(F εd) = N
non-isometric
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by [14, Proposition 4.2.11]. Construct H1 := Ωε1(m, q) o Sym(t), preserving the quadratic form
Q1 :=Qε1m ⊕ . . .⊕Qε1m, in O(d2 + log q) field operations. Since q is even, m is even, so the rank
of all permutation matrices is even and hence they all have spinor norm 1 by Lemma 3.5(2).
Next, adjoin Sε1m ⊕ (Sε1m )−1 ⊕ Im ⊕ . . .⊕ Im, a product of an even number of reflections, in
O(d2) field operations since |Sε1m |= 2. Now, Q1 contains at most t identical blocks of size two,
and otherwise both Q1 and FQ1 have at most one non-zero entry in each row and column, so
Q1 can be converted to Qεd in O(d2 + log q) field operations by Proposition 3.8(2).

If q is odd, then a short calculation based on [14, Propositions 4.2.11, 4.2.14] shows that in
all cases

H ∼= Ωε1(m, q)t.22t−2.Sym(t).

Let k =D(F ε1m ) and construct H1 := Ωε1(m, q, F km) oAlt(t) in O(d2 + log q) field operations,
preserving a diagonal bilinear form F1 := F km ⊕ . . .⊕ F km. Since Alt(t) contains only even
permutations, sp(h) = 1 for all h ∈H1. Next, adjoin S := ∗Sε1m ⊕ (∗Sε1m )−1 ⊕ Im ⊕ . . .⊕ Im and
G := ∗Gε1m ⊕ (∗Gε1m)−1 ⊕ Im ⊕ . . .⊕ Im, both of which have determinant and spinor norm 1.
Then

H2 := 〈H1, S, G〉 ∼= Ωε1(m, q)t.22t−2.Alt(t).

If m is even, then the permutation matrix P corresponding to (1, 2) has determinant 1. If
D(F ε1m (q)) = S, then P is a product of m reflections in vectors of norm 2. Thus, sp(P ) = 1, so
adjoin P to H2. If D(F ε1m (q)) = N, then sp(P ) =−1, so adjoin (∗Sε1m ⊕ Im ⊕ . . .⊕ Im)P to H2.

If m is odd, then det(P ) =−1, so let P1 := (∗Gε1m ⊕ . . .⊕ Im ⊕ Im)P . Then det(P1) = 1. If
2 is a square (so q ≡±1 mod 8), then sp(P1) = 1, so adjoin P1. If 2 is non-square, then adjoin
(∗Sε1m ⊕ Im ⊕ . . .⊕ Im)P1.

Finally, convert F1 to F εd in O(d2 + log q) field operations by Proposition 3.8(3), since F1

has at most two distinct non-zero entries.

Lemma 5.3. If p= q is an odd prime, then a canonical representative H of the subgroups
of Ωε(d, q) of type GO1(q) o Sym(d) can be constructed in O(d2 + log q) field operations.

Proof. By [14, Proposition 4.2.15],

H ∼= 2d−1.Alt(d) if p≡±3 mod 8,
∼= 2d−1.Sym(d) if p≡±1 mod 8.

First construct a group preserving F S
d = Id. Let X and Y be permutation matrices generating

Alt(d), and let Z := Diag[−1,−1, 1, . . . , 1]. Each of X, Y, Z has determinant 1 and preserves
the form Id. The group Alt(d) is perfect, since d > 7, so X and Y have spinor norm 1. The
matrix Z is a product of two reflections in vectors of norm 2, and so has spinor norm 1.

If p≡±1 mod 8, then let P be the permutation matrix corresponding to (1, 2) ∈ Sym(d)
and let R := Diag[−1, 1, . . . , 1]. Then det(P ) = det(R) =−1, and writing RP as a product of
reflections shows that sp(RP ) = 1, since 2 is a square. Add RP as an additional generator in
O(d2).

Finally, convert F S
d to F εd in O(d2 + log q) field operations, by Proposition 3.8(3).

Lemma 5.4. A canonical representative H of the subgroups of Ω+(d, q) of type
GL(d/2, q).2 can be constructed in O(d2) field operations.

Proof. By [14, Proposition 4.2.7],

H ∼=
1

(q − 1, 2)
GL(d/2, q).(d/2, 2),
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where, if q is odd, then 1
2GL(d/2, q) is the unique subgroup of index two in GL(d/2, q), described

after Theorem 3.11. Let A, B be generators for 1
(q−1,2)GL(d/2, q), constructed in O(d2) field

operations. As we remarked earlier, A−1 and B−1 can be constructed in O(d2) field operations.
Let A1 :=A⊕ Jd/2A−TJd/2 and B1 :=B ⊕ Jd/2B−TJd/2 (here A−T denotes the transpose of
A−1). The spinor norm of A1 and B1 is 1 by Lemma 3.5(3). If (d/2, 2) = 1, then H = 〈A1, B1〉.
If (d/2, 2) = 2, then det(Jd) = 1, and Jd is a product of an even number of reflections, all of
the same spinor norm, so sp(Jd) = 1 and H = 〈A1, B1, Jd〉.

Lemma 5.5. A canonical subgroup H of Ωε(d, q) of type GO(d/2, q)2, as in Table 2, can
be constructed in O(d2 + log q) field operations.

Proof. By [14, Proposition 4.2.16],

H ∼= SO◦(d/2, q)× SO◦(d/2, q).

Construct Ω(d/2, q, Id/2)× Ω(d/2, q, ζId/2), preserving F1 = Id/2 ⊕ ζId/2, in O(d2 + log q) field
operations. Adjoin−∗S◦m ⊕−Im and−Im ⊕−∗S◦m, which both have spinor norm 1 with respect
to F1. Finally, convert F1 to F εd in O(d2 + log q) field operations, by Proposition 3.8(3).

Remark. Let P be the block permutation matrix of (1, 2) that interchanges the two fixed
subspaces of H, and let P1 = (Id/2 ⊕ ζId/2)P . Then P1 normalises H and P1(Id/2 ⊕ ζId/2)PT

1 =
ζ(Id/2 ⊕ ζId/2), so 〈H, P1〉 is an imprimitive subgroup of CO(d, q, F1).

Proposition 5.1 is now immediate from Lemmas 5.2, 5.3, 5.4 and 5.5.

6. Semilinear groups

A group H 6 GL(d, q) is semilinear if there is a vector space isomorphism τ : GF(qs)d/s→
GF(q)d for some divisor s of d, a subgroup HΓ 6 ΓL(d/s, qs) and an induced embedding (also
denoted τ) of ΓL(d/s, qs) in GL(d, q), such that H = τ(HΓ).

In this section we shall prove the following proposition.

Proposition 6.1. Let PΩε(d, q) �G 6 PCΓOε(d, q). Canonical representatives of the
semilinear subgroups of G that arise in Theorem 1.1 can be constructed in O(d3 + d2 log q)
field operations.

The semilinear subgroups H of Ωε(d, q) occurring in Theorem 1.1 are of the types listed in
Table 3, based on [14, Table 4.3.A], where κ denotes the form preserved by the linear subgroup
of τ−1(H). Here the trace map Tr maps α ∈GF(qs) to α+ αq + . . .+ αq

s−1 ∈GF(q).
We denote the canonical primitive element of GF(qs) by ν. The matrix operation (aij) 7→

(aqij) is denoted σq, as is the induced automorphism of GL(d/s, qs).

Lemma 6.2 [10]. A canonical subgroup 〈ΓA, ΓB〉 6 GL(s, q) that is the image of ΓL(1, qs),
with |ΓA|= qs − 1 and |ΓB |= s, may be constructed in O(s2 + log q) field operations.

Table 3. Types of semilinear group.

ε Type Description of κ Conditions

◦,+,− GOε(d/s, qs, κ) Q(v) = Tr(κ(v)) s prime, d/s> 3

+,− GO◦(d/2, q2, κ) Q(v) = Tr(κ(v)) qd/2 odd

+,− GU(d/2, q, κ) κ unitary, Q(v) = κ(v, v) ε= (−1)d/2
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Furthermore, the multiplicative order of det(ΓA) is q − 1, and det(ΓB) = 1 if s is odd or q
is even, or −1 if s is even and q is odd. The first s− 1 rows of ΓA each have a single non-zero
entry.

Note that the construction given in [10] is deterministic and hence produces canonical ΓA
and ΓB . We can calculate ΓA, Γ2

A, . . . , Γ
s−1
A in O(s3) field operations, as each power requires

the calculation of only one new row. Define a canonical monomorphism τ : GL(d/s, qs)→
GL(d, q) as follows. First express the entries of a matrix in GL(d/s, qs) as linear combinations
α0 + α1ν + α2ν

2 + . . .+ αs−1ν
s−1, with each αi ∈GF(q) in O(s2 log q) field operations, using

Lemma 2.1(2). Then replace each power νi (0 6 i < s) in this expression by the s× s matrix
ΓiA, and sum in O(s3) field operations.

We first consider line 1 of Table 3, but only for s > 2.

Lemma 6.3. A canonical set of subgroups of Ωε(d, q) of type GOε(d/s, qs), as in Table 3
with s an odd prime, can be constructed in O(d3 + d2 log q) field operations.

Proof. For each such s, we construct a subgroup H of Ωε(d, q), with

H ∼= Ωε(d/s, qs).s,

by [14, Propositions 4.3.14, 4.3.16, 4.3.17], where the extension is induced by 〈σq〉, the only
subgroup of NGOε(d,q)(Ωε(d/s, qs))/Ωε(d/s, qs) of order s.

Use Lemma 6.2 to construct ΓA, ΓB ∈GL(s, q) and then the powers ΓiA for 1< i < s in
O(s3 + log q) field operations. Define the monomorphism τ : GL(d/s, qs)→GL(d, q) as above.

If ε=−, the central 2× 2 block of Q−d/s(q
s) is not equal to the central 2× 2 block of Q−d/s(q).

Construct Aεd/s(q
s) and Bεd/s(q

s), and then convert them to matrices A1 and B1 preserving
Qεd/s(q) in O(d/s+ s log q) field operations by Proposition 3.8(1). The point of this is that
Ω(d/s, qs, Qεd/s(q)) is normalised by σq. If ε= + or ◦, then let A1 =Aεd/s(q

s) and B1 =Bεd/s(q
s).

In all cases, the set of entries of A1 and B1 has size not depending on d, q or s, so
we can construct A := τ(A1), B := τ(B1) generating a group isomorphic to Ωε(d/s, qs) in
O(d2 + s2 log q) field operations, as explained above. Let C := ΓB ⊕ . . .⊕ ΓB ∈GL(d, q). Since
conjugation by C induces the automorphism σq of τ(GL(d/s, qs)), the matrix C normalises
〈A, B〉, and 〈A, B, C〉 ∼=H.

Now H fixes the form Tr(Qεd/s(q)). The matrix of this form consists of s× s blocks
corresponding to the entries of the matrix of Qεd/s(q), where a zero block represents a zero
entry of Qεd/s(q). Since Qεd/s(q), A1 and B1 each have O(d/s) non-zero entries, the matrices
Tr(Qεd/s(q)), A, B and C each have O(d/s) non-zero blocks. If ε= +, then all non-zero blocks
of Tr(Qεd/s(q)) are identical, and we find a 2s× 2s matrix converting a pair of blocks to Q+

2s

in O(s3 + s log q) field operations by Proposition 3.7. A similar argument holds in type ◦.
In type −, we also find elements of GL(4s, q) that transform the central 4s× 4s block to
the central 4s rows and columns of Qεd(q). Since A, B, C have O(d) non-zero blocks, with a
constant size set of blocks occurring, we convert them to preserve Qεd in O(s3 + s log q + d2)
field operations by Proposition 3.7.

Thus, for fixed s, we require O(s3 + s2 log q + d2) field operations. Let S be the set of all
odd primes dividing d. Then |S|=O(log d), and summing gives

O

(∑
s∈S

s3 + s2 log q + d2

)
= O

( ∑
t=d/s, s∈S

(d3/t3 + d2/t2 log q + d2)
)

= O

(
d3
∑
t>1

t−3 + d2 log q
∑
t>1

t−2 + d2 log d
)

= O(d3 + d2 log q).
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Lemma 6.4. A canonical subgroup H of Ωε(d, q) of type GOε1(d/2, q2) (the second type
in Table 3 and the first type with s= 2) can be constructed in O(dω + log q) field operations.

Proof. We construct H∗ := 〈τ(Aε1d/2(q2)), τ(Bε1d/2(q2))〉, preserving Tr(Qε1d/2(q2)), and C :=
ΓB ⊕ . . .⊕ ΓB , in O(d2 + log q) field operations (as in the previous lemma, with s= 2). In
each case, with respect to an appropriate form Q, the corresponding subgroup of GOε(d, q) is
M := 〈τ(GOε1(d/2, q2, Q)), C〉 by [14, Equation (4.3.11)].

There are three cases to consider. If ε= + and d≡ 0 mod 4, then

H ∼= Ω+(d/2, q2).[4],

by [14, Proposition 4.3.14]. Since the matrices of Q+
d/2(q2) and Q+

d/2(q) are the same, σq
fixes Ω+(d/2, q2), so C normalises H∗. If q is even, then adjoin C and τ(S+

d/2(q2)) to H∗

to produce the extension of degree four: since H =M in this case, both of these elements
lie in Ω+(d, q). If q is odd, then [14, Lemma 2.7.2, Equations (4.3.19)–(4.3.21)] state that
τ(S+

d/2(q2)) has determinant +1 and spinor norm −1, and that the determinant of all
elements of M is 1. Therefore, to create the extension of degree four, let Y be an element
of {τ(G+

d/2(q2)), τ(G+
d/2(q2)S+

d/2(q2))} that has spinor norm 1. We find Y in O(dω + log q)
field operations by Proposition 3.6. The determinant of C is 1, so adjoin Y and either C or
CS+

d/2(q2), depending on sp(C).
If ε=− and d≡ 0 mod 4, then

H ∼= Ω−(d/2, q2).2,

by [14, Proposition 4.3.16]. If q is even, then 2Rank(g + Id/2) = Rank(τ(g) + Id) for all
g ∈GL(d/2, q2), so det(τ(S−d/2(q2))) = sp(τ(S−d/2(q2))) = 1. Thus, adjoin τ(S−d/2(q2)) to H∗. If
q is odd, then [14, Lemma 4.1.21] shows that sp(τ(SO−(d/2, q2))) = 〈−1〉, since it contains an
element that acts as ζI2 on a totally singular 2-space W = τ(〈e1〉) and centralises W⊥/W . A
short calculation shows that det(τ(G−d/2(q2))) = 1, so either τ(G−d/2(q2)) or τ(S−d/2(q2)G−d/2(q2))
lies in Ω−(d, q, Tr(Q−d/2(q2))). This can be tested in O(dω + log q) field operations by
Proposition 3.6.

If d≡ 2 mod 4, then q is odd and

H ∼= (Z × Ω◦(d/2, q2)).2,

by [14, Proposition 4.3.20], where Z = Z(Ωε(d, q)). If D(Qεd(q)) = N, then adjoin to H∗

whichever of ±τ(S◦d/2(q2)) has spinor norm 1 (recalling that −I 6∈ Ωε(d, q) for a non-square
discriminant), testing for this condition in O(dω + log q) field operations by Proposition 3.6.

If D(Qεd(q)) = S, note that det(C) =−1 by Lemma 6.2, and define S = τ(ν(q−1)/2Id/2). Since
ν(q−1)/2Id/2 transforms the form Q◦d/2(q) to νq−1Q◦d/2(q), the matrix S transforms Tr(Q◦d/2(q))
to νq

2−1Tr(Q◦d/2(q)); that is, it fixes Tr(Q◦d/2(q)). Also, since det(τ(g)) = det(g)q+1 for all
g ∈GL(d/2, q2) and d/2 is odd, det(S) =−1. So, det(CS) = 1 and CS induces σq on H, since
S centralises H∗. A short calculation shows that (CS)2 =−Id. Now sp(τ(S◦d/2(q2))) =−1 by
[14, Equation (4.3.26)], so adjoin CS or CSτ(S◦d/2(q2)) to H∗, depending on sp(CS). This is
calculated in O(dω + log q) field operations by Proposition 3.6.

In all cases, finish by converting the form Tr(Qε1d/2(q2)) to Qεd(q) in O(d2 + log q) field
operations by a similar method to the previous lemma, noting that each row and column
requires at most eight row and column operations.

Remark. In the second and third cases in the theorem above, the group H is not absolutely
irreducible, and it is useful to be able to construct an element in GOε(d, q) inducing the field
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automorphism, which has determinant −1. When d/2 is odd and D(Qεd(q)) = N, use the matrix
C in the proof above.

When d/2 is even and ε=−, the entries of the matrix of Q−d/2(q2) cannot be chosen to lie
in GF(q), so the automorphism of GL(d/2, q2) induced by σq does not normalise Ω−(d/2, q2),
and hence C does not normalise τ(Ω−(d/2, q2)). Let S ∈GL(d/2, q2) transform Q−d/2(q2)σq to
Q−d/2(q2). Then the automorphism of GL(d/2, q2) induced by σq followed by conjugation by S
normalises Ω−(d/2, q2), and Cτ(S) ∈GO−(d, q, Tr(Q−d (q2))) normalises and induces the field
automorphism of τ(GO−(d/2, q2)). However, (Cτ(S))2 lies in τ(GO−(d/2, q2) \ SO−(d/2, q2)).

Whenever q is odd in the theorem above, the element τ(ν(q+1)/2Id/2) normalises H and lies
in COε(d, q, Tr(Qεd/2(q2))) but does not fix the form.

Lemma 6.5. A canonical subgroup H of Ωε(d, q) of type GU(d/2, q), as in Table 3, can be
constructed in O(dω + log q) field operations.

Proof. Here ε= + if and only if d≡ 0 mod 4. Define τ and C as in the earlier lemmas of
this section.

If q is odd and ε= +, then
H ∼= ( 1

2GU(d/2, q)).2,

where the outer 2 is induced by σq and 1
2GU(d/2, q) is the unique subgroup of GU(d/2, q)

of index two [14, Proposition 4.3.18]. Construct a conjugate of 1
2GU(d/2, q) by first applying

τ to the standard generators of SU(d/2, q) to produce matrices A and B in O(d2 + log q)
field operations. Then let B1 := τ(Diag[ξ2(q−1), 1, . . . , 1]), which is constructed in O(d2 + log q)
field operations. Finally, let X be either C or Cτ(Diag[ξ(q−1), 1, . . . , 1]), whichever has spinor
norm 1 (tested in O(dω + log q) field operations by Proposition 3.6). Then X is constructed
in O(dω + log q) field operations. The form Q1 fixed by 〈A, B, X〉 is Q1(v) = v(vσq )T, with a
basis 1, ξ for GF(q2) over GF(q). The matrix MQ1 consists of identical 2× 2 blocks along the
antidiagonal, so Q1 is converted to Qεd in O(d2 + log q) field operations, by Proposition 3.8(3).

If q is odd and ε=−, then H ∼= 1
2GU(d/2, q) and the construction is similar to, but easier

than, that for ε= +. If q is even and ε= +, then H ∼= GU(d/2, q).2; the construction is similar
to that for q odd. Similarly, if q is even and ε=−, then H ∼= GU(d/2, q).

Proposition 6.1 is now immediate from Lemmas 6.3, 6.4 and 6.5.

7. Tensor product groups

A group is tensor product if it preserves a decomposition V = V1 ⊗ V2. In this section, we shall
prove the following proposition.

Proposition 7.1. Let PΩε(d, q) �G 6 PCΓOε(d, q). Canonical representatives of the
tensor product subgroups of G that arise in Theorem 1.1 can be constructed in O(dω+ε +
d1+ε log q) field operations for every ε > 0.

Recall the definition of the Kronecker product of matrices, A⊗B, from § 2. For groups
G 6 GL(d1, q) and H 6 GL(d2, q), we define

G⊗H = (G×H)/{(αId1 , α−1Id2) : αId1 ∈G, α−1Id2 ∈H}.

Table 4, taken from [14, Table 4.4.A], lists the types of tensor product group.
The determinant of A⊗B ∈GL(d1, q)⊗GL(d2, q) is det(A)d2 det(B)d1 . If q is odd, and G

and H preserve bilinear forms FG and FH , respectively, then G⊗H preserves a bilinear form
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with matrix FG ⊗ FH . If both FG and FH are symmetric or both are symplectic, then FG ⊗ FH
is symmetric. If q is even, and FG and FH are both symplectic or both symmetric, then G⊗H
preserves a quadratic form Q defined by Q(w1 ⊗ w2) = 0 for all wi ∈ Vi and F = FG ⊗ FH .

Recall that ζ and ξ are the (fixed) primitive elements of GF(q) and GF(q2), respectively.
For q odd, let α= ξ(q+1)/2(ξ − ξq)(ξ + ξq)−1 ∈GF(q) and β = 2ζ(ξ + ξq)−1. Then α2 + β2 = ζ,
and a short calculation shows that

A=
(
α β
β −α

)
converts F S

2 to ζF S
2 . Similarly, B = AntiDiag[ζ, 1] converts FN

2 to ζFN
2 . Let ES

d :=A⊕ . . .⊕A ∈
GL(d, q) and EN

d :=B ⊕A⊕A⊕ . . .⊕A ∈GL(d, q). Then Ekd converts F kd to ζF kd .
We start with a technical lemma [14, Lemma 4.4.13]. Recall that for a non-singular vector

v, we write rv for the reflection in v.

Lemma 7.2. Let q be odd, let V = V1 ⊗ V2 with corresponding quadratic form Q1 ⊗Q2

and let the vector v ∈ V1 be non-singular.

(1) Let v1, . . . , vd be the standard basis for (V2, F
k
d ), where k ∈ {S, N}. Then

rv ⊗ 1 = rv⊗v1rv⊗v2 . . . rv⊗vd2.

(2) If both V1 and V2 have even dimension, then rv ⊗ 1 ∈ SO(V ) \ Ω(V ) if D(Q2) = N, and
rv ⊗ 1 ∈ Ω(V ) otherwise.

Lemma 7.3. A canonical subgroup H of Ωε(d, q) of type Ωε1(d1, q)⊗ Ωε2(d2, q), as in
Table 4, can be constructed in O(dω + d log q) field operations.

Proof. We consider various possibilities for d1, d2, ε1 and ε2. In each case we will construct
a conjugate of H that preserves a diagonal or antidiagonal form F1 with at most four distinct
entries, so F1 may be converted to F εd(q) in O(d2 + log q) field operations by Proposition 3.8(3).

For d odd, H ∼= (Ω◦(d1, q)⊗ Ω◦(d2, q)).2 [14, Proposition 4.4.18]. Construct Ω◦(d1, q)⊗
Ω◦(d2, q) as a Kronecker product. By Lemma 7.2(1), sp(S◦d1 ⊗ S

◦
d2

) = 1. The form F ◦d1 ⊗ F
◦
d2

is
antidiagonal with three distinct non-zero entries.

Next assume that d2 is odd but d1 is even, so that ε= ε1. Then H ∼= Ωε(d1, q)⊗
SO◦(d2, q) [14, Proposition 4.4.17]. First construct ∗Xα

l (q), where X ∈ {A, B, S}, α ∈ {◦, ε},
and l ∈ {d1, d2}, and then construct a conjugate of H preserving the diagonal form F

D(F
ε1
d1

)

d1
⊗

Id2 as a Kronecker product.
Finally, assume that both d1 and d2 are even, so that ε= +. For i= 1, 2, let ki =D(F εidi ),

and let F1 = F k1d1 ⊗ F
k2
d2

. Define s to be 4 if any of the following hold:
(1) ε1 = ε2 =−;
(2) ε1 = ε2 = + and exactly one of k1, k2 equals S;
(3) ε1 = ε2 = +, k1 = k2 and d≡ 4 mod 8; or
(4) ε1 = +, ε2 =− and at least one of k1, k2 equals N;

Table 4. Types of tensor product group.

ε Type Conditions

◦,+,− Ωε1 (d1, q)⊗ Ωε2 (d2, q) d= d1d2, (d1, ε1) 6= (d2, ε2)
d1, d2 > 2, q odd

(ε= ◦)⇔ (ε1 = ε2 = ◦)
(ε=−)⇔ (ε1 =−, ε2 = ◦)

+ Sp(d1, q)⊗ Sp(d2, q) d≡ 0 mod 4, d= d1d2, d1 < d2
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and s= 8 otherwise. Then H ∼= (SOε1(d1, q)⊗ SOε2(d2, q)).[s] [14, Propositions 4.4.14, 4.4.15,
4.4.16]. Construct H1 = SO(d1, q, F

k1
d1

)⊗ SO(d2, q, F
k2
d2

) in O(d2 + log q) field operations,
preserving F1. Let G1 = ∗Gε1d1 ⊗ 1 and G2 = 1⊗ ∗Gε2d2 . It is immediate from Lemma 7.2(2)
that sp(Gi) = 1 if and only if k3−i = S. Let D = Ek1d1 ⊗ (Ek2d2 )−1 ∈ SO+(d, q, F1), and note that
(Ekd )−1 can be computed in O(d2) field operations.

If s= 8, then adjoin G1, G2 and D to H1. If s= 4, then compute the spinor norms of G1,
G2 and D in O(dω + log q) field operations, and adjoin appropriate products to H1.

Remark. It is possible to write down conditions on d1, d2, q, ε1 and ε2 that determine
when each of G1, G2 and D have spinor norm 1, and thus improve the complexity of the above
result to O(d2 + log q) field operations, but we omit the lengthy calculations.

Lemma 7.4. A canonical subgroup H of Ω+(d, q) of type Sp(d1, q)⊗ Sp(d2, q), as in
Table 4, can be constructed in O(d2) field operations.

Proof. If d≡ 4 mod 8 or q is even, then H ∼= Sp(d1, q) ◦ Sp(d2, q), otherwise H ∼=
(Sp(d1, q) ◦ Sp(d2, q)).2 [14, Proposition 4.4.12].

Generate Sp(d1, q) ◦ Sp(d2, q) as a Kronecker product in O(d2) field operations, by
Theorem 3.11. If d≡ 0 mod 8 and q is odd, then adjoin (ζId1/2 ⊕ Id1/2)⊗ (ζ−1Id2/2 ⊕ Id2/2).
Since the standard symplectic form is antidiagonal with all non-zero entries ±1, if q is even
these matrices all naturally preserve Qεd, whilst if q is odd these matrices may be converted to
preserve Qεd in O(d2 + log q) field operations by Proposition 3.8(3).

Proposition 7.1 follows from the preceding two lemmas and the fact that there are O(dε)
classes of tensor product groups of each type, for every real ε > 0, by Lemma 2.2(2).

8. Subfield groups

A group is subfield if, modulo scalars, it can be written over a proper subfield of GF(q) =
GF(pe). Throughout this section, f will denote a divisor of e such that r = e/f is prime.
In [14, Table 4.5.A], we find that for each such f there are at most two types of subfield
subgroups H. If either d or r is odd, then there is exactly one. If d is even and r = 2, then there
are none if ε=− and two if ε= +.

Proposition 8.1. Let PΩε(d, q) �G 6 PCΓOε(d, q). Canonical representatives of the set
of subfield subgroups of G that arise in Theorem 1.1 can be constructed in O(d2 log log q +
log q log log q) field operations.

Proof. There are O(log log q) prime divisors of e by Lemma 2.2(1). Let H denote one of
the subgroups to be constructed. The structure of H is given in [14, Propositions 4.5.8, 4.5.9].

If d is odd, then H ∼= Ω◦(d, q1/r) if r is odd, and H ∼= SO◦(d, q1/2) if r = 2. The group
SO◦(d, q1/r) naturally preserves F ◦d (q), and generators for H are constructed in O(d2 + log q)
field operations.

So, assume for the remainder of the proof that d is even. If q is even, then H ∼= Ωε1(d, q1/r)
for all r. If ε1 = +, then Q+

d (q1/r) =Q+
d (q). If ε1 =−, then convert Q−d (q1/r) to Qεd(q) in

O(d+ log q) field operations by Proposition 3.8(1).
Suppose from now on that q is odd. The first case is when r is odd. Then ε1 = ε and

H ∼= Ωε1(d, q1/r). The group Ω+(d, q1/r) preserves F+
d (q1/r) = F+

d (q). The forms F−d (q1/r) and
F−d (q) differ on 〈x, y〉, which is corrected in O(d+ log q) field operations by Proposition 3.8(1),
so this case requires O(d2 + log q) field operations.
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Suppose from now on that r = 2, so d is even and ε= +. Then q is square so q ≡ 1 mod 4.
Let k =D(F ε1d (q1/2)) over GF(q1/2), and let

s=

1 if either d≡ 0 mod 4 and k = N,
or d≡ 2 mod 4 and k = S,

2 otherwise.

Then H ∼= SOε1(d, q1/2).[s] by [14, Proposition 4.5.10].
For s= 1 and ε1 = +, set

H = SO+(d, q1/2) = SO(d, q1/2, F+
d (q)).

For s= 1 and ε1 =−, convert F−d (q1/2) to F+
d (q) in O(d+ log q) field operations by

Proposition 3.8(1).
Now suppose s= 2, and let λ= ζ(q1/2+1)/2, so that λ2 is the primitive element of GF(q1/2).

If ε1 = +, then let A= λId/2 ⊕ λ−1Id/2. Then A fixes F+
d (q) = F+

d (q1/2) and det(A) = 1, so
A ∈ SO+(d, q). To see that sp(A) = 1, use Lemma 3.5(3), and note that either d= 0 mod 4 or
q1/2 ≡ 3 mod 4, so in both cases the determinant of A restricted to 〈e1, . . . , em〉 is square. We
construct H as 〈SO+(d, q1/2), A〉.

If ε1 =−, then q1/2 ≡ 1 mod 4 and d≡ 2 mod 4 by Lemma 3.3(1). Let

F1 = AntiDiag[1, 1]⊕ . . .⊕AntiDiag[1, 1]⊕Diag[1, λ2].

Note that F1 is of − type over GF(q1/2) but of + type over GF(q). Set

A= Diag[λ, λ−1]⊕ . . .⊕Diag[λ, λ−1]⊕AntiDiag[−λ−1, λ].

Then det(A) = 1 and A preserves F1. A short calculation shows that the final block of A has
spinor norm 1 with respect to Diag[1, λ2]. Since there are an even number of copies of the
first block of A, it follows that A ∈ Ω+(d, q, F1). The form F1 can be converted to F+

d (q) in
O(d2 + log q) field operations by Proposition 3.8(3), whilst F−d (q1/2) is converted to F+

d (q) in
O(d+ log q) field operations by Proposition 3.8(1). Finally, H is generated by these conjugates
of SO−(d, q1/2) and A.

9. Groups of extraspecial normaliser type

Assume ε= +, q = p is odd and d= 2m, otherwise there are no extraspecial normaliser groups.
Then, by [14, Proposition 4.6.8], Ω+(d, q) has a subgroup isomorphic to 21+2m

+ .Ω+(2m, 2) if
p≡±3 mod 8, and to 21+2m

+ .GO+(2m, 2) if p≡±1 mod 8. The group E ∼= 21+2m
+ is a central

product of dihedral groups of order eight.
In this section we shall prove the following proposition.

Proposition 9.1. Let PΩε(d, q) �G 6 PCΓOε(d, q). A canonical representative of the
extraspecial normaliser type subgroups of G that arise in Theorem 1.1 can be constructed
in O(d2 log d+ log q) field operations.

We write down generators of NGL(d,q)(E)∼= 〈Z(GL(d, q)), E.GO+(2m, 2)〉, and then modify
them to produce a subgroup of Ω+(d, q).

Lemma 9.2. A canonical group NGL(d,q)(E) can be constructed in O(d2 log d) field
operations.

Proof. We first construct E. Let X = Diag[1,−1] and Y = AntiDiag[1, 1]. Then [Y, X] =
−I2, and so 〈X, Y 〉 ∼=D8

∼= 21+2
+ . For 1 6 i 6m, define Xi := I2m−i ⊗X ⊗ I2i−1 and Yi :=
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I2m−i ⊗ Y ⊗ I2i−1 . The group 〈Xi, Yi | 1 6 i 6m〉 is a central product of m copies of 〈X, Y 〉,
so let E be this group. It can be checked that E fixes the form Id = F S

d .
Now we construct NGL(d,q)(E). Let Ek := 21+2k

+ 6 GL(2k, q), so that E = Em. For G 6
GL(d, q), we write G for G/(G ∩ Z(GL(d, q))). Let

U =
(

1 1
1 −1

)
.

Then 〈X, Y, U〉 induces GO+(2, 2)∼= 2 on E1. For 1 6 i 6m, define Ui := I2m−i ⊗ U ⊗ I2i−1 .
Then the Ui all normalise E and 〈Xi, Yi, Ui : 1 6 i 6m〉 induces a direct product of m copies
of GO+(2, 2) on E.

Let W ∈GL(4, q) be the permutation matrix defined by (1, 3) ∈ Sym(4). Then I2 ⊗X is
centralised by W , whereas (X ⊗ I2)W =−(I2 ⊗X)(X ⊗ I2). Similarly, Y ⊗ I2 is centralised by
W , whilst (I2 ⊗ Y )W = (I2 ⊗ Y )(Y ⊗ I2). For 1 6 i 6m− 1, define Wi := I2m−1−i ⊗W ⊗ I2i−1 .
Then XWi

j =Xj for j 6= i+ 1 and XWi
i+1 =−XiXi+1, whereas YWi

j = Yj for j 6= i and YWi
i =

YiYi+1.
We now prove by induction on k that for 2 6 k 6m the group

Nk := 〈Xi, Yi, Ui, Wj : 1 6 i 6 k, 1 6 j 6 k − 1〉

induces GO+(2k, 2) on Ek. We check this by direct computation for k 6 4 and then, for the
inductive step, we may assume that Nk+1, in its action on Ek+1, properly contains GO+(2(k −
1), 2)×GO+(4, 2). But, since k − 1 > 3, this is a maximal subgroup of GO+(2k + 2, 2) by [14,
Table 3.5.E]. So, Nk+1 induces GO+(2k + 1, 2) on Ek+1, which completes the induction. Thus,

〈Xi, Yi, Ui, Wj , Z(GL(d, q)) : 1 6 i 6m, 1 6 j 6m− 1〉

is the normaliser in GL(d, q) of E.

Proof of Proposition 9.1. We consider each non-scalar generator of NGL(d,q)(E). The
determinant of X is −1, so det(Xi) = (−1)d/2 = 1 for all i, since d= 2m > 8. Furthermore,
sp(X) = 1 with respect to F S

2 . Thus, sp(Xi) = 1 with respect to F S
d for all i, by Lemma 7.2(2).

Similarly, Yi and Wi are in Ω(d, q, F S
d ) for all i.

The determinant of U is −2, and UF S
2U

T = 2F S
2 . If q ≡±1 mod 8, then there exists a

canonical ρ ∈GF(q) such that ρ2 = 2, which can be constructed in O(log q) field operations.
Then, as before, sp(ρ−1Ui) = det(ρ−1Ui) = 1.

Assume now that q ≡±3 mod 8. The determinant of Ui is 2d/2 for 1 6 i 6m, so
det(UiU−1

i+1) = 1. Let S = (I2 ⊗ U)(U−1 ⊗ I2), then S ∈GO(4, q, F S
4 ). Therefore, sp(UiU−1

i+1) =
1 for 1 6 i 6m− 1 by Lemma 7.2(2). Since UiUj = UjUi for all i, j, it follows that
〈Xi, Yi, Wi, UiU

−1
i+1〉 ∼= 21+2m

+ .Ω+(2m, 2), as required. Note that UiU−1
i+1 can be calculated in

O(d2) field operations as a Kronecker product.
For all q, the form F S

d fixed by E can be converted to the standard form in O(d2 log d+ log q)
field operations by Proposition 3.8(3), so discarding the scalar generators produces the required
subgroup of Ω+(d, q).

10. Tensor induced groups

A group is tensor induced if it preserves a decomposition V = V1 ⊗ . . .⊗ Vt, with dim(Vi) =m
for 1 6 i 6 t. In this section we shall prove the following proposition.

Proposition 10.1. Let PΩε(d, q) �G 6 PCΓOε(d, q). Canonical representatives of the
tensor induced subgroups of G that arise in Theorem 1.1 can be constructed in O(dω log log d+
log d log log d log q) field operations.
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Let H 6 GL(m, q) and let K 6 Sym(t) be transitive. Then

H TWrK = (H ⊗ . . .⊗H):K

is the tensor wreath product of H and K. It is like a standard wreath product except that we
take a central product of t copies of H with amalgamated subgroup H ∩ Z(GL(m, q)). If each
Vi admits a bilinear form Fi, then there is a bilinear form F on V given by setting

F (v1 ⊗ . . .⊗ vt, w1 ⊗ . . .⊗ wt) :=
t∏
i=1

Fi(vi, wi),

and extending linearly. If qt is even and the Fi are symplectic, then F is symmetric. If the Fi
are symmetric, then F is symmetric. Table 5 gives the types of tensor induced group, based
on [14, Table 4.7.A].

Lemma 10.2 [10]. Let H = 〈h1, . . . , ha〉 6 GL(m, q), and let K = 〈k1, . . . , kb〉 be a
transitive subgroup of Sym(t). Then H TWrK can be constructed in O((a+ b)m2t) field
operations.

Lemma 10.3. A canonical subgroup of Ω+(d, q) of type Sp(m, q) TWr Sym(t), as in Table 5,
can be constructed in O(d2 + log q) field operations.

Proof. If m≡ 2 mod 4 and t= 2, then H ∼= Sp(m, q)× Sp(m, q) by [14, Proposition 4.7.5].
Construct canonical generators for Sp(m, q) in O(m2) field operations by Theorem 3.11, then
construct a canonical copy of H as a central product with four generators in O(d2) field
operations. The resulting form F1 is antidiagonal with all entries ±1, so can be converted to
Q+
d in O(d2 + log q) field operations by Propositions 3.8(2) and 3.8(3).
Otherwise, by [14, Proposition 4.7.5],

H ∼= (2, q − 1).PSp(m, q)t.(2, q − 1)t−1.Sym(t)

and (comparing with [14, Equation (4.7.6)]) H is the stabiliser in GO+(d, q) of the tensor
decomposition. Thus, all elements of GO+(d, q) that stabilise the tensor decomposition lie
in (a fixed conjugate of) H. First construct a copy of Sp(m, q) TWr Sym(t) in O(d2) field
operations, by Lemma 10.2. If q is odd, then let

D = Diag[ζ, . . . , ζ, 1, . . . , 1]⊗Diag[ζ−1, . . . , ζ−1, 1, . . . , 1]⊗ Im ⊗ . . .⊗ Im,

with t factors, and m/2 entries 1 in the first two matrices. We adjoin D, which can
be constructed in O(d2) field operations, as a new generator. A short calculation shows
that D ∈GO+(d, q, F1) and D normalises Sp(m, q) TWr Sym(t). We let H∗ = 〈Sp(m, q) TWr
Sym(t), D〉. Then H∗ ∼=H. Finally, F1 is antidiagonal with all entries ±1, so can be converted
to Q+

d in O(d2 + log q) field operations by Proposition 3.8(3).

Lemma 10.4. A canonical subgroup of Ω◦(d, q) of type GO◦(m, q) TWr Sym(t), as in
Table 5, can be constructed in O(dω + log q) field operations.

Table 5. Types of tensor induced group.

Case Type Conditions

+ GO±(m, q) TWr Sym(t) d=mt and q odd

+ Sp(m, q) TWr Sym(t) d=mt and qt even, (m, q) 6∈ {(2, 2), (2, 3)}
◦ GO◦(m, q) TWr Sym(t) d=mt and qm odd
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Proof. By [14, Proposition 4.7.8], H ∼= Ω◦(m, q)t.2t−1.Sym(t) and, by [14, Equa-
tion (4.7.6)],

NGO◦(d,q)(H) = GO◦(m, q) TWr Sym(t)∼= 〈−I〉 × SO◦(m, q) TWr Sym(t).

First construct generators A, B, C, D for Ω◦(m, q, Id) TWr Sym(t), where D corresponds
to (1, 2) ∈ Sym(t). This can be done in O(d2 + log q) field operations by Theorem 3.9 and
Lemma 10.2. The group H1 = Ω(m, q, Id) TWr Alt(t) preserves Id and is a subgroup of
Ω(m, q, Id) TWr Sym(t) 6 GO(d, q, Id), so H1 6 Ω(d, q, Id). By [14, Equation (4.7.8)], odd
permutations of Sym(t) have determinant −1 if m≡ 3 mod 4 and determinant 1 otherwise.
In the former case, replace D by −D.

The element ∗S◦m is the product of a reflection in a vector of square norm and one of non-
square norm, so S := ∗S◦m ⊗ Im ⊗ . . .⊗ Im is the product ofmt−1 reflections in vectors of square
norm and mt−1 reflections in vectors of non-square norm. Let T = ∗S◦m ⊗ (∗S◦m)−1 ⊗ Im ⊗
. . .⊗ Im. Then sp(S) =−1, so sp(T ) = 1. Compute sp(D) in O(dω + log q) field operations,
then let E be whichever of ±SiD has determinant and spinor norm 1, for i ∈ {0, 1}. Then
H∗ = 〈A, B, C, T, E〉 is isomorphic to H. The group H∗ preserves the form Id, so H∗ can be
converted to preserve F ◦d in O(d2 + log q) field operations by Proposition 3.8(3).

Lemma 10.5. A canonical subgroup of Ω+(d, q) of type GOε1(m, q) TWr Sym(t), as in
Table 5, can be constructed in O(d2 + log d log q) field operations.

Proof. The tensor induced subgroups G of GO+(mt, q) of this type have shape

(2, q − 1).PGOε1(m, q)t.[2t−1].Sym(t),

for ε1 ∈ {+,−}. The structure of H depends on m, q, t and ε1, but a short calculation shows
that it always contains a group K, which is either SOε1(m, q) TWr Alt(t) or (if t= 2 and
m≡ 2 mod 4) is SOε1(m, q)⊗ SOε1(m, q). Let k =D(Qε1m). Make a conjugate of K from groups
preserving F km in O(d2 + log q) field operations, using Corollary 3.10 and Lemma 10.2. The
group K preserves a diagonal form F1 with O(t) distinct entries.

Next we analyse which other elements of G lie in Ω+(d, q). It is immediate that G1 :=
Gε1m ⊗ Im ⊗ . . .⊗ Im has determinant 1, and it follows from Lemma 7.2 that sp(G1) = 1 unless
t= 2 and k = N.

Recall the definition of Ekd from just before Lemma 7.2. The element Ekm ⊗ (Ekm)−1 ⊗ Im ⊗
. . .⊗ Im always has determinant 1, and it can be shown (see [14, Propositions 4.4.14, 4.4.16]
and use Lemma 7.2) that it has spinor norm −1 if and only if t= 2 and m≡ 2 mod 4.

Finally, let P induce the permutation (1, 2) on the tensor factors. Then P is a product of
mt−2

(
m
2

)
reflections, so P 6∈ SO+(d, q) if and only if t= 2 and m≡ 2 mod 4. It follows from

Lemma 7.2 that if t > 3 then P ∈ Ω+(d, q, F1) unless t= 3, m≡ 2 mod 4 and k = N.
Now we work through the possible cases for m, q, t and ε1.
If t= 2 and m≡ 2 mod 4, then a simple generalisation of [14, Propositions 4.7.6, 4.7.7] shows

that
H ∼= (SOε1(m, q)⊗ SOε1(m, q)).[4].

If k = S then let H∗ = 〈K, ∗Gε1m ⊗ Im, Im ⊗ ∗Gε1m〉, and if k = N then let

H∗ = 〈K, ∗Gε1m ⊗ (∗Gε1m)−1, ∗Gε1mE
k
m ⊗ (Ekm)−1〉.

If t= 2, m≡ 0 mod 4 and ε1 =− then we calculate that

H ∼= (SO−(m, q)⊗ SO−(m, q)).[8].

Let P1 be whichever of P or P (∗G−m ⊗ Im) has spinor norm 1, and let

H∗ = 〈K, ∗G−m ⊗ (∗G−m)−1, Ekm ⊗ (Ekm)−1, P1〉.
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If t= 3, m≡ 2 mod 4 and k = N, then

H ∼=
( 3⊗
i=1

SOε1(m, q)
)
.[25].3.

Let
H∗ = 〈K, ∗Gε1m ⊗ Im ⊗ Im, EN

m ⊗ (EN
m)−1 ⊗ Im〉.

In all other cases,

H ∼=
( t⊗
i=1

SOε1(m, q)
)
.[22t−1].Sym(t)

and we let

H∗ = 〈K, ∗Gε1m ⊗ Im ⊗ . . .⊗ Im, Ekm ⊗ (Ekm)−1 ⊗ Im ⊗ . . .⊗ Im, P 〉.

In each case, F1 is diagonal with O(t) =O(log d) distinct entries, which can be converted to
Q+
d (q) in O(d2 + log d log q) field operations.

For each of the preceding three lemmas there are O(log log d) groups to construct, so
Proposition 10.1 follows.

11. The plus type groups in dimension eight

The maximal subgroups of the almost simple groups with socle PΩ+(8, q) are described in
detail in [13], and listed in Table I of that paper. Many of these subgroups, including all of
the geometric maximal subgroups of PΩ+(8, q) itself, belong to families that occur in other
dimensions and, in these cases, we have already described how to construct the pre-images of
their intefrsections with PΩ+(8, q).

In this section, we describe how to write down generators for the pre-images in Ω+(8, q) of the
intersections with PΩ+(8, q) of those geometric maximal subgroups that arise only in dimension
eight; that is, those which arise only as maximal subgroups of extensions of PΩ+(8, q) that
involve the triality automorphism. It turns out that these pre-images are all maximal subgroups
H of other subgroups K of Ω+(8, q), whose constructions we have already described.

In particular, we shall prove the following proposition.

Proposition 11.1. Let PΩ+(8, q) �G 6 Aut(PΩ+(8, q)). A set of canonical representa-
tives of the subgroups of G that arise in Theorem 1.1 can be constructed in O(log q log log q)
field operations.

We shall proceed down the list in [13, Table I], so we are assuming that the reader has this
table to hand. The assertions that we shall make concerning certain subgroups in the list being
contained in other subgroups in the list can all be easily justified by consulting the references
provided in the final column of that table.

To avoid confusion between, for example, the subgroup named P2 in line 4 of [13, Table I]
and the notation Pk that we used in § 4 to denote the stabiliser of a totally singular k-space,
we shall continue to use Pk as in § 4, but use P ′k to denote the subgroups named Pk in [13].
All other group names are distinct from symbols used elsewhere in this paper. We write ∧H
to mean the pre-image in Ω+(8, q) of a subgroup of PΩ(8, q).

Lines 1 to 3 of [13, Table I] consist of groups that are constructed in § 4, namely ∧Rs1 = P1

and ∧R1
34
∼=∧ R2

34 = P4.

Lemma 11.2. A canonical pre-image of the group ∧P ′2 in line 4 of [13, Table I] can be
constructed in O(log q) field operations.
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Proof. Roughly speaking, we construct ∧P ′2 6 P3 by replacing the factor GL(3, q) in
P3 (constructed in Lemma 4.2) by its maximal parabolic subgroup K with structure
q2:(GL(1, q)×GL(2, q)). We described how to construct the intersection of K with SL(3, q)
in [10, Proposition 4.1]. By the construction in Lemma 4.2, we need generators for
q2:(GL(1, q)×GL(2, q)) when q is even, and of q2: 1

2 (GL(1, q)×GL(2, q)) together with an
element of GL(1, q)×GL(2, q) with non-square determinant when q is odd. These are easily
obtained in a similar way to the generators constructed in [10, Proposition 4.1], and we omit
the details. The group P3 is constructed in O(log q) field operations, and so ∧P ′2 is, too.

The groups Rs2 and Rs3 in lines 5 and 6 of [13, Table I] are P2 and P3, respectively, which
are constructed in Lemma 4.2. The group P3 is not maximal in Ω+(8, q) since, for all even
n > 3, the group of type Pn−1 is contained in groups in the two classes of type Pn in Ω+(2n, q);
see [14, Table 3.5.H]. (It is however the intersection of Ω+(2n, q) with maximal subgroups of
various extensions of Ω+(2n, q).)

Lemma 11.3. A canonical copy of the groups P ′2,3 and P ′2,4 in lines 7 and 8 of [13, Table I]
can be constructed in O(log q) field operations.

Proof. These groups are images of Rs3 = P3 under the triality automorphism, but this does
not enable us to construct them. However, P ′2,3 and P ′2,4 are conjugate in GO+(8, q), so we only
need to construct P ′2,3. This is a subgroup of Rs1 = P1 in line 1. Construct P ′2,3 by replacing the
factor Ω+(6, q) in P1 by its maximal parabolic subgroup with structure q3:GL(3, q) (q even)
or q3: 1

2GL(3, q) (q odd). However, from the construction in Lemma 4.2, generating P1 when
q is odd requires S+

6 . To make P ′2,3, replace S+
6 by an element of GL(3, q) with non-square

determinant. The group P1 can be constructed in O(log q) field operations by Proposition 4.2,
and the modifications require O(1) field operations.

The groups in lines 9–14 of [13, Table I] are constructed in § 4 or are not geometric.

Lemma 11.4. A canonical copy of the groups G2(q) in lines 15–18 of [13, Table I] can be
constructed in O(log q) field operations.

Proof. These groups are subgroups of the conjugate of Ω(7, q) in line 9, whose construction
is described in Lemma 4.3. Suppose first that q is odd. The four classes of groups are all
conjugate in CO+(8, q), so we need only construct one of them. When q is odd, G2(q) is
generated by A and B below, each of which is a product of at most three matrices given
in [11], and can be constructed in O(1) field operations.

A=



ζ 0 0 0 0 0 0
0 ζ−1 0 0 0 0 0
0 0 ζ2 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 ζ−2 0 0
0 0 0 0 0 ζ 0
0 0 0 0 0 0 ζ−1


, B =



−1 0 1 0 0 0 0
−1 0 0 0 0 0 0
0 −1 0 −1 0 1 0
0 −2 0 −1 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 0 1 0 0


.

Conjugate A and B in O(log q) field operations so that they preserve I7 and use these in place
of the generators of Ω(7, q) to get the group in line 15. The element G◦1(q)⊕G◦7(q) adjoined
as an extra generator in Lemma 4.3 can be taken to be −I8. So, the group we construct is
actually 2×G2(q). This is then converted to preserve F+

8 in O(log q) field operations.
For q even, there is only one class of groups of type G2(q). Generate G2(q) as a subgroup

of Sp(6, q) by deleting the fourth rows and columns in the matrices A and B above to get
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A∗ and B∗. Then use the method of Lemma 4.4, but replace the generators of Sp(6, q) by A∗

and B∗.

The groups in lines 19–21 of [13, Table I] are constructed in § 4.

Lemma 11.5. A canonical copy of the group N2 in line 22 of [13, Table I] can be constructed
in O(log q) field operations.

Proof. This group is a subgroup of that in line 19, which arises roughly by replacing the
factor Ω+(6, q) by its maximal imprimitive subgroup of type GL(3, q).2, as in Lemma 5.4. The
construction in Lemma 4.3 of the group in line 19 requires the elements S+

6 (q) and (when q is
odd) G+

6 (q). To construct N2, we need corresponding elements of SO+(6, q) and (for q odd)
GO+(6, q) that normalise the subgroup 1

2GL(3, q). When q is odd, an element of GL(3, q) lying
outside of 1

2GL(3, q) has determinant 1 as an element of GO+(6, q) and so replaces S+
6 (q). The

element J6, which interchanges the two blocks of imprimitivity, replaces S+
6 (q) when q is even

and G+
6 (q) when q is odd.

The groups in lines 23–25 of [13, Table I] are constructed in § 4.

Lemma 11.6. A canonical copy of the group N1 in line 26 of [13, Table I] can be constructed
in O(log q) field operations.

Proof. This is a subgroup of the group R−2 in line 23, whose construction is described
in Lemma 4.3. The group N1 arises roughly by replacing the factor Ω−(6, q) by its maximal
semilinear subgroup of type GU(3, q), by an identical approach to that described in Lemma 6.5.
The construction of R−2 requires the elements S−6 (q) and (when q is odd) G−6 (q), and to
construct N1 we need corresponding elements of SO−(6, q) and (for q odd) GO−(6, q) that
normalise the subgroup 1

2GU(3, q). When q is odd, an element of GU(3, q) lying outside of
1
2GU(3, q) has determinant 1 as an element of GO−(6, q), and so can be used in place of
S−6 (q). The element C in the proof of Lemma 6.5, which induces the field automorphism,
replaces S−6 (q) when q is even and G−6 (q) when q is odd.

The groups in lines 27–32 of [13, Table I] are constructed in §§ 4 and 7, whilst the groups
in lines 33–50 are constructed in §§ 5 and 9.

Lemma 11.7. A canonical copy of the groups N1
4 , . . . , N

4
4 in lines 51–54 of [13, Table I]

can be constructed in O(1) field operations.

Proof. These groups are conjugate in CO+(8, q), so we only need one of them. They have
projective structure [29]:PSL(3, 2), and are subgroups of the groups in lines 33–50. Since
they arise as subgroups of 28:Alt(8), they are constructed by writing down generators of the
subgroup 23:PSL(3, 2) = AGL(3, 2) of Alt(8), in its natural representation, and then using the
construction of Lemma 5.3.

The groups in lines 55–58 are constructed in § 5, and the groups in lines 59–60 are constructed
in § 6.

Lemma 11.8. A canonical copy of the group N3 in line 61 of [13, Table I] can be constructed
in O(log q) field operations.
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Proof. This is a subgroup of the imprimitive group in line 58, for which a non-projective
construction is given in Lemma 5.2. The generators of the linear group K are constructed
from A−4 , B

−
4 , S

−
4 and (when q odd) G−4 . The group N3 arises from the semilinear subgroup

PΩ−(2, q2).2∼=D(q2+1)/2 of PΩ−(4, q). We therefore first describe how to construct the
appropriate subgroup of Ω−(4, q), and then how to add the normalising elements.

Apply the homomorphism τ : Ω−(2, q2)→ Ω−(4, q) to the two generators of Ω−(2, q2) as in
§ 6. If q is even, then τ(S−2 (q2)) lies in Ω−(4, q), as in the proof of Lemma 6.3. This suffices to
generate D(q2+1)/2

∼= GO−2 (q2). If q is odd, then G−2 (q2) is a reflection, and Det(τ(G−2 (q2))) = 1.
Since −I 6∈ Ω−(4, q), one of ±τ(G−2 (q2)) has spinor norm 1, and can be chosen as the second
generator for the subgroup of Ω−(4, q).

To construct N3, we need elements of SO−(4, q) and (for q odd) GO−(4, q) that normalise
the subgroup Ω−(2, q2). For the former, when q is odd, choose −I4. For the former, when q
is even, and the latter, when q is odd, we need an element normalising and inducing the field
automorphism of Ω−(2, q2), to produce an absolutely irreducible group. The element C :=
ΓB ⊕ ΓB does not normalise Ω−(2, q2). In O(log q) field operations, compute X ∈GL(2, q2),
which conjugates Ω−(2, q2, (Q−2 )σq ) to Ω−(2, q2, Q−2 ). Then an appropriate replacement for
S−4 (q) (q even) or G−4 (q) (q odd) is Cτ(X), computed in O(log q) field operations.

The groups in lines 62–64 and 67 are constructed in § 8. The remaining groups are not
geometric.
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