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We consider the problem of estimating the value �(ϕ) of a linear functional, where
the structural function ϕ models a nonparametric relationship in presence of instru-
mental variables. We propose a plug-in estimator which is based on a dimension
reduction technique and additional thresholding. It is shown that this estimator is
consistent and can attain the minimax optimal rate of convergence under additional
regularity conditions. This, however, requires an optimal choice of the dimension
parameter m depending on certain characteristics of the structural function ϕ and
the joint distribution of the regressor and the instrument, which are unknown in
practice. We propose a fully data driven choice of m which combines model selec-
tion and Lepski’s method. We show that the adaptive estimator attains the optimal
rate of convergence up to a logarithmic factor. The theory in this paper is illustrated
by considering classical smoothness assumptions and we discuss examples such as
pointwise estimation or estimation of averages of the structural function ϕ.

1. INTRODUCTION

We consider estimation of the value of a linear functional of the structural func-
tion ϕ in a nonparametric instrumental regression model. The structural function
characterizes the dependency of a response Y on the variation of an explanatory
random variable Z by

Y = ϕ(Z)+U with E[U |Z ] �= 0 (1.1a)

for some error term U . In other words, the structural function equals not the
conditional mean function of Y given Z . In this model, however, a sample from
(Y, Z ,W ) is available, where W is a random variable, an instrument, such that

E[U |W ] = 0. (1.1b)
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ADAPTIVE ESTIMATION OF FUNCTIONALS 613

Given some a-priori knowledge on the unknown structural function ϕ, captured
by a function class F , its estimation has been intensively discussed in the liter-
ature. In contrast, in this paper we are interested in estimating the value �(ϕ) of
a continuous linear functional � : F → R. Important examples discussed in this
paper are weighted average derivatives or point evaluation functionals which are
both continuous under appropriate conditions onF . We establish a lower bound of
the maximal mean squared error for estimating �(ϕ) over a wide range of classes
F and functionals �. As a step toward adaptive estimation, we propose in this
paper a plug-in estimator of �(ϕ) which is consistent and minimax optimal. This
estimator is based on a linear Galerkin approach which involves the choice of
a dimension parameter. We present a method for choosing this parameter in a
data driven way combining model selection and Lepski’s method. Moreover, it is
shown that the adaptive estimator can attain the minimax optimal rate of conver-
gence within a logarithmic factor.

Model (1.1a–1.1b) has been introduced first by Florens (2003) and Newey
and Powell (2003), while its identification has been studied e.g. in Carrasco,
Florens, and Renault (2007), Darolles, Fan, Florens, and Renault (2011), and
Florens, Johannes, and Van Bellegem (2011). It is interesting to note that recent
applications and extensions of this approach include nonparametric tests of exo-
geneity (Blundell and Horowitz, 2007), quantile regression models (Horowitz and
Lee 2007), semiparametric modeling (Florens, Johannes, and Van Bellegem,
2012), or a quasi-Baysian estimation approach (Florens and Simoni, 2012)
to name but a few. For example, Ai and Chen (2003), Blundell, Chen, and
Kristensen (2007), Chen and Reiß (2011) or Newey and Powell (2003) consider
sieve minimum distance estimators of ϕ, while Darolles et al. (2011), Hall and
Horowitz (2005), Gagliardini and Scaillet (2012) or Florens et al. (2011) study
penalized least squares estimators. A linear Galerkin approach to construct an
estimator of ϕ coming from the inverse problem community (cf. Efromovich and
Koltchinskii, 2001 or Hoffmann and Reiß, 2008) has been proposed by Johannes
and Schwarz (2010). But assuming an independent and identical distributed
(iid.) sample of (Y, Z ,W ) the estimation of the structural function ϕ as a whole
involves the inversion of the conditional expectation operator of Z given W . This
inverse problem is ill-posed in general (cf. Newey and Powell, 2003 or Florens,
2003). This essentially implies that all proposed estimators have under reasonable
assumptions very poor rates of convergence. In contrast, it might be possible to
estimate certain local features of ϕ, such as the value of a linear functional at
the usual parametric rate of convergence. It is remarkable to note, that, we do
not face an ill-posed inverse problem when estimating the structural function if
the sample of (Y,Z,W) is a time series formed by integrated and long memory
processes. It is shown in Wang and Phillips (2009a), Wang and Phillips (2009b),
and Wang and Phillips (2015) that in this situation the limit theory (even under
endogeneity and without instruments) is the same as that of kernel regression in
the iid. case (with minor allowance for a long run variance).
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614 CHRISTOPH BREUNIG AND JAN JOHANNES

The nonparametric estimation of linear functionals from Gaussian white noise
observations is a subject of considerable literature (cf. Speckman, 1979 Li, 1982
or Ibragimov and Has’minskii, 1984 in case of direct observations, while in
case of indirect observations we refer to Donoho and Low, 1992, Donoho, 1994
or Goldenshluger and Pereverzev, 2000). However, nonparametric instrumental
regression is in general not a Gaussian white noise model. Moreover, this model
involves the additional difficulty of dealing with an unknown operator. On the
other hand, in the former setting the parametric estimation of linear functionals
has been addressed in recent years in the econometrics literature. To be more pre-
cise, under restrictive conditions on the linear functional � and the joint distribu-
tion of (Z ,W ) it is shown in Ai and Chen (2007), Santos (2011), and Severini and
Tripathi (2012) that it is possible to construct n1/2-consistent estimators of �(ϕ).
In this situation, efficiency bounds are derived by Ai and Chen (2012) and, when
ϕ is not necessarily identified, by Severini and Tripathi (2012). We show below,
however, that n1/2-consistency is not possible for a wide range of linear function-
als � and joint distributions of (Z ,W ). This is in line with Chen and Pouzo (2013)
who study inference of functionals when n1/2-consistency fails.

In this paper, we establish a minimax theory for the nonparametric estimation of
the value of a linear functional �(ϕ) of the structural function ϕ. For this purpose,
we consider a plug-in estimator �̂m := �(ϕ̂m) of �(ϕ), where the estimator ϕ̂m was
proposed by Johannes and Schwarz (2010) and the integer m denotes a dimension
to be chosen appropriately. The accuracy of �̂m is measured by its maximal mean
squared error uniformly over the classes F and P , where P captures conditions
on the unknown joint distribution PU Z W of the random vector (U, Z ,W ), i.e.,
PU Z W ∈ P . The class F reflects prior information on the structural function ϕ,
e.g., its level of smoothness, and will be constructed flexible enough to charac-
terize, in particular, differentiable or analytic functions. On the other hand, the
condition PU Z W ∈ P specifies amongst others some mapping properties of the
conditional expectation operator of Z given W implying a certain decay of its
singular values. The construction of P allows us to discuss both a polynomial and
an exponential decay of those singular values. Considering the maximal mean
squared error over F and P we derive a lower bound for estimating �(ϕ). Given
an optimal choice m∗

n of the dimension we show that the lower bound is attained
by �̂m∗

n
up to a constant C > 0, i.e.,

sup
PU Z W ∈P

sup
ϕ∈F

E |�̂m∗
n
−�(ϕ)|2 � C inf

�̆
sup

PU Z W ∈P
sup
ϕ∈F

E |�̆−�(ϕ)|2

where the infimum on the right hand side runs over all possible estimators �̆.
Thereby, the estimator �̂m∗

n
is minimax optimal even though the optimal choice

m∗
n depends on the classes F and P , which are unknown in practice.
The main issue addressed in this paper is the construction of a data driven

selection method for the dimension parameter which adapts to the unknown
classes F and P . When estimating the structural function ϕ as a whole,
adaptive estimators have been proposed by Loubes and Marteau (2009), Johannes
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and Schwarz (2010), and Horowitz (2014). Johannes and Schwarz (2010) con-
sider an adaptive estimator based on a model selection approach (cf. Barron,
Birgé, and Massart, 1999 and its detailed discussion in Massart, 2007) which
attains the minimax optimal rate. The estimator of Loubes and Marteau (2009) at-
tains this rate within a logarithmic term. Both papers crucially rely on the a-priori
knowledge of the eigenfunctions which yields an orthogonal series estimator in-
volving the estimated singular values of the conditional expectation operator. In
econometric applications, however, the eigenfunctions of this operator are un-
known. Recently, Horowitz (2014) proposed an adaptive estimation procedure
which is based on minimizing the asymptotic integrated mean-square error and
does not involve the knowledge of the eigenfunctions of the operator.

For estimating linear functionals of the structural function ϕ, adaptive
estimation procedures are not yet available. We propose a new method that is dif-
ferent from the above, does not involve a-priori knowledge of the eigenfunctions
of the operator, and allows for a polynomial or exponential decay of its singu-
lar values. The methodology combines a model selection approach and Lepski’s
method (cf. Lepski, 1990). It is inspired by the recent work of Goldenshluger
and Lepski (2011). To be more precise, the adaptive choice m̂ is defined as the
minimizer of a random penalized contrast criterion1, i.e.,

m̂ := arg min
1�m�M̂n

{
�̂m + p̂enm

}
(1.2a)

with random integer M̂n and random penalty sequence p̂en := (p̂enm)m�1, to be
defined below, and the sequence of contrast �̂ := (�̂m)m�1 given by

�̂m := max
m�m′�M̂n

{
|�̂m′ − �̂m |2 − p̂enm′

}
. (1.2b)

With this adaptive choice m̂ at hand the estimator �̂m̂ is shown to be minimax
optimal within a logarithmic factor over a wide range of classes F and P . The
appearance of the logarithmic factor within the rate is a known fact in the context
of local estimation. Brown and Low (1996) show that it is unavoidable in the
context of nonparametric Gaussian regression and, hence it is widely considered
as an acceptable price for adaptation. This factor is also present in the work of
Goldenshluger and Pereverzev (2000) where Lepski’s method is applied in the
presence of indirect Gaussian observations.

The paper is organized as follows. In Section 2, we introduce our basic model
assumptions and derive a lower bound for estimating the value of a linear func-
tional in nonparametric instrumental regression. In Section 3, we show consis-
tency of the proposed estimator first and second that it attains the lower bound up
to a constant. We illustrate the general results by considering classical smooth-
ness assumptions. The applicability of these results is demonstrated by various
examples such as the estimation of the structural function at a point, of its average
or of its weighted average derivative. In Section 4 we construct the random upper
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bound M̂n and the random penalty sequence p̂en used in (1.2a–1.2b) to define
the data driven selection procedure for the dimension parameter m. The proposed
adaptive estimator is shown to attain the lower bound within a logarithmic factor.
Finally, Section 5 presents the results of a Monte Carlo Simulation study to illus-
trate the finite sample properties of our adaptive estimation procedure. All proofs
can be found in the appendix.

2. COMPLEXITY OF FUNCTIONAL ESTIMATION: A LOWER BOUND

2.1. Notations and Basic Model Assumptions

The nonparametric instrumental regression model (1.1a–1.1b) leads to a
Fredholm equation of the first kind. To be more precise, let us introduce the condi-
tional expectation operator T φ :=E[φ(Z)|W ] mapping L2

Z = {φ :E[φ2(Z)] < ∞}
to L2

W = {ψ : E[ψ2(W )] < ∞} (which are endowed with the usual inner prod-
ucts 〈·, ·〉Z and 〈·, ·〉W , respectively). Consequently, model (1.1a–1.1b) can be
written as

g = T ϕ, (2.1)

where the function g := E[Y |W ] belongs to L2
W . In what follows we always as-

sume that there exists a unique solution ϕ ∈ L2
Z of equation (2.1), i.e., g belongs

to the range of T , and that the null space of T is trivial (cf. Engl, Hanke, and
Neubauer, 2000 or Carrasco et al., 2007 in the special case of nonparametric
instrumental regression). Estimation of the structural function ϕ is thus linked
with the inversion of the operator T . Moreover, we suppose throughout the paper
that T is compact which is under fairly mild assumptions satisfied (cf. Carrasco
et al., 2007). Note that the proof of minimax optimality of our estimator does not
rely on this assumption but it is used for the illustrations and remarks below. It
is well known that T is not compact if Z and W have elements in common. If
T is compact then a continuous generalized inverse of T does not exist as long
as the range of the operator T is an infinite dimensional subspace of L2

W . This
corresponds to the setup of ill-posed inverse problems.

In this section, we show that the obtainable accuracy of any estimator of the
value �(ϕ) of a linear functional can be essentially determined by regularity con-
ditions imposed on the structural function ϕ and the conditional expectation oper-
ator T . In this paper, these conditions are characterized by different weighted
norms in L2

Z with respect to a prespecified orthonormal basis {ej }j�1 in L2
Z ,

which we formalize now. Given a positive sequence of weights w := (wj )j�1
we define the weighted norm ‖φ‖2

w :=∑
j�1 wj 〈φ,ej 〉2

Z , φ ∈ L2
Z , the completion

Fw of L2
Z with respect to ‖·‖w and the ellipsoid Fr

w := {
φ ∈ Fw : ‖φ‖2

w � r
}

with radius r > 0. We shall stress that the basis {ej }j�1 does not necessarily
correspond to the eigenfunctions of T ∗T where T ∗ denotes the adjoint opera-
tor of T . In the following we write an � bn when there exists a generic constant
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C > 0 such that an � C bn for sufficiently large n ∈ N and an ∼ bn when an � bn

and bn � an simultaneously.

Minimal regularity conditions. Given a nondecreasing sequence of weights
γ := (γj )j�1, we suppose, here and subsequently, that the structural function
ϕ belongs to the ellipsoid Fρ

γ for some ρ > 0. The ellipsoid Fρ
γ captures all

the prior information (such as smoothness) about the unknown structural func-
tion ϕ. Observe that the dual space of Fγ can be identified with F1/γ where
1/γ := (γ −1

j )j�1 (cf. Krein and Petunin, 1966). To be more precise, for all φ ∈Fγ

the value 〈h,φ〉Z is well defined for all h ∈ F1/γ and by Riesz’s Theorem there
exists a unique h ∈F1/γ such that �(φ) = 〈h,φ〉Z =: �h(φ). In certain applications
one might not only be interested in the performance of an estimation procedure of
�h(ϕ) for a given representer h, but also for h varying over the ellipsoid F τ

ω with
radius τ > 0 for a nonnegative sequence ω := (ωj )j�1 satisfying infj�1{ωjγj } > 0.
Obviously, Fω is a subset of F1/γ .

Furthermore, as usual in the context of inverse problems, we specify some
mapping properties of the operator under consideration. Denote by T the set
of all compact operators mapping L2

Z into L2
W . Given a sequence of weights

υ := (υj )j�1 and d � 1 we define the subset T υ
d of T by

T υ
d :=

{
T ∈ T : ‖φ‖2

υ/d � ‖T φ‖2
W � d ‖φ‖2

υ, ∀φ ∈ L2
Z

}
. (2.2)

Notice first that any operator T ∈ T υ
d is injective if the sequence υ is strictly

positive. Furthermore, for all T ∈ T υ
d it follows that υj/d � ‖T ej‖2

W � dυj for
all j � 1. If (sj )j�1 denotes the ordered sequence of singular values of T then it
can be seen that υj/d � s2

j � dυj . In other words, the sequence υ specifies the
decay of the singular values of T . In what follows, all the results are derived under
regularity conditions on the structural function ϕ and the conditional expectation
operator T described through the sequence γ and υ, respectively. We provide
illustrations of these conditions below by assuming a “regular decay” of these
sequences. The next assumption summarizes our minimal regularity conditions
on these sequences.

Assumption 1. Let γ := (γj )j�1, ω := (ωj )j�1, and υ := (υj )j�1 be strictly
positive sequences of weights with γ1 = ω1 = υ1 = 1 such that γ is nondecreasing
with | j |3γ −1

j = o(1) as j → ∞, ω satisfies infj�1{ωjγj } > 0 and υ is a nonin-
creasing sequence.

Remark 2.1. We illustrate Assumption 1 for typical choices of γ and υ usually
studied in the literature (cf. Hall and Horowitz, 2005, Chen and Reiß, 2011 or
Johannes, Van Bellegem, and Vanhems, 2011). Let [h]j be the j-th generalized
Fourier coefficient, i.e., [h]j := E[h(Z)ej (Z)], then we consider the cases

(pp) γj ∼ | j |2p with p > 3/2, υj ∼ | j |−2a , a > 0, and
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618 CHRISTOPH BREUNIG AND JAN JOHANNES

(i) [h]2
j ∼ | j |−2s , s > 1/2− p or

(ii) ωj ∼ | j |2s , s > −p.

(pe) γj ∼ | j |2p, p > 3/2 and υj ∼ exp(−| j |2a), a > 0, and

(i) [h]2
j ∼ | j |−2s , s > 1/2− p or

(ii) ωj ∼ | j |2s , s > −p.

(ep) γj ∼ exp(| j |2p), p > 0 and υj ∼ | j |−2a , a > 0, and

(i) [h]2
j ∼ | j |−2s , s ∈ R or

(ii) ωj ∼ | j |2s , s ∈ R.

Note that condition | j |3γ −1
j = o(1) as j → ∞ is automatically satisfied for all

p > 0 in case of (ep). In the other two cases this condition states under classi-
cal smoothness assumptions that, roughly speaking, the structural function ϕ has
to be differentiable. Note that Hall and Horowitz (2005), who only consider the
polynomial case, assume 2p +1 > 2a > p with p > 0 and a > 1/2 which is more
restrictive than Assumption 1 for a � 2.

We shall see that the minimax optimal rate is determined by the sequence
Rh := (Rh

n)n�1, in case of a fixed representer h, and Rω := (Rω
n )n�1 in case

of a representer varying over the class F τ
ω. These sequences are given for x � 1

by

Rh
x := max

⎧⎨⎩x−1
m∗

x∑
j=1

[h]2
j

υj
,
∑

j>m∗
x

[h]2
j

γj

⎫⎬⎭ and

Rω
x := x−1 max

1� j�m∗
x

{
1

ωjυj

}
, (2.3)

where either x = n in case of minimax optimal estimation or x = n(1 + logn)−1

in case of adaptive estimation. The rateRh
n corresponds to the usual variance and

bias decomposition of the mean square error. Here the dimension parameter m∗
x

is chosen to trade off both, that is, we let for x � 1

m∗
x := arg min

m∈N

{∣∣∣υm

γm
− x−1

∣∣∣}. (2.4)

In case of adaptive estimation the rate of convergence is given by Rh
adapt :=

(Rh
n(1+logn)−1)n�1 andRω

adapt := (Rω
n(1+logn)−1)n�1, respectively. For ease of no-

tation let m◦
n := m∗

n(1+logn)−1 . The bounds established below need the following
additional assumption, which is satisfied in all cases considered in Remark 2.1.

Assumption 2. There exists a constant 0 < κ � 1 such that for all x � 1

κ �
x υm∗

x

γm∗
x

� κ−1. (2.5)
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Assumption 2 implies that nυm∗
n
γ −1

m∗
n

is uniformly bounded from above and
away from zero. Thereby, we can write nυm∗

n
∼ γm∗

n
.

2.2. Lower Bounds

The results derived below involve assumptions on the conditional moments of
the random variables U given W , captured by Uσ , which contains all condi-
tional distributions of U given W , denoted by PU |W , satisfying E[U |W ] = 0
and E[U 4|W ] � σ 4 for some σ > 0. The next assertion gives a lower bound for
the mean squared error of any estimator when estimating the value �h(ϕ) of a
linear functional with given representer h and structural function ϕ in the func-
tion class Fρ

γ .

THEOREM 2.1. Assume an iid. n-sample of (Y, Z ,W ) from the model (1.1a–
1.1b). Let γ and υ be sequences satisfying Assumptions 1 and 2. Suppose that

supj�1E[e4
j (Z)|W ]� η4, η� 1, and σ 4 �

(√
3+4ρ η2∑

j�1 γ −1
j

)2
. Then for all

n � 1 we have

inf
�̆

sup
T ∈T υ

d

sup
PU |W ∈Uσ

sup
ϕ∈Fρ

γ

E |�̆−�h(ϕ)|2 � κ

4
min

(
1

2d
, ρ

)
Rh

n,

where the first infimum runs over all possible estimators �̆.

Note that in Theorem 2.1 and in the following results the marginal distribu-
tions of Z and W are kept fixed while only the dependency structure of the joint
distribution of (Z ,W ) and of (U, Z ,W ) is allowed to vary.

Remark 2.2. In the proof of the lower bound we consider a test problem based
on two hypothetical structural functions. For each test function the condition
σ 4 �

(√
3 + 4ρ η2∑

j�1 γ −1
j

)2 ensures a certain complexity of the hypothetical
model in a sense that it allows for Gaussian residuals. This specific case is only
needed to simplify the calculation of the distance between distributions corre-
sponding to different structural functions. A similar assumption has been used by
Chen and Reiß (2011) in order to derive a lower bound for the estimation of the
structural function ϕ itself. In particular, the authors show that in opposite to the
present work an one-dimensional subproblem is not sufficient to describe the full
difficulty in estimating ϕ.

On the other hand, below we derive an upper bound assuming that PU |W
belongs to Uσ and that the joint distribution of (Z ,W ) fulfills in addition
Assumption 3. Obviously in this situation Theorem 2.1 provides a lower bound
for any estimator as long as σ is sufficiently large.

Remark 2.3. The regularity conditions imposed on the structural function ϕ
and the conditional expectation operator T involve only the basis {ej }j�1 in L2

Z .
Therefore, the lower bound derived in Theorem 2.1 does not capture the influence
of the basis { fl}l�1 in L2

W used below to construct an estimator of the value �h(ϕ).
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In other words, this estimator attains the lower bound only if { fl}l�1 is chosen
appropriately.

Remark 2.4. The rate Rh of the lower bound is never faster than the
√

n-rate,
that is, Rh

n � n−1. Moreover, using
∑

j>m∗
n
[h]2

j γ
−1
j � n−1κ−1∑

j>m∗
n
[h]2

j υ
−1
j it

can be seen that the lower bound rate is parametric if and only if
∑

j�1[h]2
j υ

−1
j <

∞. This condition does not involve the sequence γ and hence, attaining a
√

n-
rate is independent of the regularity conditions imposed on the structural func-
tion. Moreover, due to the link condition T ∈ T υ

d we have that Picard’s condition∑
j�1[h]2

j υ
−1
j < ∞ is equivalent to h belonging to the range R(T ∗), where T ∗

denotes the adjoint of T . Note that Severini and Tripathi (2012) showed in their
Lemma 4.1 that h ∈R(T ∗) is necessary to obtain

√
n-estimability. Under appro-

priate conditions on ϕ and the joint distribution of (Y, Z ,W ) we show in the next
section that h ∈R(T ∗) is also sufficient for

√
n-estimability.

The following assertion gives a lower bound over the ellipsoid F τ
ω of represen-

ter. Consider the function h∗ := τω
−1/2
j∗ ej∗ with j∗ := arg max1� j�m∗

n
{(ωjυj )

−1}
which obviously belongs to F τ

ω. Corollary 2.2 follows then by calculating the
value of the lower bound in Theorem 2.1 for the specific representer h∗ and, hence
we omit its proof.

COROLLARY 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then for
all n � 1 we have

inf
�̆

sup
T ∈T υ

d

sup
PU |W ∈Uσ

sup
ϕ∈Fρ

γ ,h∈F τ
ω

E |�̆−�h(ϕ)|2 � τκ

4
min

(
1

2d
, ρ

)
Rω

n ,

where the first infimum runs over all possible estimators �̆.

Remark 2.5. If the lower bound given in Corollary 2.2 tends to zero then
(ωjγj )j�1 is a divergent sequence. In other words, without any additional restric-
tion on ϕ, that is, γ ≡ 1, consistency of an estimator of �h(ϕ) uniformly over all
ϕ ∈ Fρ

γ and all h ∈ Fτ
ω is only possible under restrictions on the representer h in

the sense that ω has to be a divergent sequence.

3. MINIMAX OPTIMAL ESTIMATION

3.1. Estimation by Dimension Reduction and Thresholding

In addition to the basis {ej }j�1 in L2
Z used to establish the lower bound we con-

sider now also a second basis { fl}l�1 in L2
W .

Matrix and operator notations. Given m � 1, Em and Fm denote the subspace
of L2

Z and L2
W spanned by the functions {ej }m

j=1 and { fl}m
l=1 respectively. Em

and E⊥
m (resp. Fm and F⊥

m ) denote the orthogonal projections on Em (resp. Fm)
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and its orthogonal complement E⊥
m (resp. F⊥

m ), respectively. Given an operator
K from L2

Z to L2
W we denote its inverse by K −1 and its adjoint by K ∗. If we

restrict Fm K Em to an operator from Em to Fm , then it can be represented by a
matrix [K ]m with entries [K ]l, j = 〈K ej , fl〉W for 1� j, l � m. Its spectral norm
is denoted by ‖[K ]m‖, its inverse by [K ]−1

m and its transposed by [K ]t
m . We write

I for the identity operator and ∇υ for the diagonal operator with singular value
decomposition {v j ,ej , f j }j�1. Respectively, given functions φ ∈ L2

Z and ψ ∈ L2
W

we define by [φ]m and [ψ]m m-dimensional vectors with entries [φ]j = 〈φ,ej 〉Z

and [ψ]l = 〈ψ, fl〉W for 1� j, l � m.
Consider the conditional expectation operator T associated with (Z ,W ). If

[e(Z)]m and [ f (W )]m denote random vectors with entries ej (Z) and f j (W ),
1� j � m, respectively, then it holds [T ]m = E{[ f (W )]m[e(Z)]t

m

}
. Throughout

the paper [T ]m is assumed to be nonsingular for all m � 1, so that [T ]−1
m always

exists. Note that it is a nontrivial problem to determine when such an assumption
holds (cf. Efromovich and Koltchinskii, 2001 and references therein).

Definition of the estimator. Let (Y1, Z1,W1), . . . , (Yn, Zn,Wn) be an iid. sample

of (Y, Z ,W ). Since [T ]m =E
{

[ f (W )]m[e(Z)]t
m

}
and [g]m =E{Y [ f (W )]m

}
we

construct estimators by using their empirical counterparts, that is,

[T̂ ]m := 1

n

n∑
i=1

[ f (Wi )]m[e(Zi )]
t
m and [̂g]m := 1

n

n∑
i=1

Yi [ f (Wi )]m .

Then the estimator of the linear functional �h(ϕ) is defined for all m � 1 by

�̂m :=
{

[h]t
m[T̂ ]−1

m [̂g]m, if [T̂ ]m is nonsingular and ‖[T̂ ]−1
m ‖�√

n,

0, otherwise.
(3.1)

In fact, the estimator �̂m is obtained from the linear functional �h(ϕ) by replacing
the unknown structural function ϕ by an estimator proposed by Johannes and
Schwarz (2010).

Remark 3.1. If Z is continuously distributed one might be also interested
in estimating the value

∫
Z ϕ(z)h(z)dz where Z is the support of Z . Assume

that this integral and also
∫
Z h(z)ej (z)dz for 1 � j � m are well defined.

Then we can cover the problem of estimating
∫
Z ϕ(z)h(z)dz by simply re-

placing [h]m in the definition of �̂m by a m-dimensional vector with entries∫
Z h(z)ej (z)dz for 1� j �m. Hence for

∫
Z ϕ(z)h(z)dz the results below follow

mutatis mutandis.

Note that the orthonormal bases {ej }j�1 in L2
Z and { fl}l�1 in L2

W depend on
the marginal distributions of Z and W . As we illustrate in the following remark,
these marginals are not needed to be completely known in advance as long as they
satisfy additional regularity conditions.
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Remark 3.2. Assume that the support of Z and W is confined to [0,1] and
denote L2

[0,1] := {φ :
∫ 1

0 φ2(z)dz < ∞}. If one assumes in addition that L2
[0,1] ⊂ L2

Z

and L2
W ⊂ L2

[0,1] then it is possible to consider the restriction of T onto L2
[0,1].

Note that this condition is satisfied if the density of Z is bounded from above and
the density of W is uniformly bounded away from zero. For a detailed discussion
we refer to a preliminary version of Darolles et al. (2011) or Section 2.2 of Florens
et al. (2012). Further, let {ej }j�1 and { f j }j�1 be orthonormal bases in L2

[0,1]. In this
case, (E[el(Z) f j (W )])j,l�1 is the matrix representation of the restricted operator

(T̃ φ)(·) := ∫ 1
0 φ(z)pZ W (z, ·)dz on L2

[0,1] where pZ W denotes the joint density
of (Z ,W ). Moreover, due to Remark 3.1 the estimator of �(ϕ) in this situation
coincides with the estimator �̂m given in (3.1) and hence, the results below follow
similarly.

In practice, assuming the supports of Z and W to be contained in [0,1]
can be restrictive. Our method, however, can easily be adapted, either replac-
ing the interval [0,1] by any compact subset on which the densities are bound
from below and above or referring to weighted L2 spaces as proposed by
the authors mentioned above. Nevertheless, for an ease of presentation and al-
lowing a more intuitive interpretation we consider the function space L2[0,1]
as illustration.

Moment assumptions. Besides the link condition (2.2) for the conditional ex-
pectation operator T we need moment conditions on the basis, more specific, on
the random variables ej (Z) and fl(W ) for j, l � 1, which we summarize in the
next assumption.

Assumption 3. There exists η � 1 such that the joint distribution of (Z ,W )
satisfies

(i) supj∈NE[e2
j (Z)|W ]� η2 and supl∈NE[ f 4

l (W )]� η4;

(ii) supj,l∈NE |ej (Z) fl(W )−E[ej (Z) fl(W )]|k � ηkk!, k = 3,4, . . . .

Note that condition (i i) is also known as Cramer’s condition, which is suffi-
cient to obtain an exponential bound for large deviations of the centered random
variable ej (Z) fl(W )−E[ej (Z) fl(W )] (cf. Bosq, 1998). Moreover, any joint dis-
tribution of (Z ,W ) satisfies Assumption 3 for sufficiently large η if the basis
{ej }j�1 and { fl}l�1 are uniformly bounded, which holds, for example, for the
trigonometric basis considered in Subsection 3.4.

3.2. Consistency

The next assertion summarizes sufficient conditions to ensure consistency of the
estimator �̂m introduced in (3.1). Let us introduce the function ϕm ∈ Em which is
uniquely defined by the vector of coefficients [ϕm]m = [T ]−1

m [g]m and [ϕ]j = 0

for j � m + 1. Obviously, up to the threshold, the estimator �̂m is the empirical
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counterpart of �h(ϕm). In Proposition 3.1 consistency of the estimator �̂m is only
obtained under the condition

‖ϕ −ϕm‖γ = o(1) as m → ∞ (3.2)

which does not hold true in general. Obviously (3.2) implies the convergence of
�h(ϕm) to �h(ϕ) as m tends to infinity for all h ∈ F1/γ .

PROPOSITION 3.1. Assume an iid. n-sample of (Y, Z ,W ) from the
model (1.1a–1.1b) with PU |W ∈ Uσ and joint distribution of (Z ,W ) fulfilling
Assumption 3. Let the dimension parameter mn satisfy m−1

n = o(1), mn = o(n),∥∥∥[h]t
mn

[T ]−1
mn

∥∥∥2 = o(n), and m3
n

∥∥∥[T ]−1
mn

∥∥∥2 = O(n) as n → ∞. (3.3)

If (3.2) holds true then E |�̂mn − �h(ϕ)|2 = o(1) as n → ∞ for all ϕ ∈ Fγ and
h ∈ F1/γ .

Notice that condition (3.2) also involves the basis { fl}l�1 in L2
W . In what fol-

lows, we introduce an alternative but stronger condition to guarantee (3.2) which
extends the link condition (2.2). We denote by T υ

d,D for some D � d the subset of
T υ

d given by

T υ
d,D :=

{
T ∈ T υ

d : [T ]m is nonsingular and ‖[∇υ ]1/2
m [T ]−1

m ‖2 � D for all m � 1
}
.

(3.4)

Remark 3.3. If T ∈ T υ
d and if in addition its singular value decomposition

is given by {sj ,ej , f j }j�1 then for all m � 1 the matrix [T ]m is diagonalized
with diagonal entries [T ]j, j = sj , 1 � j � m. In this situation it is easily seen

that supm∈N‖[∇υ ]1/2
m [T ]−1

m ‖2 � d and, hence T satisfies the extended link condi-
tion (3.4), that is, T ∈ T υ

d,D . Furthermore, it holds T υ
d = T υ

d,D for suitable D > 0,

if T is a small perturbation of ∇1/2
υ or if T is strictly positive (cf. Efromovich and

Koltchinskii, 2001 or Cardot and Johannes, 2010, respectively).

Remark 3.4. Once both basis {ej }j�1 and { fl}l�1 are specified the extended
link condition (3.4) restricts the class of joint distributions of (Z ,W ) such that
(3.2) holds true. Moreover, under (3.4) the estimator ϕ̂m of ϕ proposed by
Johannes and Schwarz (2010) can attain the minimax optimal rate. In this sense,
given a joint distribution of (Z ,W ) a basis { fl}l�1 satisfying condition (3.4) can
be interpreted as optimal instruments (cf. Newey, 1990).

Remark 3.5. For each pre-specified basis {ej }j�1 we can theoretically con-
struct a basis { fl}l�1 such that (3.4) is equivalent to the link condition (2.2). To be
more precise, if T ∈ T υ

d , which involves only the basis {ej }j�1, then the funda-
mental inequality of Heinz (1951) implies ‖(T ∗T )−1/2ej‖2

Z � dυ−1
j . Thereby, the

function (T ∗T )−1/2ej is an element of L2
Z and, hence f j := T (T ∗T )−1/2ej , j � 1,
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belongs to L2
W . Then it is easily checked that { fl}l�1 is a basis of the closure of

the range of T which may be completed to a basis of L2
W . Obviously [T ]m is sym-

metric and moreover, strictly positive since 〈T ej , fl〉W = 〈(T ∗T )1/2ej ,el〉Z for all
j, l � 1. Thereby, we can apply Lemma A.3 in Cardot and Johannes (2010) which
gives T υ

d = T υ
d,D for sufficiently large D. Another approach relies on f j = T ej

which corresponds to T ∗g = T ∗T ϕ. In this case, an additional smoothing param-
eter is required.

Under the extended link condition (3.4) the next assertion summarizes suffi-
cient conditions to ensure consistency.

COROLLARY 3.2. The conclusion of Proposition 3.1 still holds true without
imposing condition (3.2), if the sequence υ satisfies Assumption 1, the conditional
expectation operator T belongs to T υ

d,D, and (3.3) is substituted by

mn∑
j=1

[h]2
j υ

−1
j = o(n) and m3

n = O(nυmn ) as n → ∞. (3.5)

3.3. An Upper Bound

The last assertions show that the estimator �̂m defined in (3.1) is consistent for all
structural functions and representers belonging to Fγ and F1/γ , respectively. The
following theorem provides now an upper bound if ϕ belongs to an ellipsoid Fρ

γ .
In this situation the rateRh of the lower bound given in Theorem 2.1 provides up
to a constant also an upper bound of the estimator �̂m∗

n
. Thus we have proved that

the rateRh is optimal and, hence �̂m∗
n

is minimax optimal.

THEOREM 3.3. Assume an iid. n-sample of (Y, Z ,W ) from the model
(1.1a–1.1b) with joint distribution of (Z ,W ) fulfilling Assumption 3. Let
Assumptions 1 and 2 be satisfied. Suppose that the dimension parameter m∗

n
given by (2.4) satisfies

(m∗
n)3 max

{
| logRh

n |, (logm∗
n)
}

= o(γm∗
n
), as n → ∞, (3.6)

then we have for all n � 1

sup
T ∈T υ

d,D

sup
PU |W ∈Uσ

sup
ϕ∈Fρ

γ

E |�̂m∗
n
−�h(ϕ)|2 � CRh

n

for a constant C > 0 only depending on the classes Fρ
γ , T υ

d,D, the constants σ , η,
κ , and the representer h.

The next result gives sufficient conditions for
√

n-estimability of �h(ϕ). The
next corollary is a direct consequence of Theorem 3.3 and Remark 2.4, hence its
proof is omitted.
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COROLLARY 3.4. Let the assumptions of Theorem 3.3 be satisfied. If in ad-
dition h ∈R(T ∗) then we have for all n � 1

sup
T ∈T υ

d,D

sup
PU |W ∈Uσ

sup
ϕ∈Fρ

γ

E |�̂m∗
n
−�h(ϕ)|2 � C n−1,

where C is as in Theorem 3.3.

Remark 3.6. The last result together with Remark 2.4 established equivalence
between condition h ∈ R(T ∗) and

√
n-estimability of �h(ϕ) under appropriate

conditions on ϕ and the joint distribution of (Y, Z ,W ) (as conjectured in Chapter
4, Remark (ii) of Severini and Tripathi, 2012). As illustrated in the next subsec-
tion, depending on the severeness of the ill-posedness

√
n-estimability could not

be possible even for smooth functionals. In the polynomial case (pp), condition
h ∈ R(T ∗) holds true only if s > a + 1/2. In case of (ep), h ∈ R(T ∗) only if
the representer h is analytic. In contrast to our framework, the estimation proce-
dure of Santos (2011) crucially relies on condition h ∈R(T ∗) which implies the
existence of a function ϑ ∈ L2

W such that �h(ϕ) = E[Yϑ(W )].

The following assertion states an upper bound uniformly over the class F τ
ω of

representer. Observe that ‖h‖2
1/γ � τ and Rh

n � τ n−1 max1� j�m∗
n
{(ωjυj )

−1} =
τRω

n for all h ∈F τ
ω. Employing these estimates the proof of the next result follows

line by line the proof of Theorem 3.3 and is thus omitted.

COROLLARY 3.5. Let the assumptions of Theorem 3.3 be satisfied where we
substitute condition (3.6) by (m∗

n)
3 max

{| logRω
n |, (logm∗

n)
}= o(γm∗

n
) as n → ∞.

Then we have

sup
T ∈T υ

d,D

sup
PU |W ∈Uσ

sup
ϕ∈Fρ

γ ,h∈F τ
ω

E |�̂m∗
n
−�h(ϕ)|2 � CRω

n

for a constant C> 0 only depending on the classesFρ
γ ,F τ

ω, T υ
d,D and the constants

σ , η, κ .

3.4. Illustration by Classical Smoothness Assumptions

Let us illustrate our general results by considering classical smoothness assump-
tions. To simplify the presentation we follow Hall and Horowitz (2005), and
suppose that the marginal distribution of the scalar regressor Z and the scalar in-
strument W are uniformly distributed on the interval [0,1]. All the results below
can be easily extended to the multivariate case. In the univariate case, however,
both Hilbert spaces L2

Z and L2
W equal L2[0,1]. Moreover, as a basis {ej }j�1 in

L2[0,1] we choose the trigonometric basis given by

e1 :≡ 1, e2 j (t) := √
2cos(2π j t), e2 j+1(t) := √

2sin(2π j t), t ∈ [0,1], j ∈N.

In this subsection also the second basis { fl}l�1 is given by the trigonometric basis.
In this situation, the moment conditions formalized in Assumption 3 are automat-
ically fulfilled.
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Recall the typical choices of the sequences γ , ω, and υ introduced in Re-
mark 2.1. If γj ∼ | j |2p, p > 0, as in case (pp) and (pe), then Fγ coincides with
the Sobolev space of p-times differential periodic functions (cf. Neubauer, 1988a,
1988b). In case of (ep) it is well known that Fγ contains only analytic functions
if p > 1(cf. Kawata, 1972). Furthermore, we consider two special cases describ-
ing a “regular decay” of the unknown singular values of T . In case of (pp) and
(ep) we consider a polynomial decay of the sequence υ. Easy calculus shows
that any operator T satisfying the link condition (2.2) acts like integrating (a)-
times and hence is called finitely smoothing (cf. Natterer, 1984). In case of (pe)
we consider an exponential decay of υ and it can easily be seen that T ∈ T υ

d
implies R(T ) ⊂ C∞[0,1], therefore the operator T is called infinitely smoothing
(cf. Mair, 1994). In the next assertion we present the order of sequences Rh and
Rω which were shown to be minimax-optimal.

PROPOSITION 3.6. Assume an iid. n-sample of (Y, Z ,W ) from the model
(1.1a–1.1b) with T ∈ T υ

d,D and PU |W ∈ Uσ . Then for the example configurations
of Remark 2.1 we obtain

(pp) m∗
n ∼ n1/(2p+2a) and

(i) Rh
n ∼

⎧⎨⎩
n−(2p+2s−1)/(2p+2a), if s −a < 1/2,

n−1 logn, if s −a = 1/2,

n−1, otherwise,
(ii) Rω

n ∼ max(n−(p+s)/(p+a),n−1).

(pe) m∗
n ∼ log(n(logn)−p/a)1/(2a) and

(i) Rh
n ∼ (logn)−(2p+2s−1)/(2a),

(ii) Rω
n ∼ (logn)−(p+s)/a.

(ep) m∗
n ∼ log(n(logn)−a/p)1/(2p) and

(i) Rh
n ∼

⎧⎨⎩
n−1(logn)(2a−2s+1)/(2p), if s −a < 1/2,

n−1 log(logn), if s −a = 1/2,

n−1, otherwise,
(ii) Rω

n ∼ max
(
n−1(logn)(a−s)/p,n−1

)
.

Remark 3.7. As we see from Proposition 3.6, if the value of a increases the
obtainable optimal rate of convergence decreases. Therefore, the parameter a is
often called degree of ill-posedness (cf. Natterer, 1984). On the other hand, an
increasing of the value p or s leads to a faster optimal rate. Moreover, in the cases
(pp) and (ep) the parametric rate n−1 is obtained independent of the smoothness
assumption imposed on the structural function ϕ (however, p � 3/2 is needed)
if the representer is smoother than the degree of ill-posedness of T , i.e., (i) s �
a − 1/2 and (ii) s � a. Moreover, it is easily seen that if [h]j ∼ exp(−| j |s) or
ωj ∼ exp(| j |2s), s > 0, then the minimax convergence rates are always parametric
for any polynomial sequences γ and υ.
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Remark 3.8. It is of interest to compare our results with those of Hall and
Horowitz (2005) or Chen and Reiss (2011) who consider the estimation of the
structural function as a whole. In the notations of Hall and Horowitz (2005), who
consider only the case (pp), the decay of the eigenvalues of T ∗T is assumed to
be of order j−α , that is, α = 2a with α > 1. Furthermore, they suppose a decay
of the coefficients of the structural function of order j−β , that is, β = p + 1/2
with β > 1/2. By using this parametrization, Hall and Horowitz (2005) obtain
in the case (pp) the minimax rate of convergence n−2p/(2a+2p+1) (see also Chen
and Reiß, 2011). Let us compare this rate when estimating ϕ at a point t0 ∈ [0,1]
(cf. Example 3.1). Here, we have s = 0 and hence, obtain the minimax rate of
convergence n−(2p−1)/(2a+2p). Roughly speaking, one looses 1/2 of smoothness,
which corresponds to the loss of smoothness of Sobolev embeddings in Hölder
spaces. For any representer h with 2s > (2a +1)/(2a +2p +1), however, the rate
of convergence for estimating �h(ϕ) in the case (pp) is faster than estimating ϕ as
a whole.

Example 3.1
Suppose we are interested in estimating the value ϕ(t0) of the structural func-
tion ϕ evaluated at a point t0 ∈ [0,1]. Consider the representer given by ht0 =∑∞

j=1 ej (t0)ej . Let ϕ ∈Fγ . Since
∑

j�1 γ −1
j < ∞ (cf. Assumption 1) it holds h ∈

F1/γ and hence the point evaluation functional in t0 ∈ [0,1], i.e., �ht0
(ϕ) = ϕ(t0),

is well defined. In this case, the estimator �̂m introduced in (3.1) writes for all
m � 1 as

ϕ̂m(t0) :=
{

[e(t0)]t
m[T̂ ]−1

m [̂g]m, if [T̂ ]m is nonsingular and ‖[T̂ ]−1
m ‖�√

n,

0, otherwise

where ϕ̂m is an estimator proposed by Johannes and Schwarz (2010). Let p �
3/2 and a > 0. Then the estimator ϕ̂m∗

n
(t0) attains within a constant the minimax

optimal rate of convergenceRht0 . Applying Proposition 3.6 gives

(pp) Rht0
n ∼ n−(2p−1)/(2p+2a),

(pe) Rht0
n ∼ (logn)−(2p−1)/(2a),

(ep) Rht0
n ∼ n−1(logn)(2a+1)/(2p).

In case of (ep) we obtain a rate of convergence that attains the parametric rate
within a logarithmic term. This is in particular remarkable since the representer
of the point evaluation functional does not even belong to L2

Z .

Example 3.2
We want to estimate the average value of the structural function ϕ over a certain
interval [0,b] with 0 < b < 1. The linear functional of interest is given by �h(ϕ) =∫ b

0 ϕ(t)dt with representer h := 1[0,b]. Its Fourier coefficients are given by
[h]1 = b, [h]2 j = (

√
2π j)−1 sin(2π jb), [h]2 j+1 = −(

√
2π j)−1 cos(2π jb) for
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j � 1 and, hence [h]2
j ∼ j−2. Again we assume that p � 3/2 and a > 0. Then

the mean squared error of the estimator �̂m∗
n

= ∫ b
0 ϕ̂m∗

n
(t)dt is bounded up to a

constant by the minimax rate of convergence Rh . In the three cases the order of
Rh

n is given by

(pp) Rh
n ∼

⎧⎨⎩
n−(2p+1)/(2p+2a), if a > 1/2,

n−1 logn, if a = 1/2,

n−1, otherwise,

(pe) Rh
n ∼ (logn)−(2p+1)/(2a),

(ep) Rh
n ∼

⎧⎨⎩
n−1(logn)(2a−1)/(2p), if a > 1/2,

n−1 log(logn), if a = 1/2,

n−1, otherwise.

As in the direct regression model where the average value of the regression func-
tion can be estimated with rate n−1 we obtain the parametric rate in the case of
(pp) and (ep) if a < 1/2. On the other hand, only logarithmic rates of conver-
gence can be achieved for averages in case of (pe). This illustrates the difficulty
of recovering only partial information of the structural function in the severely
ill-posed case.

Example 3.3
Consider estimation of the weighted average derivative of the structural func-
tion ϕ with weight function H , i.e.,

∫ 1
0 ϕ′(t)H(t)dt . This functional is useful not

only for estimating scaled coefficients of an index model, but also to quantify
the average slope of structural functions. Assume that the weight function H is
continuously differentiable and vanishes at the boundary of the support of Z , i.e.,
H(0) = H(1) = 0. Integration by parts gives

∫ 1
0 ϕ′(t)H(t)dt = −∫ 1

0 ϕ(t)h(t)dt =
−�h(ϕ) with representer h given by the derivative of H . The weighted average
derivative estimator �̂m∗

n
= −∫ 1

0 ϕ̂m∗
n
(t)h(t)dt is minimax optimal. As an illustra-

tion consider the specific weight function H(t) = 1 − (2t − 1)2 with derivative
h(t) = 4(1 − 2t) for 0 � t � 1. It is easily seen that the Fourier coefficients of
the representer h are [h]1 = 0, [h]2 j = 0, [h]2 j+1 = 4

√
2(π j)−1 for j � 1 and,

thus [h]2
2 j+1 ∼ j−2. Thus, for the particular choice of the weight function H the

estimator �̂m∗
n

attains up to a constant the optimal rate Rh , which was already
specified in Example 3.2.

4. ADAPTIVE ESTIMATION

In this section, we derive an adaptive estimation procedure for the value of the
linear function �h(ϕ). This procedure is based on the estimator �̂m̂ given in (3.1)
with dimension parameter m̂ selected as a minimizer of the data driven penalized
contrast criterion (1.2a–1.2b). The selection criterion (1.2a–1.2b) involves the ran-
dom upper bound M̂n and the random penalty sequence p̂en which we introduce
below. We show that the estimator �̂m̂ attains the minimax rate of convergence
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within a logarithmic term. Moreover, we illustrate the cost due to adaption by
considering classical smoothness assumptions.

In an intermediate step we do not consider the estimation of unknown quantities
in the penalty function. Let us therefore consider a deterministic upper bound Mn

and a deterministic penalty sequence pen := (penm)m�1, which is nondecreasing.
These quantities are constructed such that they can be easily estimated in a second
step. As an adaptive choice m̃ of the dimension parameter m we propose the
minimizer of a penalized contrast criterion, that is,

m̃ := arg min
1�m�Mn

{
�m +penm

}
, (4.1a)

where the random sequence of contrast � := (�m)m�1 is defined by

�m := max
m�m′�Mn

{
|�̂m′ − �̂m |2 −penm′

}
. (4.1b)

The fundamental idea to establish an appropriate upper bound for the risk of �̂m̃

is given by the following reduction scheme. Let us denote m ∧m′ := min(m,m′).
Due to the definition of � and m̃ we deduce for all 1� m � Mn

|�̂m̃ −�h(ϕ)|2 � 3
{
|�̂m̃ − �̂m̃∧m |2 +|�̂m̃∧m − �̂m |2 +|�̂m −�h(ϕ)|2

}
� 3

{
�m +penm̃ +�m̃ +penm +|�̂m −�h(ϕ)|2

}
� 6

{
�m +penm

}+3|�̂m −�h(ϕ)|2,
where the right hand side does not depend on the adaptive choice m̃. Since the
penalty sequence pen is nondecreasing we obtain

�m � 6 max
m�m′�M

(
|�̂m′ −�h(ϕm′)|2 − 1

6
penm′

)
+

+3 max
m�m′�Mn

|�h(ϕm −ϕm′)|2,

where (·)+ denotes the positive part of a function. Combining the last estimate
with the previous reduction scheme yields for all 1� m � Mn

|�̂m̃ −�h(ϕ)|2 � 7penm +78biasm +42 max
m�m′�M

(
|�̂m′ −�h(ϕm′)|2 − 1

6
penm′

)
+
,

(4.2)

where biasm := supm′�m |�h(ϕm′ −ϕ)|2. We will prove below that penm +biasm

is of the order Rh
n(1+logn)−1 . Moreover, we will bound the right hand side term

appropriately with the help of Bernstein’s inequality.
Let us now introduce the upper bound Mn and sequence of penalty penm used

in the penalized contrast criterion (4.1a–4.1b). In the following, assume without
loss of generality that [h]1 �= 0.
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DEFINITION 4.1. For all n � 1 let an := n1−1/ log(2+logn)(1 + logn)−1 and
Mh

n := max{1� m � �n1/4� : max
1� j�m

[h]2
j � n[h]2

1} then we define

Mn := min
{

2� m � Mh
n : m3‖[T ]−1

m ‖2 max
1� j�m

[h]2
j > an

}
−1,

where we set Mn := Mh
n if the min runs over an empty set. Thus, Mn takes values

between 1 and Mh
n . Let ς2

m = 74
(
E[Y 2] + max1�m′�m ‖[T ]−1

m [g]m‖2
)
, then we

define

penm := 24ς2
m (1+ logn)n−1 max

1�m′�m
‖[h]t

m′ [T ]−1
m′ ‖2. (4.3)

To apply Bernstein’s inequality we need another assumption regarding the error
term U . This is captured by the set U∞

σ for some σ > 0, which contains all con-
ditional distributions PU |W such that E[U |W ] = 0, E[U 2|W ]� σ 2, and Cramer’s
condition hold, i.e.,

E[|U |k |W ]� σ k k!, k = 3,4, . . . .

Moreover, besides Assumption 3 we need the following Cramer condition which
is in particular satisfied if the basis { fl}l�1 are uniformly bounded.

Assumption 4. There exists η � 1 such that the distribution of W satisfies

supj,l∈NE | f j (W ) fl(W )−E[ f j (W ) fl(W )]|k � ηk k!, k = 3,4, . . . .

We now present an upper bound for �̂m̃ . As Goldenshluger and Pereverzev
(2000) we face a logarithmic loss due to the adaptation.

THEOREM 4.1. Assume an iid. n-sample of (Y, Z ,W ) from the model
(1.1a–1.1b) with E[Y 2] > 0. Let Assumptions 1–4 be satisfied. Suppose that
(m◦

n)3 max1� j�m◦
n
[h]2

j = o(anυm◦
n
) as n → ∞. Then we have for all n � 1

sup
T ∈T υ

d,D

sup
PU |W ∈U∞

σ

sup
ϕ∈Fρ

γ

E|�̂m̃ −�h(ϕ)|2 � CRh
n(1+logn)−1

where C is as in Theorem 3.3.

Remark 4.1. In all examples studied below the condition (m◦
n)3 max1� j�m◦

n

[h]2
j = o(anυm◦

n
) as n tends to infinity is satisfied if the structural function ϕ

is sufficiently smooth. More precisely, in case of (pp) it suffices to assume
3 < 2p + 2min(0,s). On the other hand, in case of (pe) or (ep) this condition
is automatically fulfilled.

In the following definition we introduce empirical versions of the integer
Mn and the penalty sequence pen. Thereby, we complete the data driven pe-
nalized contrast criterion (1.2a–1.2b). This allows for a completely data driven
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selection method. For this purpose, we construct an estimator for ς2
m by replacing

the unknown quantities by their empirical analog, that is,

ς̂2
m := 74

(
n−1

n∑
i=1

Y 2
i + max

1�m′�m
‖[T̂ ]−1

m [̂g]m‖2
)
.

With the nondecreasing sequence (ς̂2
m)m�1 at hand we only need to replace the

matrix [T ]m by its empirical counterpart (cf. Subsection 3.1).

DEFINITION 4.2. Let an and Mh
n be as in Definition 4.1 then for all n � 1

define

M̂n := min
{

2� m � Mh
n : m3‖[T̂ ]−1

m ‖2 max
1� j�m

[h]2
j > an

}
−1,

where we set M̂n := Mh
n if the min runs over an empty set. Thus, M̂n takes val-

ues between 1 and Mh
n . Then we introduce for all m � 1 an empirical analog of

penm by

p̂enm := 204 ς̂2
m(1+ logn)n−1 max

1�m′�m
‖[h]t

m′ [T̂ ]−1
m′ ‖2. (4.4)

Before we establish the next upper bound we introduce

M+
n := min

{
2� m � Mh

n : υ−1
m m3 max

1� j�m
[h]2

j > 4Dan

}
−1 (4.5)

where M+
n := Mh

n if the min runs over an empty set. Thus, M+
n takes values

between 1 and Mh
n . As in the partial adaptive case we attain the minimax rate of

convergenceRh within a logarithmic term.

THEOREM 4.2. Let the assumptions of Theorem 4.1 be satisfied. Additionally
suppose that (M+

n +1)2 logn = o
(
nυM+

n +1

)
as n → ∞ and supj�1E |ej (Z)|20 �

η20. Then for all n � 1 we have

sup
T ∈T υ

d,D

sup
PU |W ∈U∞

σ

sup
ϕ∈Fρ

γ

E |�̂m̂ −�h(ϕ)|2 � CRh
n(1+logn)−1 ,

where C is as in Theorem 3.3.

Remark 4.2. Note that below in all examples illustrating Theorem 4.2 the
condition (M+

n + 1)2 logn = o(nυM+
n +1) as n tends to infinity is automatically

satisfied.

As in the case of minimax optimal estimation we now present an upper bound
uniformly over the class F τ

ω of representer. For this purpose define Mω
n :=

max{1 � m � �n1/4� : max1� j�m(ω−1
j ) � n}. In the definition of the bounds
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M̂n , M+
n , and M−

n (cf. Appendix 4) we replace Mh
n and max1� j�m[h]2

j by Mω
n

and max1� j�m ω−1
j , respectively. Consequently, by employing ‖h‖2

1/γ � τ and

Rh
n � τRω

n for all h ∈ F τ
ω the next result follows line by line the proof of

Theorem 4.2 and hence its proof is omitted.

COROLLARY 4.3. Under the conditions of Theorem 4.2 we have for all n� 1

sup
T ∈T υ

d,D

sup
PU |W ∈U∞

σ

sup
ϕ∈Fρ

γ ,h∈F τ
ω

E |�̂m̂ −�h(ϕ)|2 � CRω
n(1+logn)−1

where C is as in Corollary 3.5.

Illustration by classical smoothness assumptions. Let us illustrate the cost due
to adaption by considering classical smoothness assumptions as discussed in
Subsection 3.4. In Theorem 4.2 and Corollary 4.3, respectively, we have seen that
the adaptive estimator �̂m̂ attains within a constant the rates Rh

adapt and Rω
adapt.

Let us now present the orders of these rates by considering the example configu-
rations of Remark 2.1. The proof of the following result is omitted because of the
analogy with the proof of Proposition 3.6.

PROPOSITION 4.4. Assume an iid. n-sample of (Y, Z ,W ) from the model
(1.1a–1.1b) with conditional expectation operator T ∈ T υ

d,D, error term U such

that PU |W ∈ U∞
σ , and E[Y 2] > 0. Then for the example configurations of Remark

2.1 we obtain

(pp) if in addition 3 < 2p+2min(s,0) that m◦
n ∼ (

n(1+ logn)−1
)1/(2p+2a)

and

(i) Rh
n(1+logn)−1 ∼

⎧⎪⎨⎪⎩
(n−1(1+ logn))(2p+2s−1)/(2p+2a), if s −a < 1/2

n−1(1+ logn)2, if s −a = 1/2

n−1(1+ logn), if s −a > 1/2,

(ii) Rω
n(1+logn)−1 ∼ max

(
(n−1(1+ logn))(p+s)/(p+a),n−1(1+ logn)

)
.

(pe) m◦
n ∼ log

(
n(1+ logn)−(a+p)/a

)1/2a
and

(i) Rh
n(1+logn)−1 ∼ (1+ logn)−(2p+2s−1)/(2a),

(ii) Rω
n(1+logn)−1 ∼ (1+ logn)−(p+s)/a .

(ep) m◦
n ∼ log

(
n(1+ logn)−(a+p)/p

)1/2p
and

(i) Rh
n(1+logn)−1 ∼

⎧⎪⎨⎪⎩
n−1(1+ logn)(2a+2p−2s+1)/(2p), if s −a < 1/2

n−1(1+ logn)(log logn), if s −a = 1/2

n−1(1+ logn), if s −a > 1/2,

(ii) Rω
n(1+logn)−1 ∼ max

(
n−1(logn)(a+p−s)/p,n−1(1+ logn)

)
.
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Let us revisit Examples 3.1 and 3.2. In the following, we apply the general
theory to adaptive pointwise estimation and adaptive estimation of averages of
the structural function ϕ.

Example 4.1
Consider the point evaluation functional �ht0

(ϕ) = ϕ(t0), t0 ∈ [0,1], introduced in

Example 3.1. In this case, the estimator �̂m̂ with dimension parameter m̂ selected
as a minimizer of criterion (1.2a–1.2b) writes as

ϕ̂m̂(t0) :=
{

[e(t0)]t
m̂[T̂ ]−1

m̂ [̂g]m̂, if [T̂ ]m̂ is nonsingular and ‖[T̂ ]−1
m̂ ‖�√

n,

0, otherwise

where ϕ̂m is an estimator proposed by Johannes and Schwarz (2010). Then ϕ̂m̂(t0)

attains within a constant the rate of convergenceRht0
adapt. Applying Proposition 4.4

gives

(pp) Rht0
n(1+logn)−1 ∼ (

n−1(1+ logn)
)(2p−1)/(2p+2a),

(ep) Rht0
n(1+logn)−1 ∼ (1+ logn)−(2p−1)/(2a),

(ep) Rht0
n(1+logn)−1 ∼ n−1(1+ logn)(2a+2p+1)/(2p).

Example 4.2
Consider the linear functional �h(ϕ) = ∫ b

0 ϕ(t)dt with representer h := 1[0,b]

introduced in Example 3.2. The mean squared error of the estimator �̂m̂ =∫ b
0 ϕ̂m̂(t)dt is bounded up to a constant byRh

adapt. Applying Proposition 4.4 gives

(pp) Rh
n(1+logn)−1 ∼

⎧⎨⎩
(n−1(1+ logn))(2p+1)/(2p+2a), if a > 1/2,

n−1(1+ logn)2, if a = 1/2,

n−1(1+ logn), otherwise,

(ep) Rh
n(1+logn)−1 ∼ (1+ logn)−(2p+1)/(2a),

(ep) Rh
n(1+logn)−1 ∼

⎧⎨⎩
n−1(1+ logn)(2a+2p−1)/(2p), if a > 1/2,

n−1(1+ logn)(log logn), if a = 1/2,

n−1(1+ logn), otherwise.

5. MONTE CARLO EXPERIMENTS

In this section, we examine the finite sample properties of our estimation
procedure. We study first the point evaluation functional and thereafter, an
average of the structural function. As in Subsection 3.4, we consider the case
where Z and W are both scalar and {ej }j�1 and { fl}l�1 coincide with the trigono-
metric basis. Moreover, we generate the joint density of (Z ,W ) by the multi-
variate function pZ W (z,w) = Cυ [e(z)]t

k

(
[I ]k + Ak

)
[∇υ ]1/2

k [ f (w)]k where Cυ is
a normalization constant, (υj )j�1 is a nondecreasing sequence which is specified
below, and k = 100. Here, Ak is a randomly generated k × k matrix with spectral
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norm 1/2. Due to the construction of the joint density pZ W the link condition
T ∈ T υ

d is satisfied for all φ ∈ Ek . Note that if Ak equals the zero matrix then this
would correspond to the situation where the eigenfunctions of T coincide with
the bases {ej }j�1 and { fl}l�1. We generate samples of size n = 1000 using the
relationship Y = E[ϕ(Z)|W ] + V where V ∼ N (0,0.01). The number of Monte
Carlo replications is 1000.

In particular, we want to study the performance of our estimators in finite sam-
ples when the dimension parameter m is chosen by our adaptive procedure given
in (1.2a–1.2b). The constants in the definition of the adaptive procedure, though
suitable for the theory, may be chosen much smaller in practice. Here, we re-
place in definition of p̂en (given in (4.4)) and ς̂2

m the constants 204 and 74 by
5 and 1, respectively. Without this adjustment, we found that the penalty domi-
nates the criterion for all reasonable sample sizes. Our proposed adjustment also
works well for smaller sample sizes as we illustrate below. In addition, we adjust
the upper bound M̂ in the following way. We replace an (given in Definition 4.1)
by 40n(1 + logn)−1. The modification of an ensures that the upper bound M̂n is
sufficiently large. Our results are not sensitive to a larger choice of an .

Point wise estimation. Let us consider the problem of pointwise estimation of
ϕ(z) = 10 z2 sin(π z) for z ∈ [0,1] over an equidistantly spaced grid of length 50.
We truncate its infinite dimensional vector of coefficients at a sufficiently large
integer, say 100. In Figure 1, we compare the performance of the estimators with
optimal parameter m∗

n (in the first column) and data driven parameter m̂ (in the
second column). More precisely, at each point t0 of the grid we choose m∗

n as
the minimizer of the empirical mean of |�̂m − �ht0

(ϕ)|2. The first row represents

(pp) with υj = j−1 while the second depicts (pe) with υj = exp(− j). In case
of (pp), the pointwise 95%–confidence bands are sufficiently tight to make sig-
nificant statements about the curvature of ϕ. Not surprisingly, in case of (pe) the
pointwise confidence bands are much wider. But also in this case the pointwise
median of the adaptive estimators is very close to ϕ.

From Figure 1 we see that the confidence bands are tighter in case of (pp)
than in case (pe). Further, the pointwise confidence bands are wider in case of
adaptive estimation but, in case of υj = j−1, are close to the bands obtained by
minimax optimal estimation. Not surprisingly, the confidence intervals are wider
at the boundary. It may seem odd that the confidence intervals can be very narrow
in the interval [0.3,0.6] and sometimes do not even contain the true functional
value. To explain this, note that the choice of the dimension parameter m∗

n is
driven by the nonlinearity of ϕ and the degree of ill posedness. Between 0.3 and
0.6 we expect that the curve can be well approximated by just one relatively linear
basis function. The second and third basis functions of the trigonometric basis are
already relatively nonlinear and thus, due to the ill posed inverse problem generate
a large variance. This is why in Figure 1(c) the empirical risk was minimized for
taking just the first (constant) basis function. The accuracy of estimation can be
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FIGURE 1. The green solid, black dashed, and blue dotted lines show ϕ, pointwise median
of the estimators, and their pointwise 95% confidence band.

improved by choosing different basis functions such as Legendre polynomials or
Wavelets.

Estimation of averages. We now consider the estimation of averages of the
structural function. In the following, we consider the structural function ϕ(z) =∑100

j=1(−1) j+1 j−2ej (z). We consider the problem of estimating the value of the

linear functional
∫ 0.75

0 ϕ(z)dz ≈ 0.898. The empirical means from a Monte Carlo
simulation are displayed in Table 1. Here, we choose m∗

n as the minimizer of the

empirical mean of |�̂m − ∫ 0.75
0 ϕ(z)dz|2. From Table 1 we see that the difference

of the empirical means of |�̂m∗
n
−�h(ϕ)|2 and |�̂m̂ −�h(ϕ)|2 are small.

6. CONCLUSION

In this paper, we propose a minimax optimal estimation procedure for linear func-
tionals in nonparametric instrumental regression. Taking into account that this
procedure still relies on an optimal choice of a smoothing parameter, we complete
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TABLE 1. Results of Monte Carlo simulations

Model Sample Size Empirical mean of
υj |�̂m∗

n
−�h(ϕ)|2 |�̂m̂ −�h(ϕ)|2

j−1 200 0.0218 0.0202
1000 0.0058 0.0070

j−2 200 0.0784 0.0770
1000 0.0317 0.0300

j−3 200 0.1295 0.1404
1000 0.0931 0.1058

j−4 200 0.1462 0.1533
1000 0.1288 0.1462

exp(− j) 200 0.0627 0.0619
1000 0.0214 0.0313

exp(−2 j) 200 0.1275 0.1479
1000 0.1080 0.1362

exp(−3 j) 200 0.1521 0.1555
1000 0.1341 0.1538

the procedure by a data driven selection of this parameter. The main result estab-
lished in the paper states that the fully data driven estimator can attain minimax-
optimal rates of convergence up to a logarithmic factor, which is a widely accepted
price to pay for local estimation. Obviously, the derivation of adaptive confidence
intervals for the linear functional �(ϕ) is only one amongst the many interesting
questions for further research and we are currently exploring this topic.

NOTE

1. For a sequence (am )m�1 having a minimal value in A ⊂ N set arg min
m∈A

{am } := min{m : am �

am′ ∀m′ ∈ A}.
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A. APPENDIX

A.1. Proof of the lower bound given in Section 2

Proof of Theorem 2.1. Define the function ϕ∗ := ζ 1/2
(

n
∑m∗

n
l=1[h]2

l υ−1
l

)−1/2 m∗
n∑

j=1
[h]j

υ−1
j ej with ζ := min(1/(2d),ρ). Since

(
γ −1

j υj
)

j�1 is nonincreasing and by
Assumption 2 it follows that ϕ∗ and in particular ϕθ := θϕ∗ for θ ∈ {−1,1} belong to
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Fρ
γ . Let V be a Gaussian random variable with mean zero and variance one (V ∼N (0,1))

which is independent of (Z ,W ). Consider Uθ := [T ϕθ ](W ) − ϕθ (Z) + V , then PUθ |W
belongs to Uσ for all σ 4 �

(√
3 + 4ρ

∑
j�1 γ −1

j η2)2, which can be realized as fol-

lows. Obviously, we have E[Uθ |W ] = 0. Moreover, we have supj E[e4
j (Z)|W ] � η4

implies E[ϕ4
θ (Z)|W ] � ρ2(∑

j�1 γ −1
j

)2
E[e4

j (Z)|W ] � ρ2η4(∑
j�1 γ −1

j

)2 and thus,

|[T ϕθ ](W )|4 � E[ϕ4
θ (Z)|W ] � ρ2η4(

∑
j�1 γ −1

j )2. From the last two bounds we deduce

E[U4
θ |W ] � 16E[ϕ4

θ (Z)|W ] + 6Var(ϕθ (Z)|W )+ 3 �
(√

3 + 4ρ η2∑
j�1 γ −1

j

)2. Conse-
quently, for each θ iid. copies (Yi , Zi ,Wi ), 1� i � n, of (Y, Z ,W ) with Y := ϕθ (Z)+Uθ
form an n-sample of the model (1.1a–1.1b) and we denote their joint distribution by Pθ
and by Eθ the expectation with respect to Pθ . In case of Pθ the conditional distribution
of Y given W is Gaussian with mean [T ϕθ ](W ) and variance 1. The log-likelihood of P1
with respect to P−1 is given by

log

(
d P1

d P−1

)
=

n∑
i=1

2(Yi − [T ϕ∗](Wi ))[T ϕ∗](Wi )+
n∑

i=1

2|[T ϕ∗](Wi )|2.

Since T ∈ T υ
d the Kullback–Leibler divergence satisfies K L(P1, P−1) � E1[log(d P1/

d P−1)] = 2n‖T ϕ∗‖2
W � 2nd‖ϕ∗‖2

υ . It is well known that the Hellinger distance H(P1,

P−1) satisfies H2(P1, P−1)� K L(P1, P−1) and thus

H2(P1, P−1)� 2nd

m∗
n∑

j=1

[ϕ∗]2
j υj = 2dζ∑m∗

n
l=1[h]2

l υ−1
l

m∗
n∑

j=1

[h]2
j

υj
= 2dζ � 1. (A.1)

Consider the Hellinger affinity ρ(P1, P−1) = ∫ √
d P1d P−1 then for any estimator �̆ it

holds

ρ(P1, P−1)�
∫ |�̆−�h(ϕ1)|

2|�h(ϕ∗)|
√

d P1d P−1 +
∫ |�̆−�h(ϕ−1)|

2|�h(ϕ∗)|
√

d P1d P−1

�
(∫ |�̆−�h(ϕ1)|2

4|�h(ϕ∗)|2 d P1

)1/2

+
(∫ |�̆−�h(ϕ−1)|2

4|�h(ϕ∗)|2 d P−1

)1/2

. (A.2)

Due to the identity ρ(P1, P−1) = 1− 1
2 H2(P1, P−1) combining (A.1) with (A.2) yields

E1 |�̆−�h(ϕ1)|2 +E−1 |�̆−�h(ϕ−1)|2 � 1

2
|�h(ϕ∗)|2. (A.3)

Obviously, |�h(ϕ∗)|2 = ζ n−1
m∗

n∑
j=1

[h]2
j υ

−1
j . From (A.3) together with the last identity

we conclude for any possible estimator �̆

sup
T ∈T υ

d,D

sup
PU |W ∈Uσ

sup
ϕ∈Fρ

γ

E |�̆−�h(ϕ)|2 � sup
θ∈{−1,1}

Eθ |�̆−�h(ϕ
(θ)∗ )|2

� 1

2

{
E1 |�̆−�h(ϕ1)|2 +E−1 |�̆−�h(ϕ−1)|2

}
� 1

4
min

(
1

2d
,ρ

)
n−1

m∗
n∑

j=1

[h]2
j υ

−1
j . (A.4)
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Consider now ϕ̃∗ :=
(

ζ κ∑
l>m∗

n
[h]2

l γ −1
l

)1/2 ∑
j>m∗

n

[h]j γ
−1
j ej , which belongs to Fρ

γ since

κ � 1 and ζ � ρ. Moreover, since (γ −1
j υj )j�1 is nonincreasing and by using the defi-

nition of κ given in (2.5) we have

2nd
∑

j>m∗
n

[ϕ̃∗]2
j υj = 2nd

ζ κ∑
l>m∗

n
[h]2

l γ −1
l

∑
j>m∗

n

[h]2
j υj

γ 2
j

� 2ndζ
κ

γm∗
n
υ−1

m∗
n

� 2d ζ � 1.

Thereby, following line by line the proof of (A.4) we obtain for any possible estimator �̆

sup
T ∈T υ

d,D

sup
PU |W ∈Uσ

sup
ϕ∈Fρ

γ

E |�̆−�h(ϕ)|2 � 1

4
|�h(ϕ̃∗)|2 = κ

4
min

(
1

2d
,ρ

) ∑
j>m∗

n

[h]2
j γ

−1
j .

Combining, the last estimate and (A.4) implies the result of the theorem, which completes
the proof. n

A.2. Proofs of Section 3

We begin by defining and recalling notations to be used in the proofs of this section.
For m � 1 recall ϕm = ∑m

j=1[ϕm ]j ej with [ϕm ]m = [T ]−1
m [g]m keeping in mind

that [T ]m is nonsingular. Then the identities [T (ϕ − ϕm)]m = 0 and [ϕm − Emϕ]m =
[T ]−1

m [T E⊥
m ϕ]m hold true. We denote Qm := [T̂ ]m − [T ]m and Vm := [̂g]m −

[T̂ ]m [ϕm ]m = n−1∑n
i=1(Ui + ϕ(Zi ) − ϕm(Zi ))[ f (Wi )]m , where obviously EVm = 0.

Moreover, let us introduce the events

�m := {‖[T̂ ]−1
m ‖�√

n}, �m := {√m‖Qm‖‖[T ]−1
m ‖� 1/2}

�c
m := {‖[T̂ ]−1

m ‖ >
√

n} and �
c
m = {√m‖Qm‖‖[T ]−1

m ‖ > 1/2}.

Observe that if
√

m‖Qm‖‖[T ]−1
m ‖ � 1/2 then the identity [T̂ ]m = [T ]m{I + [T ]−1

m Qm}
implies by the usual Neumann series argument that ‖[T̂ ]−1

m ‖ � 2‖[T ]−1
m ‖. Thereby, if√

n � 2‖[T ]−1
m ‖ we have �m ⊂ �m . These results will be used below without further

reference. We shall prove at the end of this section four technical Lemmata (A.1 – A.4)
which are used in the following proofs. Furthermore, we will denote by C universal nu-
merical constants and by C(·) constants depending only on the arguments. In both cases,
the values of the constants may change from line to line.

Proof of the consistency
Proof of Proposition 3.1. Consider for all m � 1 the decomposition

E |�̂m −�h(ϕ)|2 = E |�̂m −�h(ϕ)|21�m +|�h(ϕ)|2 P(�c
m)

� 2E |�̂m −�h(ϕm)|21�m +2|�h(ϕm −ϕ)|2 +|�h(ϕ)|2 P(�c
m) (A.5)

where we bound each term separately. Let �m := {‖Qm‖‖[T ]−1
m ‖ � 1/2} and let �

c
m

denote its complement. By employing ‖[T̂ ]−1
m ‖1

�m
� 2‖[T ]−1

m ‖ and ‖[T̂ ]−1
m ‖21�m � n
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it follows that

|�̂m −�h(ϕm)|21�m

� 2
∣∣∣[h]t

m [T ]−1
m Vm

∣∣∣2 +2
∣∣[h]t

m [T ]−1
m Qm [T̂ ]−1

m Vm
∣∣21�m

(
1�m

+1
�

c
m

)
� 2|[h]t

m [T ]−1
m Vm |2 +2‖[h]t

m [T ]−1
m ‖2

{
4‖[T ]−1

m ‖2‖Qm‖2‖Vm‖2 +n‖Qm‖2‖Vm‖21
�

c
m

}
.

Thus, from estimate (A.9), (A.10), and (A.11) in Lemma A.1 we infer

E |�̂m −�h(ϕm)|21�m � C(γ )n−1‖[h]t
m [T ]−1

m ‖2η4(σ 2 +‖ϕ −ϕm‖2
γ

)
×
{

1+ m3

n
‖[T ]−1

m ‖2 +m3 P1/4(�
c
m)
}
. (A.6)

Let m = mn satisfying m−1
n = o(1), mn = o(n), and condition (3.3). We have

√
n � 2

‖[T ]−1
mn ‖ and thus, �c

mn
⊂ �

c
mn

for n sufficiently large. From Lemma A.3 it follows that

m12
n P(�

c
mn

) � 2exp
{− mn (32η2n−1mn

3‖[T ]−1
mn ‖2)−1 + 14logmn

} = O(1) as n → ∞
since mn(4n−1m3

n‖[T ]−1
mn ‖2)−1 � 4η2n for n sufficiently large. Thus, in particular

P(�c
mn

) = o(1). Consequently, as n → ∞ we obtain E |�̂mn − �h(ϕmn )|21�mn
= o(1)

since ‖[h]t
mn

[T ]−1
mn ‖2 = o(n). Moreover, as n → ∞ it holds |�h(ϕmn )−�h(ϕ)|2 � ‖h‖1/γ

‖ϕ − ϕmn ‖γ = o(1) due to condition (3.2), and |�h(ϕ)|2 P(�c
mn

) � ‖h‖1/γ ‖ϕ‖γ

P(�c
mn

) = o(1). This together with decomposition (A.5) proves the result. n
Proof of Corollary 3.2. The assertion follows directly from Proposition 3.1, it only

remains to check conditions (3.2) and (3.3). We make use of decomposition ‖ϕ −ϕm‖γ �
‖E⊥

m ϕ‖γ +‖Emϕ −ϕm‖γ . As in the proof of Lemma A.2 we conclude ‖Emϕ −ϕm‖2
γ �

‖E⊥
m ϕ‖γ supm sup‖φ‖γ =1‖T −1

m Fm T E⊥
m φ‖γ � Dd‖E⊥

m ϕ‖γ . By using Lebesgue’s domi-

nated convergence theorem we observe ‖E⊥
m ϕ‖γ = o(1) as m → ∞ and hence (3.2) holds.

Condition T ∈ T υ
d,D implies ‖[h]t

m [T ]−1
m ‖2 � D

∑m
j=1 [h]2

j υj
−1 and ‖[T ]−1

m ‖2 � Dυ−1
m

for all m � 1 since υ is nonincreasing. Thereby, condition (3.5) implies condition (3.3),
which completes the proof. n

Proof of the upper bound
Proof of Theorem 3.3. The proof is based on inequality (A.5). Applying estimate (A.14)
in Lemma A.2 gives |�h(ϕm −ϕ)|2 � 2ρ

{∑
j>m [h]2

j γ
−1
j + Dd υmγ −1

m
∑m

j=1[h]2
j υ

−1
j

}
for all ϕ ∈ Fρ

γ and h ∈ F1/γ . Since |�h(ϕ)|2 � ‖ϕ‖2
γ ‖h‖2

1/γ and ‖ϕ‖2
γ � ρ we conclude

E |�̂m −�h(ϕ)|2 � 2E |�̂m −�h(ϕm)|21�m

+4ρ
{∑

j>m

[h]2
j γ

−1
j +d D

υm

γm

m∑
j=1

[h]2
j υ

−1
j

}
+ρ‖h‖2

1/γ P(�c
m). (A.7)

By employing ‖Qm [T̂ ]−1
m ‖21�m � m−1 and ‖[T̂ ]−1

m ‖21�m � n it follows that

|�̂m −�h(ϕm)|21�m � 2|[h]t
m [T ]−1

m Vm |2 +2m−1‖[h]t
m [T ]−1

m ‖2‖Vm‖2

+2n‖[h]t
m [T ]−1

m ‖2‖Qm‖2‖Vm‖21�c
m

.
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Due to T ∈ T υ
d,D and ϕ ∈ Fρ

γ we have ‖[h]t
m [T ]−1

m ‖2 � D
∑m

j=1[h]2
j /υj and

‖ϕ − ϕm‖2
γ � 2ρ (1 + D d) (cf. (A.13) in Lemma A.2), respectively. Thereby, similarly

to the proof of Proposition 3.1 we get

E |�̂m −�h(ϕm)|21�m � C(γ )D(σ 2 +η2d Dρ)n−1
m∑

j=1

[h]2
j υ

−1
j

{
1+m3 P(�c

m)1/4
}
.

Combining the last estimate with (A.7) yields

E |�̂m −�h(ϕ)|2 � C(γ )D(σ 2 +η2d Dρ)max
{∑

j>m

[h]2
j γ

−1
j ,max

(υm

γm
,n−1

) m∑
j=1

[h]2
j υ

−1
j

}
×
{

1+m3 P(�c
m)1/4

}
+ρ‖h‖2

1/γ P(�c
m). (A.8)

Consider now the optimal choice m = m∗
n defined in (2.4), then we have

E |�̂m∗
n
−�h(ϕ)|2 � C(γ,κ)D

{
σ 2 +ρ

(
η2d D +‖h‖2

1/γ

)}
Rh

n

×
{

1+ (m∗
n)3 P(�c

m∗
n
)1/4 + (Rh

n)−1 P(�c
m∗

n
)
}

and hence, the assertion follows by making use of Lemma A.4. n

Technical assertions
The following paragraph gathers technical results used in the proofs of Section 3. Below
we consider the set Sm := {s ∈ Rm : ‖s‖ = 1}.

LEMMA A.1. Suppose that PU |W ∈ Uσ and that the joint distribution of (Z ,W ) satis-
fies Assumption 3. If in addition ϕ ∈Fρ

γ with γ satisfying Assumption 1, then for all m � 1
we have

sup
s∈Sm

E |st Vm |2 � 2n−1(σ 2 +C(γ )η2‖ϕ −ϕm‖2
γ

)
, (A.9)

E‖Vm‖4 � C(γ )
(
n−1m η2(σ 2 +‖ϕ −ϕm‖2

γ )
)2

, (A.10)

E‖Qm‖8 � C
(
n−1m2 η2)4. (A.11)

Proof. Proof of (A.9). Since ({Ui +ϕ(Zi )−ϕm(Zi )}
∑m

j=1 sj f j (Wi )), 1 � i � n, are

iid. with mean zero we have E |st Vm |2 = n−1
E |{U +ϕ(Z)−ϕm(Z)}∑m

j=1 sj f j (W )|2.

Then (A.9) follows from E[U2|W ] � (E[U4|W ])1/2 � σ 2 and from Assumption
3 (i), i.e., supj∈NE[e2

j (Z)|W ] � η2. Indeed, applying condition | j |3γ −1
j = o(1)

(cf. Assumption 1) gives
∑

j�1 γ −1
j � C(γ ) and thus,

E |{ϕ(Z)−ϕm(Z)}
m∑

j=1

sj f j (W )|2 � ‖ϕ −ϕm‖2
γ

∞∑
l=1

γ −1
l E |el (Z)

m∑
j=1

sj f j (W )|2

� C(γ )η2‖ϕ −ϕm‖2
γ

m∑
j=1

s2
j = C(γ )η2‖ϕ −ϕm‖2

γ .

https://doi.org/10.1017/S0266466614000966 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000966


ADAPTIVE ESTIMATION OF FUNCTIONALS 643

Proof of (A.10). Observe that for each 1 � j � m, ({Ui + ϕ(Zi ) − ϕm(Zi )} f j (Wi )),
1 � i � n, are iid. with mean zero. It follows from Theorem 2.10 in Petrov (1995)
that E‖Vm‖4 � Cn−2m2 supj∈NE |{U + ϕ(Z) − ϕm(Z)} f j (W )|4. Thereby, (A.10) fol-

lows from E[U4|W ] � σ 4 and supj∈NE[ f 4
j (W )] � η4 together with E |{ϕ(Z)−ϕm(Z)}

f j (W )|4 � C(γ )η4‖ϕ −ϕm‖4
γ , which can be realized as follows. Since [T (ϕ −ϕm)]j = 0

we have {ϕ(Z) − ϕm(Z)} f j (W ) = ∑
l�1[ϕ − ϕm ]l{el (Z) f j (W ) − [T ]j,l }. Furthermore,

Assumption 3 (ii), i.e., supj,l∈NE |el (Z) f j (W )− [T ]j,l |4 � 4!η4, implies

E |{ϕ(Z)−ϕm(Z)} f j (W )|4 � ‖ϕ −ϕm‖4
γ E

∣∣∣∑
l�1

γ −1
l |el (Z) f j (W )− [T ]j,l |2

∣∣∣2
� C(γ )η4‖ϕ −ϕm‖4

γ .

Proof of (A.11). The random variables (el (Zi ) f j (Wi ) − [T ]j,l ), 1 � i � n, are iid.
with mean zero for each 1 � j, l � m. Hence, Theorem 2.10 in Petrov (1995) implies
E‖Qm‖8 � Cn−4m8 supj,l∈NE |el (Z) f j (W ) − [T ]j,l |8 and thus, the assertion follows
from Assumption 3 (ii), which completes the proof. n

LEMMA A.2. If T ∈ T υ
d,D and ϕ ∈ Fρ

γ , then for all m � 1 we have

‖Emϕ −ϕm‖2
γ � D d ρ, (A.12)

‖ϕ −ϕm‖2
γ � 2(1+ D d)ρ, (A.13)

|〈h,ϕ −ϕm〉Z |2 � 2ρ
∑
j>m

[h]2
j

γj
+2 D d ρ

υm

γm

m∑
j=1

[h]2
j

υj
. (A.14)

Proof. Consider (A.12). Since T ∈ T υ
d,D the identity [Emϕ − ϕm ]m = −[T ]−1

m

[T E⊥
m ϕ]m implies ‖Emϕ −ϕm‖2

υ � D‖T E⊥
m ϕ‖2

W � Dd‖E⊥
m ϕ‖2

υ . Consequently,

‖Emϕ −ϕm‖2
υ � D d γ −1

m υm‖ϕ‖2
γ (A.15)

because (γ −1
j υj )j�1 is nonincreasing and thus, ‖Emϕ −ϕm‖2

γ � γmυ−1
m ‖Emϕ −ϕm‖2

υ .
By combination of the last estimate and (A.15) we obtain the assertion (A.12). By em-
ploying the decomposition ‖ϕ − ϕm‖2

γ � 2‖ϕ − Emϕ‖2
γ + 2‖Emϕ − ϕm‖2

γ the bound

(A.13) follows from (A.12) and ‖ϕ − Emϕ‖2
γ � ‖ϕ‖2

γ . It remains to show (A.14). Apply-

ing the Cauchy–Schwarz inequality gives |〈h,ϕ − Emϕ〉Z |2 � ‖ϕ‖2
γ
∑

j>m [h]2
j γ

−1
j and

|〈h, Emϕ−ϕm〉Z |2 � D d ‖ϕ‖2
γ υmγ −1

m
∑m

j=1[h]2
j υ

−1
j by (A.15). Thereby (A.14) follows

from the inequality |〈h,ϕ −ϕm〉Z |2 � 2|〈h,ϕ − Emϕ〉Z |2 + 2|〈h, Emϕ −ϕm〉Z |2, which
completes the proof. n

LEMMA A.3. Suppose that the joint distribution of (Z ,W ) satisfies Assumption 3. Then
for all n � 1 and m � 1 we have

P
(
m−2n‖Qm‖2 � t

)
� 2exp

(− t

8η2
+2logm

)
for all 0 < t � 4η2n. (A.16)
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Proof. Our proof starts with the observation that for all j, l ∈ N the condition (ii) in
Assumption 3 implies for all t > 0

P

⎛⎝∣∣∣∣∣∣
n∑

i=1

{ej (Zi ) fl (Wi )−E[ej (Z) fl (W )]}
∣∣∣∣∣∣� t

⎞⎠� 2exp

( −t2

4nη2 +2ηt

)
,

which is just Bernstein’s inequality (cf. Bosq, 1998). This implies for all 0 < t � 2ηn

sup
j,l∈N

P

⎛⎝∣∣∣∣∣∣
n∑

i=1

{ej (Zi ) fl (Wi )−E[ej (Z) fl (W )]}
∣∣∣∣∣∣� t

⎞⎠� 2exp

(
− t2

8η2n

)
. (A.17)

It is well-known that m−1‖[A]m‖ � max1� j,l�m |[A]j,l | for any m × m matrix [A]m .

Combining the last estimate and (A.17) we obtain for all 0 < t � 2ηn1/2

P
(

m−1n1/2‖Qm‖� t
)
�

m∑
j,l=1

P

⎛⎝∣∣∣∣∣∣
n∑

i=1

(
ej (Zi ) fl (Wi )−E[ej (Z) fl (W )]

)∣∣∣∣∣∣� n1/2t

⎞⎠
� 2exp

(
− t2

8η2
+2logm

)
. n

LEMMA A.4. Under the conditions of Theorem 3.3 we have for all n � 1

(m∗
n)12 P(�c

m∗
n
)� C(γ,υ,η, D) (A.18)

(Rh
n)−1 P(�c

m∗
n
)� C(γ,υ,η,h, D). (A.19)

Proof. Proof of (A.18). Since ‖[T ]−1
m ‖2 � Dυ−1

m due to T ∈ T υ
d,D it follows from

Lemma A.3 for all m,n � 1 that

P(�c
m)� P

(
m−2n‖Qm‖2 >

nυm

4Dm3

)
� 2exp

(
− nυm

32Dη2m3
+2logm

)
since (4Dm3υ−1

m )−1 � 1 � 4η2 for all m � 1. Due to condition (3.6) there exists n0 � 1
such that nυm∗

n
� 448Dη2(m∗

n)3 logm∗
n for all n � n0. Consequently, (m∗

n)12 P(�c
m∗

n
)� 2

for all n � n0, while trivially (m∗
n)12 P(�c

m∗
n
)� (m∗

n0
)12 for all n � n0, which gives (A.18)

since n0 and m∗
n0

depend on γ , υ, η, and D only.

Consider (A.19). Let n0 ∈ N such that max{| logRh
n |, (logm∗

n)}(m∗
n)3 � nυm∗

n
(96D

η2)−1 for all n� n0. Observe that�m ⊂ �m if n� 4Dυ−1
m . Since (m∗

n)−3nυm∗
n
� 96Dη2

for all n � n0 it follows nυm∗
n
� 4D for all n � n0 and hence (Rh

n)−1 P(�c
m∗

n
) �

(Rh
n)−1 P(�c

m∗
n
)� 2 for all n � n0 as in the proof of (A.18). Combining the last estimate

and the elementary inequality (Rh
n)−1 P(�c

m∗
n
) � (Rh

n0
)−1 for all n � n0 shows (A.19)

since n0 depends on γ , υ, η, h, and D only, which completes the proof. n

A.3. Proofs of Section 3.4

Proof of Proposition 3.6. Proof of (pp). From the definition of m∗
n in (2.4) it

follows m∗
n ∼ n1/(2p+2a). Consider case (i). The condition s − a < 1/2 im-

plies n−1∑m∗
n

j=1 | j |2a−2s ∼ n−1(m∗
n)2a−2s+1 ∼ n−(2p+2s−1)/(2p+2a) and moreover,
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∑
j>m∗

n
| j |−2p−2s ∼ n−(2p+2s−1)/(2p+2a) since p + s > 1/2. If s − a = 1/2 then

n−1∑m∗
n

j=1 | j |2a−2s ∼ n−1 log(n1/(2p+2a)) and
∑

j>m∗
n
| j |−2p−2s ∼ n−1. In the case of

s −a > 1/2 it follows that
∑m∗

n
j=1 | j |2a−2s is bounded whereas

∑
j>m∗

n
| j |−2p−2s � n−1

and hence, Rh
n ∼ n−1. To prove (ii) we make use of Corollary 2.2. We observe that if

s −a � 0 the sequence ωυ is bounded from below, and hence Rω
n ∼ n−1. Otherwise, the

condition s −a < 0 impliesRω
n ∼ n−(p+s)/(p+a).

Proof of (pe). Note that m∗
n satisfies m∗

n ∼ log(n(logn)−p/a)1/(2a). In order to prove (i),

we calculate that
∑

j>m∗
n
| j |−2p−2s ∼ (logn)(−2p−2s+1)/(2a) and n−1∑m∗

n
j=1 exp(| j |2a)

| j |−2s � (logn)(−2p−2s+1)/(2a). In case (ii) we immediately obtain Rω
n ∼

(logn)−(p+s)/a .
Proof of (ep). It holds true m∗

n ∼ log(n(logn)−a/p)1/(2p). Consider case (i). If s −a <

1/2 then n−1∑m∗
n

j=1 | j |2a−2s ∼ n−1(logn)(2a−2s+1)/(2p). If s − a = 1/2 we conclude

n−1∑m∗
n

j=1 | j |2a−2s ∼ n−1 log(log(n)). On the other hand, the condition s − a > 1/2 im-

plies that
∑m∗

n
j=1 | j |2a−2s is bounded and thus, we obtain the parametric rate n−1. More-

over, it is easily seen that
∑

j>m∗
n
| j |−2s exp(−| j |2p) � n−1∑m∗

n
j=1 | j |2a−2s . In case (ii)

if s − a � 0 then the sequence ωυ is bounded from below as mentioned above and thus,
Rω

n ∼ n−1. If s −a < 0 thenRω
n ∼ n−1(logn)(a−s)/p , which completes the proof. n

A.4. Proofs of Section 4

At the end of this section we shall prove six technical Lemmata (A.7 – A.12) which are
used in the following proofs. Let us introduce a nondecreasing sequence � := (�m)m�1

and its empirical analog �̂ := (�̂m)m�1 by �m := max1�m′�m‖[h]t
m′ [T ]−1

m′ ‖2 and �̂m :=
max1�m′�m‖[h]t

m′ [T̂ ]−1
m′ ‖2, respectively. Similarly to M+

n introduced in (4.5) we define

M−
n := min

{
2� m � Mh

n : 4Dυ−1
m m3 max

1� j�m
[h]2

j > an

}
−1 (A.20)

where we set M−
n := Mh

n if the set is empty. Thus, M−
n takes values between 1 and Mh

n .
In the following C > 0 denotes a constant only depending on the classes Fρ

γ , T υ
d,D , the

constants σ , η and the representer h. For ease of notation, the value of C > 0 may change
from line to line.

Proof of Theorem 4.1. The proof of the theorem is based on inequality (4.2). Observe
that by Lemma A.10 we have M−

n � Mn � M+
n . Due to condition (m◦

n)3 max1� j�m◦
n

[h]2
j = o(anυm◦

n
) as n → ∞ there exists n0 � 1 only depending on h, γ , and υ such that

for all n � n0 it holds m◦
n � M−

n . We distinguish in the following the cases n � n0 and
n < n0. First, consider n� n0. Applying Corollary A.6 together with estimate (4.2) implies

E|�̂m̃ −�h(ϕ)|2 � C
{

penm◦
n
+biasm◦

n
+n−1

}
.

From the definition of penm we infer penm � 24(3ρ + 2σ 2)(1 + logn)n−1 D
∑m

j=1[h]2
j

υ−1
j since T ∈ T υ

d,D , U ∈ U∞
σ , and ϕ ∈ Fρ

γ . Moreover, since ϕ ∈ Fρ
γ and h ∈ F1/γ
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estimate (A.14) in Lemma A.2 implies for all 1 � m � M−
n that biasm � min1�m′�M−

n

2ρ
{∑

j>m′ [h]2
j γ

−1
j +d Dυm′γ −1

m′
∑m′

j=1[h]2
j υ

−1
j

}
.

Consequently,

E|�̂m̃ −�h(ϕ)|2 � C
⎧⎨⎩max

⎛⎝ ∑
j>m◦

n

[h]2
j γ

−1
j ,n−1(1+ logn)

m◦
n∑

j=1

[h]2
j υ

−1
j

⎞⎠+n−1

⎫⎬⎭ .

Consider now n < n0. Observe that for all 1� m � Mh
n it holds

|�̂m −�h(ϕ)|2 � 2|[h]t
m [T̂ ]−1

m Vm |21�m +2(|�h(ϕm −ϕ)|2 +|�h(ϕ)|21�c
m
)

� 2n‖[h]Mh
n
‖2‖VMh

n
‖2 +2(|�h(ϕm −ϕ)|2 +|�h(ϕ)|21�c

m
). (A.21)

From the definition of Mh
n we infer ‖[h]Mh

n
‖2 � [h]2

1 n5/4. Hence inequality (A.10) in

Lemma A.1, inequality (A.13) in Lemma A.2 and Lemma A.12 yield for all ϕ ∈ Fρ
γ and

h ∈ F1/γ

nE |�̂m̃ −�h(ϕ)|2 � 2[h]2
1 n9/5‖VMh

n
‖2 +6ρ‖h‖2

1/γ (1+ Dd)n � C,

which proves the result. n

LEMMA A.5. Consider (p̃enm)m�1 with p̃enm := 24
(
24E[U2] + 96η2ρ m3γ −1

m
)

(1+ logn)n−1. Then under the conditions of Theorem 4.1 we have for all n � 1

sup
T ∈T υ

d,D

sup
PU |W ∈U∞

σ

E max
m◦

n�m�M+
n

(
|�̂m −�h(ϕm)|2 − 1

6
p̃enm

)
+
� C n−1.

Proof. Similarly to the proof of Theorem 3.3 we obtain the decomposition

|�̂m −�h(ϕm)|2 � 2|[h]t
m [T ]−1

m Vm |2 +2m−1‖[h]t
m [T ]−1

m ‖2‖Vm‖2

+2n‖[h]t
m [T ]−1

m Qm‖2‖Vm‖21�c
m

+|�h(ϕm)|21�c
m

.

Observe that ‖[h]t
m [T ]−1

m ‖2 � �m for all m � 1 and hence, we have for all

m◦
n � m � M+

n(
|�̂m −�h(ϕm)|2 − 1

6
p̃enm

)
+
� 2�m

( |[h]t
m [T ]−1

m Vm |2
‖[h]t

m [T ]−1
m ‖2

− p̃enm
24�m

)
+

+2�m

(
‖Vm‖2

m
− p̃enm

24�m

)
+

+2n�m‖Qm‖2‖Vm‖21�c
m

+|�h(ϕm)|21�c
m

=: Im + I Im + I I Im + I Vm .

Consider the first two right hand side terms. We calculate

E max
m◦

n�m�M+
n

(Im + I Im)� 4 max
m◦

n�m�M+
n

sup
s∈Sm

E

(
|st Vm |2 − p̃enm

24�m

)
+

M+
n∑

m=1

�m .
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From the definition of p̃en we infer for all s ∈ Sm and m◦
n � m � M+

n

nE
(
|st Vm |2 − p̃enm

24�m

)
+ � 2E

(
(n−1/2

n∑
i=1

Ui st [ f (Wi )]m)2 −12E[U2](1+ logn)
)
+

+2E
(
(n−1/2

n∑
i=1

(ϕ(Zi )−ϕm(Zi ))s
t [ f (Wi )]m)2

−48η2ρ m3γ −1
m (1+ logn)

)
+

� C(σ,η,γ,ρ, D)n−1

where the last inequality follows from Lemma A.7 and A.8. Due to the definition of M+
n

and since � is nondecreasing we have n−1∑M+
n

m=1 �m � D(nυM+
n

)−1(M+
n )2

max1� j�M+
n

[h]2
j � 4D2. Consequently, Emaxm◦

n�m�M+
n

(Im + I Im) � Cn−1. Further,

we obtain for ϕ ∈ Fρ
γ and h ∈ F1/γ

E max
m◦

n�m�M+
n

(I I Im)� n�M+
n

(
E‖QM+

n
‖8
)1/4 (

E‖VM+
n

‖4
)1/2

P1/4

⎛⎝ M+
n⋃

m=1

�
c
m

⎞⎠
� C(γ )η4(σ 2 + (1+ Dd)ρ)n−1�M+

n
(M+

n )3 P1/4

⎛⎝ M+
n⋃

m=1

�
c
m

⎞⎠
where the last inequality is due to Lemma A.1 and

E max
m◦

n�m�M+
n

(I Vm)� ρ‖h‖2
1/γ P

⎛⎝ M+
n⋃

m=1

�c
m

⎞⎠ .

Now applying n−1�M+
n

(M+
n )3 � 4D2 and Lemma A.9 gives Emaxm◦

n�m�M+
n

(I I Im + I Vm)� Cn−1, which completes the proof. n

COROLLARY A.6. Under the conditions of Theorem 4.1 we have for all n � 1

sup
T ∈T υ

d,D

sup
PU |W ∈U∞

σ

E max
m◦

n�m�M+
n

(
|�̂m −�h(ϕm)|2 − 1

6
penm

)
+
� C n−1.

Proof. Observe that m3γ −1
m = o(1) and ‖ϕ − ϕm‖2

Z = o(1) as m → ∞ due to
Assumption 1 and T ∈ T υ

d,D (cf. proof of Corollary 3.2), respectively. Thereby, there exists
a constant n0 only depending on γ , ρ, and η such that for all n � n0 and m � m◦

n we have

24E[U2]+96η2ρ m3γ −1
m � 72

(
E[Y 2]+‖ϕm‖2

Z +‖ϕ −ϕm‖2
Z

)
+ 96η2ρ m3γ −1

m � ς2
m . (A.22)
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We distinguish in the following the cases n < n0 and n � n0. First, consider n < n0. Due

to n−1∑M+
n

m=1 �m � 4D2 and inequality (A.9) in Lemma A.1 we calculate for all s ∈ Sm

M+
n∑

m=1

�m E

(
|st Vm |2 − penm

24�m

)
+
�

M+
n∑

m=1

�m E |st Vm |2

� 8n0 D2
(
σ 2 +C(γ )η2 ‖ϕ −ϕm‖2

γ

)
n−1.

Therefore, following line by line the proof of Lemma A.5 it is easily seen that it
holds nEmaxm◦

n�m�M+
n

(|�̂m − �h(ϕm)|2 − 1
6 penm

)
+ � C. Consider now n � n0. In-

equality (A.22) implies p̃enm � penm and thus,
(|�̂m − �h(ϕm)|2 − 1

6 penm
)
+ �

(|�̂m −
�h(ϕm)|2 − 1

6 p̃enm
)
+ for all m◦

n � m � M+
n . Thus, from Lemma A.5 we infer

nEmaxm◦
n�m�M+

n

(|�̂m − �h(ϕm)|2 − 1
6 penm

)
+ � C, which completes the proof of the

corollary. n

Proof of Theorem 4.2. Similarly to the proof of Theorem 4.1 and since p̂en is a nonde-
creasing sequence we have for all 1� m � M̂n

|�̂m̂ −�h(ϕ)|2 � p̂enm +biasm + max
m�m′�M̂n

(
|�̂m′ −�h(ϕm′)|2 − 1

6
p̂enm′

)
+

.

Let us introduce the set

A := {
penm � p̂enm � 8penm , 1� m � M+

n
}∩{M−

n � M̂n � M+
n },

then we conclude for all 1� m � M−
n

|�̂m̂ −�h(ϕ)|21A � penm +biasm + max
m�m′�M+

n

(
|�̂m′ −�h(ϕm′)|2 − 1

6
penm′

)
+

.

Thereby, similarly as in the proof of Theorem 4.1 we obtain for all ϕ ∈Fρ
γ and h ∈F1/γ

the upper bound for all n � 1

E|�̂m̂ −�h(ϕ)|21A � CRh
n(1+logn)−1 . (A.23)

Let us now evaluate the risk of the adaptive estimator �̂m̂ onAc. From the definition of Mh
n

we infer ‖[h]Mh
n
‖2 � [h]2

1 n Mh
n . Consequently, inequality (A.21) together with (A.10) in

Lemma A.1, (A.13) in Lemma A.2 and Lemma A.12 yields for all ϕ ∈ Fρ
γ and h ∈ F1/γ

E |�̂m̂ −�h(ϕ)|21Ac

� 2[h]2
1 n2 Mh

n (E‖VMh
n
‖4)1/2 P(Ac)1/2 +6ρ‖h‖2

1/γ (1+ Dd)P(Ac)� C n−1.

The result follows by combining the last inequality with (A.23). n
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Technical assertions
The following paragraph gathers technical results used in the proofs of Section 4. In the
following we denote ξs(w) :=∑m

j=1 sj f j (w) where s ∈ Sm = {s ∈ Rm : ‖s‖ = 1}.

LEMMA A.7. Let Assumptions 3 and 4 hold. Then for all n � 1 and 1 � m � �n1/4�
we have

sup
PU |W ∈U∞

σ

sup
s∈Sm

E

⎡⎣⎛⎝ 1

n

∣∣∣ n∑
i=1

Ui ξs(Wi )
∣∣∣2 −12E[U2](1+ logn)

⎞⎠
+

⎤⎦� C(σ,η)n−1.

Proof. Let us denote δ = 12E[U2](1+ logn). Since the error term U satisfies Cramer’s
condition we may apply Bernstein’s inequality and since E[U2|W ]� σ 2 we have

E

⎡⎣( 1

n

∣∣∣ n∑
i=1

Ui ξs(Wi )
∣∣∣2 − δ

)
+

|W1, . . . ,Wn

⎤⎦
=
∫ ∞

0
P

(
n∑

i=1

Ui ξs(Wi )�
√

n(t + δ)|W1, . . . ,Wn

)
dt

�
∫ ∞

0
exp

( −n(t + δ)

8σ 2
∑n

i=1 |ξs(Wi )|2
)

dt +
∫ ∞

0
exp

( −√
n(t + δ)

4σ max1�i�n |ξs(Wi )|
)

dt. (A.24)

Consider the first summand of (A.24). Let us introduce the set

B :=
⎧⎨⎩∀1� j, l � m : |n−1

n∑
i=1

f j (Wi ) fl (Wi )− δjl |� logn

3
√

n

⎫⎬⎭
where δjl = 1 if j = l and zero otherwise. Applying Cauchy–Schwarz’s inequality twice

we observe on B for all n � 1 and 1� m � M+
n

|n−1
n∑

i=1

|ξs(Wi )|2 −1|1B �
m∑

j,l=1

|zj ||zl ||n−1
n∑

i=1

f j (Wi ) fl (Wi )− δjl |1B �
1

2

since n−1/4 logn � 3/2 for all n � 1. Thereby, it holds n−1∑n
i=1 |ξs(Wi )|21B � 3/2 and

thus,

nE

[∫ ∞
0

exp

(
−n(t + δ)

8σ 2∑n
i=1 |ξs(Wi )|2

)
dt 1B

]
� 12σ 2 exp

(
logn − δ

12σ 2

)
� 6σ 2.

(A.25)

On the complement of B observe that supj,l Var( f j (W ) fl (W )) < η2 due that
Assumption 3 (i) and thus, Assumption 4 together with Bernstein’s inequality yields

P(Bc)�
m∑

j,l=1

P

⎛⎝3
∣∣ n∑

i=1

f j (Wi ) fl (Wi )− δjl
∣∣> √

n logn

⎞⎠
� 2m2 exp

(
− n(logn)2

36nη4 +6η
√

n logn

)
� 2exp

(
2logm − (logn)2

42η4

)
.
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By Assumption 3 (i) it holds E |ξs(W )|4 � E |∑m
j=1 f 2

j (W )|2 � m2η4. Thereby

nE

[∫ ∞
0

exp
( −n(t + δ)

8σ 2∑n
i=1 |ξs(Wi )|2

)
dt 1Bc

]
� 8σ 2n

(
E |ξs(W1)|4 P(Bc)

)1/2
� 12σ 2η2

(A.26)

for all n � exp(126η4) and 1 � m � �n1/4�. For n < exp(126η4) it holds nE[|ξs(W1)|2
1Bc ] < exp(126η4). Consider the second summand of (A.24). Since x �→ exp(−1/x), x >
0, is a concave function and E |ξs(W )|4 � m2η4 we deduce for all 1� m � �n1/4�

E

[∫ ∞
0

exp

( −√
n(t + δ)

4σ max1�i�n |ξs(Wi )|
)

dt

]

�
∫ ∞

0
exp

( −√
n(t + δ)

4σ Emax1�i�n |ξs(Wi )|
)

dt

�
∫ ∞

0
exp

( −√
n(t + δ)

4σ(nE |ξs(W )|4)1/4

)
dt �

∫ ∞
0

exp

(
−n1/4√

(t + δ)

4σ η
√

m

)
dt

� 8σ η
√

m/n exp

(
−n1/4

√
δ

4σ η
√

m

)(
n1/4

√
δ +4σ η

√
m
)
� C(σ,η)n−1. (A.27)

The assertion follows now by combining inequality (A.24) with (A.25), (A.26), and
(A.27). n

LEMMA A.8. Let Assumptions 1 and 3 hold. Then for all n � 1 and m � 1 we have

sup
T ∈T υ

d,D

sup
s∈Sm

E

⎡⎣⎛⎝ 1

n

∣∣∣ n∑
i=1

(ϕ(Zi )−ϕm(Zi ))ξs(Wi )
∣∣∣2 −48η2ρ

m3

γm
(1+ logn)

⎞⎠
+

⎤⎦
� C(η,γ,ρ, D)n−1.

Proof. Let us consider a sequence w := (wj )j�1 with wj := j2. Since [T (ϕ−ϕm)]m = 0
we conclude for m � 1, s ∈ Sm , and k = 2,3, . . . that

E |(ϕ(Z)−ϕm(Z))ξs(W )|k = E |
∞∑

l=1

[ϕ −ϕm ]l

m∑
j=1

sj (el (Z) f j (W )− [T ]jl )|k

� ‖ϕ −ϕm‖k
wE |

∞∑
l=1

w−1
l

m∑
j=1

(el (Z) f j (W )− [T ]jl )
2|k/2

� ‖ϕ −ϕm‖k
wmk/2

(
π/

√
6
)k

sup
j,l∈N

E |el (Z) f j (W )− [T ]jl |k

where due to Assumption 3 (i) supj,l∈NVar(el (Z) f j (W )) � η2 and due to

Assumption 3 (ii) it holds supj,l∈NE |el (Z) f j (W ) − [T ]jl |k � k!ηk for k � 3.
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Moreover, similarly to the proof of (A.13) in Lemma A.2 we conclude
mk/2‖ϕ − ϕm‖k

w � (m3γ −1
m )k/2(2 + 2Dd)k/2ρk/2. Let us denote μm := η(1 + Dd)√

6ρ m3γ −1
m . Consequently, for all m � 1 we have E |(ϕ(Z)−ϕm(Z))ξs(W )|2 � μ2

m and

sup
s∈Sm

E |(ϕ(Z)−ϕm(Z))ξs(W )|k � μk
mk! for k = 3,4, . . . . (A.28)

Now Bernstein’s inequality gives for all m � 1

sup
s∈Sm

E

⎡⎣( 1

n

∣∣∣ n∑
i=1

(ϕ(Zi )−ϕm(Zi ))ξs(Wi )
∣∣∣2 −8μ2

m(1+ logn)

)
+

⎤⎦
� 2

∫ ∞

0
exp

(−(t + δ)

8μ2
m

)
dt +2

∫ ∞

0
exp

(−√
n(t + δ)

4μm

)
dt

� 16μ2
m exp(− logn)+16μmn−1/2 exp

(
−√n(1+ logn)

2

)(
4μm +

√
8nμ2

m(1+ logn)

)
� C(η,γ,ρ, D)n−1

and thus, the assertion follows. n

LEMMA A.9. Let T ∈ T υ
d,D. Then for all n � 1 it holds

P

⎛⎝ M+
n⋃

m=1

�
c
m

⎞⎠� C(h,υ,η, D)n−4, (A.29)

P

⎛⎝ M+
n⋃

m=1

�c
m

⎞⎠� C(h,υ,η, D)n−1. (A.30)

Proof. Proof of (A.29). Since T ∈ T υ
d,D we have ‖[T ]−1

m ‖2 � Dυ−1
m and thus, exploiting

Lemma A.3 together with the definition of M+
n gives

n4 P

⎛⎝ M+
n⋃

m=1

�
c
m

⎞⎠� 2exp

(
− 1

48ηD

nυM+
n

(M+
n )3

+3log M+
n +4logn

)
� C(h,υ,η, D).

Proof of (A.30). Due to the definition of M+
n there exists some n0 � 1 such that n �

4Dυ−1
M+

n
for all n � n0. Thereby, condition T ∈ T υ

d,D implies max1�m�M+
n

‖[T ]−1
m ‖2 �

Dυ−1
M+

n
� n/4 for all n � n0. This gives

⋃M+
n

m=1 �c
m ⊂ ⋃M+

n
m=1�

c
m and inequality (A.30)

follows by making use of (A.29). If n < n0 then n P
(⋃M+

n
m=1 �c

m
)
� n0 and the assertion

follows since n0 only depends on h, υ, and D. n

LEMMA A.10. Let T ∈ T υ
d,D. Then it holds M−

n � Mn � M+
n for all n � 1.
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Proof. Consider M−
n � Mn . If M−

n = 1 or Mn = Mh
n the result is trivial. If Mn = 1, then

clearly M−
n = 1. It remains to consider M−

n > 1 and Mh
n > Mn > 1. Due to T ∈ T υ

d,D it

holds ‖[T ]−1
Mn+1‖−2 � D−1υMn+1 and thus, by the definition of Mn and M−

n it is easily

seen that
υM−

n

max
1� j�M−

n

[h]2
j (M−

n )3
>

4υMn+1

max
1� j�Mn+1

[h]2
j (Mn +1)3

,

and thus, Mn + 1 > M−
n , i.e. Mn � M−

n . Consider Mn � M+
n . If Mn = 1 or M+

n = Mh
n

the result is trivial, while otherwise since υ−1
m � ‖[T ]−1

m ‖2 sup‖Emφ‖υ=1 ‖Fm T Emφ‖2 �
D‖[T ]−1

m ‖2 due to condition T ∈ T υ
d with d � D and by the definition of Mn and M+

n it
follows

υMn

max
1� j�Mn

[h]2
j M3

n
>

4υM+
n +1

max
1� j�M+

n +1
[h]2

j (M+
n +1)3

.

Thus, M+
n +1 > Mn , i.e. M+

n � Mn , which completes the proof. n

In the following, we make use of the notation σ 2
Y := E[Y 2] and σ̂ 2

Y := n−1∑n
i=1 Y 2

i .
Further, let us introduce the events

H :=
{
‖Qm‖‖[T ]−1

m ‖� 1/4 ∀1� m � (M+
n +1)

}
, (A.31)

G :=
{
σ 2

Y � 2 σ̂ 2
Y � 3σ 2

Y

}
, (A.32)

J :=
{
‖[T ]−1

m Vm‖2 � 1

8

(‖[T ]−1
m [g]m‖2 +σ 2

Y
) ∀1� m � M+

n

}
. (A.33)

LEMMA A.11. Let T ∈ T υ
d,D. Then it holdsH∩G∩J ⊂A.

Proof. For all 1 � m � M+
n observe that condition ‖Qm‖‖[T ]−1

m ‖ � 1/4 yields by the

usual Neumann series argument that ‖([I ]m + Qm [T ]−1
m )−1 − [I ]m‖ � 1/3. Thus, using

the identity [T̂ ]−1
m = [T ]−1

m − [T ]−1
m
(
([I ]m + Qm [T ]−1

m )−1 − [I ]m
)

we conclude

2‖[h]t
m [T ]−1

m ‖� 3‖[h]t
m [T̂ ]−1

m ‖� 4‖[h]t
m [T ]−1

m ‖.
Similarly, we have 2‖[T ]−1

m vm‖� 3‖[T̂ ]−1
m vm‖� 4‖[T ]−1

m vm‖ for all vm ∈Rm . Thereby,

since [T̂ ]−1
m Vm = [T̂ ]−1

m [̂g]m − [T ]−1
m [g]m we conclude

‖[T ]−1
m [g]m‖2 � (32/9)‖[T ]−1

m Vm‖2 +2‖[T̂ ]−1
m [̂g]m‖2,

‖[T̂ ]−1
m [̂g]m‖2 � (32/9)‖[T ]−1

m Vm‖2 +2‖[T ]−1
m [g]m‖2.

On J it holds ‖[T ]−1
m Vm‖2 � 1

8 (‖[T ]−1
m [g]m‖2 +σ 2

Y ). Thereby, the last two inequalities
imply

(5/9)(‖[T ]−1
m [g]m‖2 +σ 2

Y )� σ 2
Y +2‖[T̂ ]−1

m [̂g]m‖2,

‖[T̂ ]−1
m [̂g]m‖2 � (22/9)‖[T ]−1

m [g]m‖2 + (4/9)σ 2
Y .
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On G it holds σ 2
Y � 2σ̂ 2

Y � 3σ 2
Y which gives

(5/9)(‖[T ]−1
m [g]m‖2 +σ 2

Y )� (3/2)̂σ 2
Y +2‖[T̂ ]−1

m [̂g]m‖2,

‖[T̂ ]−1
m [̂g]m‖2 + σ̂ 2

Y � (22/9)‖[T ]−1
m [g]m‖2 + (10/9)σ 2

Y .

Combing the last two inequalities we conclude for all 1� m � M+
n

(5/18)
(‖[T ]−1

m [g]m‖2 +σ 2
Y
)
� ‖[T̂ ]−1

m [̂g]m‖2 + σ̂ 2
Y � (22/9)

(‖[T ]−1
m [g]m‖2 +σ 2

Y
)
.

Consequently, we have

H∩G∩J ⊂
{

4�m � 9�̂m � 16�m and 5ς2
m � 18 ς̂2

m � 44ς2
m ∀1� m � M+

n

}
and thus,H∩G∩J ⊂

{
penm � p̂enm � 18penm ∀1� m � M+

n

}
. Moreover, it holdsH⊂{

M−
n � M̂n � M+

n
}
, which can be seen as follows. Consider {M̂n < M−

n }. In case of
M̂n = Mh

n or M−
n = 1 clearly {M̂n < M−

n } = ∅. Otherwise by the definition of M̂n it holds

{M̂n < M−
n } =

M−
n −1⋃

m=1

{
M̂n = m

}⊂
{
∃2� m � M−

n : m3‖[T̂ ]−1
m ‖2 max

1� j�m
[h]2

j > an

}
.

By the definition of M−
n and the property ‖[T ]−1

m ‖2 � Dυ−1
m there exists 2 � m � M−

n

such that on {M̂n < M−
n } it holds ‖[T̂ ]−1

m ‖2 > 4Dυ−1
m � 4‖[T ]−1

m ‖2 and thereby,{
M̂n < M−

n
}⊂

{
∃2� m � M−

n : ‖[T̂ ]−1
m ‖2 � 4‖[T ]−1

m ‖2
}
. (A.34)

Consider {M̂n > M+
n }. In case of M̂n = Mh

n or M−
n = 1 clearly {M̂n < M−

n } = ∅. Oth-

erwise, condition T ∈ T υ
d with d � D implies υ−1

m � D‖[T ]−1
m ‖2 as seen in the proof of

Lemma A.9. Thereby, we conclude similarly as above{
M̂n > M+

n
}⊂

{
‖[T ]−1

M+
n +1

‖2 � 4‖[T̂ ]−1
M+

n +1
‖2
}
. (A.35)

Again applying the Neumann series argument we observe

H⊂
{
∀1� m � (M+

n +1) : 2‖[T ]−1
m ‖� 3‖[T̂ ]−1

m ‖� 4‖[T ]−1
m ‖

}
,

which combined with (A.34) and (A.35) yields
{

M−
n � M̂n � M+

n
}c ⊂Hc and thus, com-

pletes the proof. n

LEMMA A.12. Under the conditions of Theorem 4.2 we have for all n � 1

n4(Mh
n )4 P(Ac)� C.

Proof. Due to Lemma A.11 it holds n4(Mh
n )4 P(Ac) � n4(Mh

n )4{
P(Hc)+ P(J c)+ P(Gc)

}
. Therefore, the assertion follows if the right hand side

is bounded by a constant C, which we prove in the following. ConsiderH. From condition
T ∈ T υ

d,D and Lemma A.3 we infer

n4(Mh
n )4 P(Hc)� 2exp

(
− 1

128Dη

nυM+
n +1

(M+
n +1)2

+3log(M+
n +1)+5logn

)
� C(h,υ,η, D) (A.36)
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where the last inequality is due to condition (M+
n + 1)2 logn = o(nυM+

n +1). Con-

sider G. Due to condition m3γ −1
m = o(1) as m → ∞ and U ∈ U∞

σ we observe
E[Y k ] � 2k(E[ϕk(Z)] + E[Uk ]) � C(γ,ρ,σ ) supj�1E[ek

j (Z)]. Thereby, assumption

supj�1E[e20
j (Z)]� η20 together with Theorem 2.10 in Petrov (1995) imply

n4(Mh
n )4 P(Gc)� n5 P

(|̂σ 2
Y −σ 2

Y | > σ 2
Y /2

)
� 1024σ−20

Y n5
E
∣∣n−1

n∑
i=1

Y 2
i −σ 2

Y

∣∣10

� 1024σ−20
Y E |Y 2 −σ 2

Y |10 � C(γ,ρ,σ,η). (A.37)

Consider J . For all m � 1 observe that the centered random variables (Yi −ϕ(Zi )) f j (Wi ),

1 � i � n, satisfy Cramer’s condition (A.28) with μm = η(1 + Dd)

√
6ρ m3γ −1

m �
C(η,γ,ρ, D). From (A.13) in Lemma A.2, ϕ ∈ Fρ

γ , and PU |W ∈ U∞
σ we infer ‖ϕm‖2

Z +
σ 2

Y � 4(2 + Dd)ρ + 2σ 2. Moreover, it holds ‖[T ]−1
m Vm‖2 � Dυ−1

m ‖Vm‖2 by employing

condition T ∈ T υ
d,D . Now Bernstein’s inequality yields for all 1� m � M+

n

n6 P
(
‖[T ]−1

m Vm‖2 > (‖[T ]−1
m [g]m‖2 +σ 2

Y )/8
)

� n6
m∑

j=1

P

⎛⎝∣∣∣ n∑
i=1

(Yi −ϕ(Zi )) f j (Wi )
∣∣∣2 >

n2υm

8Dm

(‖ϕm‖2
Z +σ 2

Y
)⎞⎠

� 2n6m exp

(
− n2υmm−1(‖ϕm‖2

Z +σ 2
Y )

32Dnμ2
m +16μmnυ

1/2
m m−1/2(‖ϕm‖2

Z +σ 2
Y )1/2

)

� 2exp

(
7logn −

n υM+
n

σ 2
Y

M+
n C(σ,η,γ,ρ, D)

)
.

Due to the definition of M+
n the last estimate implies n4(Mh

n )4 P(J c) � C, which com-
pletes the proof. n
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