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A bilateral Laplace multiplier theory, based on Rooney's class si, is developed for certain operators defined
on the Frechet spaces Dpfl. The theory is applied to Riesz fractional integrals associated with the
one-dimensional wave operator.

1980 Mathematics subject classification (1985 Revision): 46F10.

1. Introduction

The LP(W) Fourier multiplier results, given by the Marcinkiewicz or Mihlin-
Hormander theorems [8, p. 109], [4, p. 417], serve as a starting point for multiplier
theories via other transforms. For example, in [5], Rooney developed a Mellin
multiplier framework based on the one-dimensional Mihlin-Hormander theorem
together with the relationship between the Fourier and Mellin transforms. Rooney's
work was useful in establishing the mapping properties of certain operators, such as the
Erdelyi-Kober operators, on weighted Lp(0, oo) spaces. In a similar manner, we aim to
obtain a bilateral Laplace multiplier theory on some other weighted LP(R") spaces.
Moreover, we will extend the results to the corresponding Frechet spaces and, hence,
develop a distributional bilateral Laplace multiplier theory. Our theory will be
particularly useful in connection with the Riemann-Liouville and Weyl fractional
integrals, which were investigated by means of Fourier multipliers in [1], and also for
the Riesz fractional integrals associated with the one-dimensional wave operator, which
were considered using fractional powers in [6].

2. Preliminaries

Throughout, p and q denote real numbers with 1 <p, q<co and l/p+ 1/9=1. We use
MJ = r \ J o x^J o x -xM o to represent the set of all ^-dimensional multi-indices and, for
r = (rl,r2,...,r.)eNl, (fl^)(x) = (d"-" '"0(x) = (3Va?...d;"0(x) for x = (xux2,...,
xn)eW where d, = d/dx...

The main spaces of interest are the exponentially weighted Banach spaces L^P(W)
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462 S. E. SCHIAVONE

together with the corresponding Frechet spaces DPJI(W). We assume familiarity with
L"(W) and the Schwartz spaces DLP(Un), [7].

Definition 2.1. For It = {fii,n2,...,fin), \ = (xl,x2,...,xn)e(W),

(i) (£^)(x) = ̂ ^ ( x ) , A | . x = X?=i/i,xj; .
(ii) Lp,/1(IR

n) = { 0 : £ _ ^ e L p ( l R ' 1 ) } and is equipped with the norm
where || ||p denotes the usual V n o r m ;

(iii) DpJU") = {(f>:£_,,<£eDLP(W)} and is equipped with the topology generated by
the countable mul t inorm S = { u ^ , r e N 5 } where ^ " ( 0 ) = | | | |

In addition, we shall mention the spaces LM P(IR) which are polynomially weighted
L"(0,oo) spaces given by L^p(R) = { :̂ C<t>eLp^{U)}, where {C(j>)(t) = <t>(e-').

Duality theory in the above spaces is defined in the usual way. For example, L,,_,
denotes the dual space of Lp/1. We define the bilinear form ( , ) on L, _^(Rn) xLpH{W)
by

= J <A(x)^(x) dx, $ e £,,„, \i> e L,, _„

which is well-defined, by Holder's inequality. Thus, if R is a continuous linear mapping
from LP(1 into Lpll then the formal adjoint, R', is defined as the unique linear operator
from /,,_„ into Lq _„ such that (/?'i^,^) = (i/',R0).

The set CQ{R") of infinitely differentiable, complex-valued functions on IR" with
compact support is dense in Dpil(W). Tensor product spaces [9], of the form X®X, are
also required. For example L"(U) ® LP(U) is defined by

(2.1)
j = i

and is dense in L"(U2).
We shall be particularly concerned with the bilateral Laplace transform, £C, defined,

for suitable ^ and ft e W, by

(2.2)

but we shall also consider the closely related Fourier transform #", defined for suitable
<t>, b y

W ) ( T ) = J e"^(x)dx (2.3)
R"

and, for the one-dimensional case, the Mellin transform, M, defined for suitable r\ and
by
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(2.4)

It is convenient to introduce the following notation.

Notation 2.2. (i) Q denotes a region in W of the form {fi:aj<Hj<bj, j=l,2,...,n}
where (t=(nun2,...,nn) and a}, 6;eK.

(ii) For ft given by (i), ft* = {seC:Reseft}.
(iii) Throughout, we will assume s = p + h, fi,zeW, so that seft* if and only if peCl.
(iv) The functions g,g* and gp are defined by g{s)=g(fi + it); g*(s)=gis)=gifi-iz)

and, for fixed fieil, g,,(z)=g{ti + iT).

3. One-dimensional theory

In one dimension, a bilateral Laplace multiplier theory on LP/1(IR) can be obtained
from the Mellin multiplier theory on L,, p(R) which was developed by Rooney [3,
pp. 176-188], [5]. Essentially, this relies on the relationship

M^)(S) = (j£f(Ctf>))(S), C<t>(t) = <t>(e-\ (3.1)

which holds initially for fieL^^U) nL^^M), l</>^2, but can be extended to all
L,, p(R), l ^ p ^ 2 , by the same process as is used for the extension of the Fourier
transform to L"{U), 1 g p ^ 2 , in [4, Ch. 6].

Definition 3.1. Let g be a complex-valued function defined on ft*. Then g is an
^ p(R) Mellin multiplier if there exists a unique linear transformation Tg such that

(i) for l<p<oo and fxeil,
(ii) for 1 <p^2 , ^eft and

Definition 3.2. Replacing Tg by R, L(jp(R) by Lpll(W), seC by seC" and Mellin and
M by bilateral Laplace and JSf respectively, Definition 3.1 yields the n-dimensional
bilateral Laplace multiplier definition.

In one dimension, it can be shown that the class $4 is sufficient for both Mellin and
bilateral Laplace multipliers.

Definition 33. The function g es/ if there are extended real numbers a(g) and fS(g),
with a.(g)<P(g), such that

(i) g(s) is analytic in the strip ft = Res:a(g)<Res</?(g);
(ii) in every closed substrip at ^Res^/?j , where a(g)<a1 g/?j </J(g), g{s) is bounded;
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(iii) for fixed n = Re se (<x(g), p{g)), |«'(A* + « ) | = 0 ( M ~ 1 ) , as T-OO.

Lemma 3.4. Let gesf be such that /zefi=(oc(g),/?(#))• Then g is an Lp (̂R) bilateral
Laplace multiplier.

Proof. By [3, p. 183, Theorem 4], g is a Mellin multiplier with associated operator
TgeL(L^p) for /iefi. Hence, by (3.1) for ^eLPi/I(R), l < p ^ 2 , (^>{CTgC'1h){s) =
g(s)(&ip)(s). Moreover, it can be deduced that R = CTgC~1 eL{Lp^U)), l<p<oo.

Lemma 3.5. Let gesf and have associated operator R as in Lemma 3.4. Then the
restriction ofR to Dpfl(U) defines a continuous linear mapping from Dpit(U) into DPtJM).

Proof. The result follows from the corresponding Fourier multiplier result on DLP(U)
[1, Theorem 3.8], together with the relationship (J^(£_(Ii/^))( —r) = (ifi/')(s), \peLltll(U)n
LPI1(U), l < p ^ 2 , since E_^Dp M->DLP is a homeomorphism with inverse £„. Alterna-
tively, the proof of [1] can be modified to give the result directly.

In [1], the Riemann-Liouville and Weyl fractional integrals were studied on Dp ^(U)
by means of a Fourier multiplier theory. However, these results are easily restructured
in a more natural manner in terms of bilateral Laplace multipliers.

4. Multidimensional theory

Rooney's Mellin multiplier theory is clearly only valid in one dimension. In order to
make progress in higher dimensions, we exploit the relationship between the Fourier
and bilateral Laplace transforms, namely

(^'(£_pi/'))( — T) = (i?i/f)(s), \j/ eLi ^(W) nLpil(W), 1 <p^2 . (4.1)

Definition 4.1. Replacing Tg by P, Lp p(IR) by L"(W), seC by seC" and Mellin and
Jt by Fourier and !F respectively, Definition 3.1 yields the n-dimensional Fourier
multiplier definition.

The Fourier multiplier (sufficient) conditions provided by the Mihlin-Hormander or
Marcinkiewicz theorems prove difficult to apply for dimensions greater than one.
Instead, we obtain a multidimensional theory via a product of one-dimensional
multipliers and, for simplicity, we concentrate on the two-dimensional case. It is natural
to ask whether the product of two one-dimensional multipliers defines a two-
dimensional multiplier. We answer this with respect to the Marcinkiewicz theorem.

Theorem 4.2. (Marcinkiewicz theorem). Let h be a bounded function on W, defined on
each of 2" octants [8, p. 108-109]. Further let h, together with its partial derivatives up to
and including order n, be continuous on these octants. Suppose also that

(a) \h(z)\^B, for allxeW;
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(b) for each k = 1,2,...,n,

sup J
tic + I In P

8kh

dxl...dxk

as p ranges over dyadic rectangles of Uk where, ifk = n, the sup is omitted;

(c) the analogue of(b) holds for each of the n! permutations of the variables xu...,xn.

Then h is an L"(W) Fourier multiplier in the sense of Definition 4.1.

Proof. [8, p. 109-112].

In Theorem 4.2, the dyadic decomposition of Uk involves considering sets of
fc-dimensional rectangles with sides parallel to the axes. Thus, it is not a general
decomposition and can be contrasted with the alternative decomposition used in the
Mihlin-Hormander theorem [4, p. 417]. However, since our approach uses products of
one-dimensional multipliers, the dyadic decomposition will prove particularly suitable.

Lemma 4.3. If ges/ then, for each fieQ=(a.(g), P(g)),gfl(x), defined by Notation
2.2(iv), satisfies the conditions of the one-dimensional Marcinkiewicz theorem.

Proof. Since ges/ it follows that, for each /left, ^ e L ^ R J n C°°(IR) and thus,
^ ( T J I ^ M J , VTEIR, where Mx may depend on fi. Also,

where 7J=(2J',2J+1) or (-2J+1,-2}). Hence, setting B = max(M1 ;M2In2) gives the
required result.

Theorem 4.4. Let hjEC2(U),j= 1,2, be one-dimensional Fourier multipliers satisfying
the conditions of Theorem 4.2 and having associated operators P}. Then h(x) = h1(x1)h2(x2)
is a two-dimensional Fourier multiplier satisfying the conditions of Theorem 4.2 and having
associated operator Pi®P2, defined on L"(U)®L"(U) by (P, ® P2)(0) =
£Jj=1(P10J)(P2</'J) where 4> is as in (2.1), and extended by continuity and density to
L"(U2).

Proof. By definition hj are bounded functions on U defined on the half-lines ( —oo,0)
and (0, oo) and have continuous second order derivatives there. Also, there exist
constants B} such that \hj(Xj)\^Bj and jpJ/i}(T,)|dT;g.B/, as p} ranges over dyadic
intervals of U. Thus, A is a bounded function on U2, defined on each of the four
quadrants, and is continuous together with its derivatives up to and including order
two. In addition,
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sup J \djhj(zj)hk(zk)\dzj, j*k,j,k=l,2,
«• Pi

r«c PS

and

where />i,p2 range over dyadic intervals of U and x denotes the Cartesian product.
Hence, Theorem 4.2 is satisfied for n = 2.

Next, suppose $ e L2(U) ® L2(U). Clearly, &: L2(M) ® L2(U)<= L2(U2)->L2(U2). More-
over, for <^(x1,x2) = X*=i0/x1)

X

= I (^(Pie/xJPj^/x,)))^), by linearity of P,

where ^"(1) denotes the one-dimensional Fourier transform with respect to the variable
xf. Thus,

X ej(Xl)iPj(x2)\\r), by linearity,

Finally, since h is a two-dimensional Fourier multiplier, there exists a mapping
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PeL(L"(U2)) such that P = Pl®Pi on L2(U) ® L2(R). By density arguments we can
extend Pi ® P2 to PeL(Lp{U2)) as required. This completes the proof.

Corollary 4.5. For j = 1,2, let gJ be of class s/ and have associated operators PIL] and
let / i /eOJ = (a(g-'),j%'))- Then f^T)=gji1(T1)^2(T2) is a two-dimensional Fourier multiplier
for /i = (/i1,/x2)eQ = f21 x f i 2 , with associated operator PM1 (g) PM.

Proof. This is immediate in view of Lemma 4.3 and Theorem 4.4.

The corresponding result for LP/1((R
2) bilateral Laplace multipliers can now be

deduced.

Corollary 4.6. For j = l,2, let gJ be of class s/ and let g* be defined, for fieQ =
Q I X Q 2 = ( « ( J 1 ) . ^g1)) *(«(g2), P(g2)) by g*(i» + it)=g1(/i1-iT1)«2(Ai2-iT2). Then g* is a
two-dimensional bilateral Laplace multiplier with associated operator R =

Proof. By Corollary 4.5, for tf>eLp(R2), l<p^2,
Hence, by (4.1), (^(£^P,, ® P„)*))<*-*))= gJf){&{EJ>))iji-h) from which the
required result follows.

Remark 4.7. (i) The operator R in Corollary 4.6 can be expressed as (£„,?„,£_„,) ®
(£„?„£_M2). With this form, Corollary 4.6 may be obtained by working in the tensor
product space LPI11{U) ® LPwllI(U) directly.

(ii) There would seem to be no difficulties in extending Theorem 4.4 - Corollary 4.6
to higher dimensions.

Next, we extend the above results to a DPI£U2) setting. On replacing Lp p by Dp„ in
Definition 3.2 we get a Dp J^W) bilateral Laplace multiplier definition. Applying the
approach of [2; II, Theorem 3.3], we shall prove that every Lp ^(U2) multiplier is a
Dp ^(U2) multiplier. This requires the following preliminary results.

Definition 4.8. The operators /? and Kf, i = l,2,...,n are defined, for suitable
functions <p and Re a > 0, by

= [r(a)]-1 J (xi-yr-l<l>(xl,...,xi-1,y,xi+l,...,xn)dy, xeU",

and

KW(x) = ir(oL)yi](y-xiy-1(t>(xl,...,xi_l,y,xi+l,...,xn)dy, xeU\
Xi

We denote by /, and Kt the operators corresponding to a= 1.
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Lemma 4.9. Let n = 2 in Definition 4.8 and /t = (nl,fi2)eU2.

(i) Ii(Ki) is a continuous linear mapping from LpJiU2) into LpJ,U2) for //(> 0(/i, < 0).

(ii), dj is a homeomorphism from Dp^U2) onto Dp(1(R2) provided /x,#0 and has inverse
drl = /,. for ^> 0 and d,~ 1=Ki for nt <0.

(Hi) The operator pairs / i , / 2 ; KUK2; î> K2
 and f^-iJi commute on LpJU2) for / i>0;

(i <0; Hi > 0, fi2 < 0 and /ix <0 , fi2 > 0 respectively.

(iv) For 2

Proof. Parts (i) and (ii) are given in [6, Lemma 2.4, Theorem 5.1]. In (iii),
commutativity of each pair is proved similarly. For example, for ^eLPi/,(R

2) and fi>0,
lll2\j/ = l2li^ since, by Holder's inequality

IiI2\Hxl,X2)\= I"' 7

Hence, Fubini's theorem can be applied to justify inverting the order of integration in
the double integral. To prove (iv), we assume initially that ij/ e CQ"(IR2). Then

(JS?(3^))(s)=Je--«a^(x)dx = s,(JS?̂ )(s), s = (Sl,s2),

on integrating by parts. By standard continuity and density arguments, the required
result now holds.

We can now prove the main result.

Theorem 4.10. Every LPiJiU2) multiplier is a DPJ(M2) multiplier.

Proof. Let g(s)=g(s1,s2) be an LPII(U
2) multiplier for fieQ with associated operator

2 2
QeL(LpJ and let ^eC^IR2) be regarded as an element of L2i/1(R

2) with /*,#(), 1= 1,2.
Consider the case /i>0. (The other cases can be treated similarly). By Lemma 4.9,

and

Hence,

so that Q<t> = IiI2Qdid2(j> almost everywhere on U2, since if is one-one on L2 ,,. We
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require that this relationship holds everywhere. To prove this, let R:Co(U2)-*L2l,(U
2)

be defined by R4>(x) = IlI2Qdld2(j>{x). The operator R is well-defined for all xeR2, by an
argument similar to that used in Lemma 4.9 (iii). Moreover, a straightforward argument
establishes that ReC(U2). Next, we prove that R0eC°°([R2) and that dk-lR<t> = Rdk-l4>, for
all k,leN0. Since (S^(Qd1<f>))(s) = s1g(s)(^<f>)(s), arguing as in the first part of the proof
it can be shown that Q<l> = IlI2Qdld24> = I1Qdl4> almost everywhere on U2. Thus,

= 1 {Qd1^)(x1,x2)dxl

= J {Rdl4>)(x1,x2)dxl,
— ao

since Q\j/ = R}jj almost everywhere for \l/eC%(U2). Then, by the mean value theorem for
integrals (see [2; II, p. 138]), (d1R<p)(x) = (Rdl<p)(x) because Rdt(f) is continuous.
Similarly, (d2R((>)(x)=(Rd2(f)){x) and successive applications of the two results yield
dkJR4> = RdkA4> as required.

Finally, we must show that R defines a continuous mapping from Dpifl into Dp„
whenever fieCl. This follows since

by Leibniz' rule,

Z C ^ , | - / i | - - ' | | i l ^ | | p ^ from above,

since U ^ = Q ^ a.e.,

by an induction argument. The constants Cafi and DPy are independent of <j> and | |8| | is
the operator norm of QeL(Lp H). We have

https://doi.org/10.1017/S0013091500004867 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004867


470 S. E. SCHIAVONE

so that arguing as in [2; II, Theorem 3.3] we obtain the required result. This completes
the proof.

From Theorem 4.10, we can deduce that every LP(IR2) (Fourier) multiplier is a
DLP(U2) (Fourier) multiplier.

The class of Dp ,, multipliers is strictly larger than that of Lp„ multipliers. For
example, multipliers associated with differential operators are now included.

Theorem 4.11. Let g be an Lp J[U2) multiplier with associated operator R and let
P(s) = P(s1,s2) be a polynomial in the variables s, and s2- Then the function P(s)g(s) is a
DPill(U

2) multiplier with associated operator P(dl,d2)R = RP(d1,d2).

Proof. This is a straightforward modification of [2; II, Theorem 3.6].

A distributional multiplier theory on the dual spaces of DPI,{U2), denoted by D'pit,{U2),
see [6], can now be derived. The key to this lies in the following two results, the first of
which is a modified version of Parseval's theorem, [10, p. 154].

Lemma 4.12. For any functions ^ j and $ 2 in L2 ^(W) and L2_Ji,W) respectively

f (<?4>i)(v + iT)(J?(l>2H-p-ix)dT=(2ny J <Mx)<Mx)<*x. (4.2)

Proof. By [10, p. 154], for fu f2eL2(Un),

J (^/1)(u)(J^/2)(-u)<iu=(27I)" J ft(x)f2(x)dx.
R" tt"

Hence, by (4.1), the identity (4.2) can be deduced.

Lemma 4.13. Let g be an Lp „ multiplier for peCl. Then g~, defined by g~(s)=g{ — s),
is an LPfl multiplier for —peQ. Moreover, if g has associated operator R then g~ has
associated operator R', the Lp ,, adjoint of R.

Proof. As in [2; I, Theorem 4.5] we show first that g~ generates an operator
ReL(LPill) for -fteCl and then verify that R\}i = R'\l/ for all \l/eC^(U2). We define R by
R = URU where U is given by 1/<£(T) = #(—T) and is a homeomorphism from LPIL onto
Lp^,, for all peU2 with inverse U~1 = U. Thus, ReL(LPill) for -fieSl. Moreover, for

since g is an Lp _,, multiplier for — fteCl with associated operator R. For —fieQ, both
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R' and R belong to L{LPJ so that R = R' provided R<t> = R'<t> for all <£eq?(R2). For the
case p = q = 2, apply (4.2) to each side of the identity

J R4,(x)<Kx)dx= f il/(x)R'<t>{x)dx,
R2 R2

to give

1 J
R2 R2

Since the range of <£ is the whole of L2(U2), it follows that ( 0 ) ( ) g ( » ( )
for —/ i eQ and <f>eSf2,i,

 a n d , because R' coincides with R on CQ(U2) we obtain the
required result. This completes the proof.

We can now deduce the desired result for D'pJiU2).

Theorem 4.14. Let g be an Lpil(U
2) multiplier for fteQ. with associated operator R. Then

the extension, R, of R from Lp_i^U2) to D'^^U2) exists in L{D'pJU2))for each - / i e Q .

Proof. In the notation of [6], we note that <R/,(/)> = </,/?'0> for (peDpfl and
feD'PH. By Lemma 4.13, R'eL(Lp ,,) for — fteQ. and, from Theorem 4.10, we deduce
that R'eL(Dp J for - j i e f i . The required result follows.

If g is a Dpll bilateral Laplace multiplier, but not an Lp ,, multiplier, it is still possible
to obtain a distributional extension for the associated operator by proceeding along the
lines of [2; II, Lemma 4.16]. We omit the details.

5. An application to the Riesz fractional integrals Iu and Ku

For suitable functions <p a n d Rea>0 , we define I2", the Riesz fractional integral
associated with the one-dimensional wave operator • = d2/dt2 — 32/dx2, by

(5.1)

where R=(t-z)2-(x-£)2 and V(P) = {(^,z):R^0,z<t}. The operator 72a forms an
adjoint pair with K2a which is defined by (5.1) on replacing V(P) by V'(P) where
V'(P) = {(^;T):R^0, x>t}. These fractional integrals are used in the solution of the wave
equation by Riesz's method; see, for example, [6] where a distributional version of I2" is
applied to solve the generalized half-space Cauchy problem for the one-dimensional
wave equation. We show how properties required for the application of Riesz's method
may be derived using bilateral Laplace multiplier theory.

We require decompositions of I2" and K2" into the forms [6],

l2°<}> = 2-*TQl\l%TQi4>, (5.2)
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for Rea>0 and suitable <p, where I" and Kf are given by Definition 4.8 with n = 2 and
TQ<t>(x) = cj>(Qx) w i th

n — T-I /2

and TQ * = TQ., where Q' denotes the transpose of Q. We also require a preliminary
lemma concerning the action of i£ on the operators TQ and TQ i.

Lemma 5.1. Let g be an LPi/,(R
2) bilateral Laplace multiplier, for petl, with

associated operator R and let h be defined on Q~lQ* ={s:Qse£l*} by h(s)=g(Qs). Then
h is an LpfL bilateral Laplace multiplier for each fieQ'1^ and has associated operator

Proof. By [6, Lemma 2.3], TQ is a homeomorphism from Lpm(U2) onto Lp,^(R2)
with inverse TQ1, where to = Qfi. Hence, /?! is a continuous operator on Lp p for each
pe(l,oo) and fieQ'1^. Moreover, for ^eLlwftnLPtl,, l < p ^ 2 , where peQ~lQ, we
have

= |dete|"1 J e- 'e-

= |detQ|-1 f e-°-'(UZ)(^)d/i, since
2

Using standard arguments, this can be extended to hold for ^eL p „ , for all p: 1 <p^2 .
This completes the proof.

Instead of considering I' and X? directly we use the related direct products R" ® R"
and W ® W which are defined on the tensor product spaces LPi/1® Lp<r The
operators /?" and W" denote the Riemann-Liouville and Weyl fractional integrals
defined, for Rea>0, by

and

= [r(a)] -» J (T - 0""l<l>(i) dr.
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By [1] and the identity

s-a (5.4)

we deduce that for /x>0 and Rea>0, g(s) is an LPI1 bilateral Laplace multiplier with
associated operator Ra. Hence, for /z<0 and Rea>0, g ~(s)=g(-s) is an Lpil bilateral
Laplace multiplier with associated operator W". It follows, by Theorem 4.10, that g and
g~ also define Dp„ bilateral Laplace multipliers under the stated restrictions on \i and a.

By [1, Theorem 4.3], gesi for Rea>0 with Q = (0,oo). Hence, for /i>0, by Corollary
4.6, Ga defined by G!I(s)=g(s1)g(s2) = s7'IsJa, is a two-dimensional bilateral Laplace
multiplier with associated operator £„(£_„,#"£„,) ®(£_,,2/?"£,12)£_,, = .Ra<g) R". Simi-
larly, (—sj"^—s2)~" is a two-dimensional bilateral Laplace multiplier for ji<0 and
Rea>0 with associated operator W®W. Moreover, it is easily verified that the
extensions of R'^R* and WX®W to the whole of LPJU2) coincide with the
operators I\F2 and K\K\ respectively.

In view of Lemma 5.1, we conclude that I2" and K2a belong to L(LP ,(R2)) for v>0
and v<0 respectively where v = Q/i = 2~1/2(/i1+/i2,n2 —Mi)- By choosing ni = — 2~1/2//
and n2 = 2~ll2n we find that I2x and K2" define continuous linear mappings on
LP:li(U

2) = LpA0<lt)(U
2) for /i>0 and /i<0 respectively.

The index laws for I2" and K2x on Lp,^(R2) are now readily established. For example,
I1" has multiplier h(l(s) = 2-''Gx(Qs) = (s2

2-s
2)~x and clearly, ha(s)his(s) = hx+p(s) so that

j2aj20 = /2a+2p a s o p e r a t o r s o n ip ^ for an | i > o . By Theorem 4.10, it is clear that ha

and h~ are Dpil{U2) ( = DpAOlt)(U
2)) multipliers for /i>0 and /i<0 respectively. In the

Dp„ setting, the associated operators /2a and K2" can be extended to negative values of
a by means of Theorem 4.11. For example, choosing N: Re(a + N)>0, I2* is defined by
[-]^/2(0.+^) = /2(«+N)[::|^ a n d h a s DPift{U2) bilateral Laplace multiplier given by

P(s)hx+w(s) = 2 "«"+N»(sl - s2 )^Ga+w(Qs)

Finally, we can obtain properties of the extended operators T2* and R2' on D, „, for
/i<0 and /i>0 respectively, by using Theorem 4.14. In particular, hx{—s)=(s2-s2)"",
Mi=0, /*2 = M. is a bilateral Laplace multiplier for /i<0 with associated operator K2".
Hence, P«, defined by <P"/,0> = </ ,^ 2 ^>, *eDPi|1, /eD1, , , is in L[D'PJU2)) for |i<0.

In higher dimensions there is no equivalent decomposition for the Riesz fractional
integrals so that the above techniques cannot be applied and a more general
multidimensional multiplier theory is required.

REFERENCES

1. W. LAMB, Fourier multipliers on spaces of distributions, Proc. Edinburgh Math. Soc. 29
(1986), 309-327.

2. A. C. MCBRIDE, Fractional powers of a class of Mellin multiplier transforms I/II/III, Appl.
Anal. 21 (1986), 89-127/129-149/151-173.

https://doi.org/10.1017/S0013091500004867 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004867


474 S. E. SCHIAVONE

3. A. C. MCBRIDE and G. F. ROACH (editors), Fractional Calculus (Research Notes in
Mathematics, 138 (Pitman, London, 1985).

4. G. O. OKIKIOLU, Aspects of the theory of bounded integral operators in //-spaces (Academic
Press, London, 1971).

5. P. G. ROONEY, A technique for studying the boundedness and extendability of certain types
of operators, Canad. J. Math. 25 (1973), 1090-1102.

6. S. E. SCHIAVONE and W. LAMB, A fractional power approach to fractional calculus, J. Math.
Anal. Appl., to appear.

7. L. Schwartz, Theorie des Distributions (nouvelle edn.) (Hermann, Paris, 1966).

8. E. M. STEIN, Singular Integrals and Differentiability Properties of Functions (Princeton
University Press, 1970).

9. F. TREVES, Topological Vector Spaces, Distributions and Kernels (Pure and Applied mathema-
tics: A series of monographs and textbooks 25, Academic Press, New York, 1967).

10. K. YOSIDA, Functional Analysis (fifth edn.) (Springer-Verlag, Berlin, 1978).

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ALBERTA
EDMONTON, ALBERTA T6G 2G1
CANADA

https://doi.org/10.1017/S0013091500004867 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004867

