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Abstract. The goal of this paper is to present a solution of the cellular automaton
associated with the discrete KdV equation, using an algebro-geometric solution of the
discrete KP equation over a finite field out of a hyperelliptic curve.
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1. Introduction. Cellular automata (CA) are (solutions of) completely discrete
dynamical systems, for which values of both independent and dependent variables are
discrete. The concept of CA emerged in interaction with computational machines, and
hence, CA are convenient tools for computer simulations of various phenomena. There
is also an approach to CA, in which the main objective is to obtain “analytic” solutions
(or full solutions or in a form good for investigation of their global properties) without
need of performing step by step calculations. This leads naturally to the notion of
integrability and integrable cellular automata (ICA). (For references to ICA see [3]
or [6] .)

Recently a new method of construction of ICA was proposed in [6]. Its main idea
is to keep the form of a given integrable discrete system and to transfer the algebro-
geometric method of construction of its solutions [10, 1], from the complex field �

to a finite field case. In this framework, there were constructed finite field versions
of multisoliton solutions for the fully discrete 2D Toda system (the Hirota equation)
in [6], and for discrete KP and KdV equations (in Hirota form) in [4], and also algebro-
geometric solutions of the discrete KP equation out of a hyperelliptic curve in [3].

In this paper we extend previous works to construct an algebro-geometric solution
of the discrete KdV equation out of a hyperelliptic curve. To reach this aim we obtain
a solution of the dKP equation in a form compatibile with the reduction from the dKP
equation to the dKdV equation.

The paper is constructed as follows. In section 2 we first summarize the finite field
version of the algebro-geometric construction of solutions of the discrete KP and KdV
equations. In section 3 we apply the method to construct a solution of the discrete KP
and KdV equations starting from an algebraic curve of genus two.

2. The finite field solution of the discrete KP equation out of nonsingular algebraic
curves. We first shortly recall the algebro-geometric construction of solutions of
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the discrete KP equation over finite fields and its reduction to the discrete KdV
equation [6, 4, 3]. An algebro-geometric approach in case of a complex field � is
described in [1]. Algebraic curves over finite fields are exposed for example in [15, 17].

2.1. General construction for the dKP equation. For the general construction
we need an algebraic projective curve C/� (or simply C), absolutely irreducible,
nonsingular, of genus g, defined over the finite field � = �q with q elements. By C(�)
we denote the set of �-rational points of the curve. By � we denote the algebraic
closure of �, i.e., � = ⋃∞

�=1 �q� , and by C(�) we denote the corresponding infinite set
of �-rational points of the curve. Denote by Div(C) the abelian group of the divisors
on the curve C. The action of the Galois group G(�/�) (of automorphisms of � which
are identity on �) extends naturally to action on C(�) and Div(C). A field of �-rational
functions on the curve C we denote by �(C) and the vector space L(D) is defined as
{f ∈ �(C) | (f ) > −D}, where D ∈ Div(C) and (f ) = ∑

P∈C ordP(f ) · P is the divisor of
the function f ∈ �(C).

On the curve C we choose:
(1) four points Ai ∈ C(�), i = 0, 1, 2, 3,
(2) an effective �-rational divisor of order g, i.e., g points Bγ ∈ C(�), γ = 1, . . . , g,

which satisfy the following �-rationality condition

∀σ ∈ G(�/�), σ (Bγ ) = Bγ ′ .

We assume that all the points used are distinct and in general positions. In particular,
the divisor

∑g
γ=1 Bγ (and a divisor D(n1, n2, n3) defined below) is non-special.

DEFINITION 1. Fix a �-rational local parameter t0 at A0. For any integers
n1, n2, n3 ∈ � let the divisor D(n1, n2, n3) be of the form

D(n1, n2, n3) = n1(A0 − A1) + n2(A0 − A2) + n3(A0 − A3) +
g∑

γ=1

Bγ .

The function ψ(n1, n2, n3) (called a wave function) is a rational function on the curve
C with the following properties

(1) the divisor of the function satisfies (ψ) > −D, i.e. ψ ∈ L(D),
(2) the first nontrivial coefficient of its expansion in t0 at A0 is normalized to one.
Existence and uniqueness of the function ψ(n1, n2, n3) is due to application of the

Riemann–Roch theorem with general position assumption and due to normalization.
Moreover, the function ψ(n1, n2, n3) is �-rational, which follows from �-rationality
conditions for sets of points in their definition.

REMARK. Notice that the function ψ(n1, n2, n3) has g zeros not explicitly specified
in the Definition 1.

The next step of the construction is to obtain linear equations for the wave
functions. The full form of such equation is in the case when the pole of ψ(n1, n2, n3)
at A0 is of the order exactly (n1 + n2 + n3) and respective zeros at Ai are of the order ni,
for i = 1, 2, 3. We will call this case generic. Having fixed �-rational local parameters
ti at Ai, i = 1, 2, 3, denote by ζ

(i)
k (n1, n2, n3), i = 1, 2, 3, the �-rational coefficients of
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expansion of ψ(n1, n2, n3) at Ai, respectively, i.e.,

ψ(n1, n2, n3) = tni
i

∞∑

k=0

ζ
(i)
k (n1, n2, n3)tk

i , i = 1, 2, 3.

Denote by Ti the operator of translation in the variable ni, i = 1, 2, 3, for example
T2ψ(n1, n2, n3) = ψ(n1, n2 + 1, n3). The full linear equation is of the form

Tiψ − Tjψ + Tjζ
(i)
0

ζ
(i)
0

ψ = 0, i �= j, i, j = 1, 2, 3. (1)

It follows from observation, that Tiψ − Tjψ ∈ L(D), hence must be proportional to
the wave function ψ . Coefficients of proportionality can be obtained from comparison
(the lowest degree terms) of expansions of left and right sides of (1) at the point Ai.

REMARK. When the genericity assumption fails then the linear problem (1)
degenerates to the form Tiψ = ψ or even to 0 = 0.

Notice that equation (1) gives

Tjζ
(i)
0

ζ
(i)
0

= −Tiζ
(j)
0

ζ
(j)
0

, i �= j, i, j = 1, 2, 3. (2)

Define

ρi = (−1)
∑

j<i nj ζ
(i)
0 , i = 1, 2, 3, (3)

then equation (2) implies existence of a �-valued potential (the τ -function) defined
(up to a multiplicative constant) by the formulas

Tiτ

τ
= ρi, i = 1, 2, 3. (4)

Finally, equations (1) give rise to the condition

T2ρ1

ρ1
− T3ρ1

ρ1
+ T3ρ2

ρ2
= 0, (5)

which written in terms of the τ -function gives the discrete KP equation [8] called also
the Hirota equation

(T1τ ) (T2T3τ ) − (T2τ ) (T3T1τ ) + (T3τ ) (T1T2τ ) = 0. (6)

REMARK. Equation (5) can be obtained also from expansion of equation (1) at Ak,
where k = 1, 2, 3, k �= i, j.

Absence of a term in the linear problem (1) reflects, due to the Remark above, in
absence of the corresponding term in equation (6). This implies that in the non-generic
case, when we have not defined the τ -function yet, we are forced to put it to zero.
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2.2. Reduction to the dKdV equation. The discrete KdV equation [7, 11]

(T1τ ) τ − (
T−1

3 τ
)
(T3T1τ ) + (T3τ )

(
T1T−1

3 τ
) = 0, (7)

is obtained from the discrete KP equation by imposing the constraint

T2T3τ = γ τ, (8)

where γ is a non-zero constant. Algebro-geometric solutions of the discrete KdV
equation can be constructed using the following the facts (see [4]).

LEMMA 1. Assume that on the algebraic curve C there exists a rational function h
with the following properties

(1) the divisor of the function is (h) = A2 + A3 − 2A0,

(2) the first nontrivial coefficient of its expansion in the parameter t0 at A0 is
normalized to one.

Then the wave function ψ satisfies the following condition

T2T3ψ = hψ. (9)

REMARK. Existence of such a function h implies that the algebraic curve C is
hyperelliptic.

PROPOSITION 2. Let h be the function as in Lemma 1. Assume additionally that

h(A1) = 1. (10)

Denote by δ2 and δ3 the respective first coefficients of the local expansion of h in parameters
t2 and t3 at A2 and A3, i.e. h = t2(δ2 + · · ·), h = t3(δ3 + · · ·). Then the function

τ̃ = τδ
−n2(n2−1)/2
2 (−δ3)−n3(n3−1)/2 (11)

satisfies the discrete KdV equation (7).

3. A “hyperelliptic” solution of the discrete KP and KdV equation. Our goal here
is to construct a solution of the dKP equation to which we can apply the reduction
scheme described above. We are forced to perform steps of the construction (see also
[2] for details) starting from a hyperelliptic curve. In detail we deal with a curve of
genus g = 2 but the technical tools used here can be applied directly to hyperelliptic
curves of arbitrary genus.

3.1. Hyperelliptic curves and Jacobian picture of the construction. In the following
we use an affine picture of a hyperelliptic curve. It is motivated by the fact that a general
hyperelliptic curve can be tranformed to a form with only one point at infinity (see [16]).

DEFINITION 2. A hyperelliptic curve C of genus g over a field � is given by

C : v2 + h(u)v − f (u) = 0, (12)
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where h(u) ∈ �[u] is a polynomial of degree at most g, f (u) ∈ �[u] is a monic polyno-
mial of degree 2g + 1, if there is no points (u = x, v = y) ∈ � × � which satisfy equa-
tion (12) and equations 2y + h(x) = 0 and h′(x)y − f ′(x) = 0.

By P̃ we denote the point opposite to P, i.e. conjugate with respect to hyperelliptic
automorphism. Denote by Div0(C; �) the abelian group of the �-rational divisors on
the curve C and by J(C; �) the group of equivalence classes of �-rational degree zero
divisors Div0(C; �) modulo the �-rational principal divisors, i.e. divisors of a functions
�(C). (In terms of algebraic geometry, J(C; �) is identified with the group of �-rational
points of the Jacobian of the curve C [12, 14].)

Two divisors A, B ∈ Div0(C; �) are equivalent (we write A ∼ B) if B = A + (f ) for
some function f ∈ �(C). The class of a divisor A in the divisor class group J(C; �)
is denoted by [A]. For a hyperelliptic curve C (of genus g), each equivalence class
[A] ∈ J(C; �) has a unique representant in the form of a reduced divisor [13].

DEFINITION 3. A divisor D ∈ Div0(C; �) of the form

D =
k∑

γ=1

Xγ − k · A0,

where Xγ ∈ C\{A0} is called reduced if
(1) k ≤ g
(2) X̃γ �= Xγ ′ for all γ �= γ ′.
Let us present in this picture the description of the wave function ψ and of

the τ -function. Consider the following divisor D(n1, n2, n3) ∈ Div0(C; �) of degree
zero

D(n1, n2, n3) = n1(A0 − A1) + n2(A0 − A2) + n3(A0 − A3) +
g∑

γ=1

Bγ − g · A0,

with linear dependence on n1, n2 and n3. Its equivalence class in J(C; �) has the unique
�-rational representant of the form of a reduced divisor

X(n1, n2, n3) =
k∑

γ=1

Xγ (n1, n2, n3) − k · A0.

This equivalence is given by a function whose divisor is

n1(A1 − A0) + n2(A2 − A0) + n3(A3 − A0) +
k∑

γ=1

Xγ (n1, n2, n3) −
g∑

γ=1

Bγ + (g − k)A0.

If we normalize such a function at A0, according to Definition 1, it becomes the wave
function ψ . Notice that if k �= g, it means that the pole of the wave function at A0 is of
order less then (n1 + n2 + n3), and it is a non-generic case, thus τ (n1, n2, n3) = 0.

REMARK. Points Xγ indicate zeros of the wave function which are not explicitely
specified in the previous construction.
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Table 1. �7-rational points of the curve C. The point
opposite to P (conjugate with respect to the hyper-
elliptic automorphism) is denoted by P̃.

i Pi P̃i

0 ∞ P0

1 (1, 1) (1, 5)
2 (2, 2) (2, 3)
3 (5, 3) (5, 6)
4 (6, 4) P4

Table 2. �49-rational points of the curve C (which are not �7-rational); Pσ denotes conjugate to P with
respect to the action of the Frobenius automorphism.

i Pi P̃i Pσ
i P̃σ

i

5 (0, 21) (0, 28) P̃5 P5

6 (3, 9) (3, 44) P̃6 P6

7 (4, 26) (4, 33) P̃7 P7

8 (7, 5) (7, 44) (42, 5) (42, 9)
9 (8, 22) (8, 26) (43, 29) (43, 33)

10 (11, 5) (11, 47) (46, 5) (46, 12)
11 (12, 6) (12, 45) (47, 6) (47, 10)
12 (13, 14) (13, 29) (48, 35) (48, 22)
13 (14, 8) (14, 34) (35, 43) (35, 27)
14 (15, 13) (15, 28) (36, 48) (36, 21)
15 (16, 17) (16, 23) (37, 38) (37, 30)
16 (17, 0) (17, 39) (38, 0) (38, 18)
17 (18, 4) (18, 41) (39, 4) (39, 20)
18 (19, 9) (19, 28) (40, 44) (40, 21)
19 (20, 12) (20, 31) (41, 47) (41, 24)
20 (22, 4) (22, 30) (29, 4) (29, 23)
21 (25, 6) (25, 32) (32, 6) (32, 25)
22 (27, 7) (27, 22) (34, 42) (34, 29)

3.2. A curve and its Jacobian. Consider a hyperelliptic curve C of genus g = 2,
defined over the field �7 and given by the equation

C : v2 + uv = u5 + 5u4 + 6u2 + u + 3. (13)

The (u, v) coordinates of its �7-rational points are presented in Table 1. The only two
special points of the curve are (6, 4) and the infinity point ∞.

We identify the field �49 with the extension of �7 by the polynomial x2 + 2, i.e.,
�49 = �7[x]/(x2 + 2). It is convenient to introduce the following notation: the element
k ∈ �49 represented by the polynomial βx + α is denoted by the natural number 7β + α.
The Galois group G(�49/�7) = {id, σ }, where σ is the Frobenius automorphism, acts
on elements of �49\�7 in the following way: k = 7β + α 	→ σ (k) = 7(7 − β) + α. The
coordinates of �49-rational points of the curve (which are not �7-rational) are presented
in Table 2.

The full description of the group J(C; �7) is given in Table 3, where we have choosen
as a reference point A0 the infinity point ∞. The divisor D1 = P1 − ∞ generates the
subgroup of order 31 and the divisor D4 = P4 − ∞ generates the subgroup of order 2.
For n ∈ {0, 1, . . . , 30} and m ∈ {0, 1} we present the reduced representants of elements
[nD1 + mD4]r of J(C; �7) and the transition functions gm(n) which are given by the
equation

[nD1 + mD4]r + D1 = (gm(n)) + [(n + 1)D1 + mD4]r,
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Table 3. The group J(C; �7) as the simple sum of its cyclic subgroups; [X ]r denotes the reduced
representant of the equivalence class of the divisor X ; g0(n), g1(n) – transition functions (see main text).

n [nD1]r g0(n) [nD1 + D4]r g1(n)

0 0 1 (6, 4) − ∞ 1

1 (1, 1) − ∞ 1 (1, 1) + (6, 4) − 2∞ 5+5u+3u2+v

6+4u+u2

2 (1, 1) + (1, 1) − 2∞ u + 5u2 + v

(2 + u)2 (12, 45) + (47, 10) − 2∞ 1 + 5u2 + v

2 + 5u + u2

3 (5, 6) + (5, 6) − 2∞ 1 + u + 4u2 + v
(2 + u)(5 + u) (15, 28) + (36, 21) − 2∞ 6u2 + v

2 + u2

4 (2, 3) + (5, 3) − 2∞ 2 + 4u2 + v

5 + 4u + u2 (7, 44) + (42, 9) − 2∞ 5 + u + v

4 + 6u + u2

5 (19, 9) + (40, 44) − 2∞ 4u + 2u2 + v

5 + 5u + u2 (11, 5) + (46, 5) − 2∞ 6 + 6u + u2 + v

3 + 6u + u2

6 (22, 4) + (29, 4) − 2∞ 5 + 2u + 6u2 + v
(2 + u)(5 + u) (18, 41) + (39, 20) − 2∞ 5 + 3u + 5u2 + v

5 + 3u + u2

7 (2, 3) + (5, 6) − 2∞ 5 + 6u + 2u2 + v

5 + 2u + u2 (16, 17) + (37, 38) − 2∞ 5 + 4u + 4u2 + v

3 + u + u2

8 (27, 22) + (34, 29) − 2∞ 1 + 3u + 2u2 + v

1 + u2 (17, 39) + (38, 18) − 2∞ 3 + 2u + u2 + v
(5 + u)(6 + u)

9 (14, 34) + (35, 27) − 2∞ 1 + 5u + v
(1 + u)(5 + u) (1, 5) + (2, 2) − 2∞ 6 + u

10 (2, 2) + (6, 4) − 2∞ 3 + 5u + 5u2 + v

(5 + u)2 (2, 2) − ∞ 1

11 (2, 3) + (2, 3) − 2∞ 6 + u + 6u2 + v

3 + 2u + u2 (1, 1) + (2, 2) − 2∞ 4 + 2u2 + v

3 + 5u + u2

12 (13, 14) + (48, 35) − 2∞ 3 + 6u + 4u2 + v

2 + 2u + u2 (8, 22) + (43, 29) − 2∞ 2 + 4u + v
(2 + u)(6 + u)

13 (20, 12) + (41, 47) − 2∞ 5u + u2 + v
(1 + u)(2 + u) (1, 5) + (5, 3) − 2∞ 6 + u

14 (5, 3) + (6, 4) − 2∞ 6 + 5u + 2u2 + v

6 + 6u + u2 (5, 3) − ∞ 1

15 (25, 32) + (32, 25) − 2∞ 5 + u2 + v

6 + 6u + u2 (1, 1) + (5, 3) − 2∞ u + 5u2 + v
(2 + u)(6 + u)

16 (25, 6) + (32, 6) − 2∞ 6 + 5u + 2u2 + v
(1 + u)(2 + u) (1, 5) + (5, 6) − 2∞ 6 + u

17 (5, 6) + (6, 4) − 2∞ 5u + u2 + v

2 + 2u + u2 (5, 6) − ∞ 1

18 (20, 31) + (41, 24) − 2∞ 3 + 6u + 4u2 + v

3 + 2u + u2 (1, 1) + (5, 6) − 2∞ 2 + 4u + v

3 + 5u + u2

19 (13, 29) + (48, 22) − 2∞ 6 + u + 6u2 + v

(5 + u)2 (8, 26) + (43, 33) − 2∞ 4 + 2u2 + v
(5 + u)(6 + u)

20 (2, 2) + (2, 2) − 2∞ 3 + 5u + 5u2 + v
(1 + u)(5 + u) (1, 5) + (2, 3) − 2∞ 6 + u

21 (2, 3) + (6, 4) − 2∞ 1 + 5u + v

1 + u2 (2, 3) − ∞ 1

22 (14, 8) + (35, 43) − 2∞ 1 + 3u + 2u2 + v

5 + 2u + u2 (1, 1) + (2, 3) − 2∞ 3 + 2u + u2 + v

3 + u + u2

23 (27, 7) + (34, 42) − 2∞ 5 + 6u + 2u2 + v
(2 + u)(5 + u) (17, 0) + (38, 0) − 2∞ 5 + 4u + 4u2 + v

5 + 3u + u2

24 (2, 2) + (5, 3) − 2∞ 5 + 2u + 6u2 + v

5 + 5u + u2 (16, 23) + (37, 30) − 2∞ 5 + 3u + 5u2 + v

3 + 6u + u2

25 (22, 30) + (29, 23) − 2∞ 4u + 2u2 + v

5 + 4u + u2 (18, 4) + (39, 4) − 2∞ 6 + 6u + u2 + v

4 + 6u + u2

26 (19, 28) + (40, 21) − 2∞ 2 + 4u2 + v
(2 + u)(5 + u) (11, 47) + (46, 12) − 2∞ 5 + u + v

2 + u2

27 (2, 2) + (5, 6) − 2∞ 1 + u + 4u2 + v

(2 + u)2 (7, 5) + (42, 5) − 2∞ 6u2 + v

2 + 5u + u2

28 (5, 3) + (5, 3) − 2∞ u + 5u2 + v

(6 + u)2 (15, 13) + (36, 48) − 2∞ 1 + 5u2 + v

6 + 4u + u2

29 (1, 5) + (1, 5) − 2∞ (6 + u) (12, 6) + (47, 6) − 2∞ 5 + 5u + 3u2 + v
(1 + u)(6 + u)

30 (1, 5) − ∞ (6 + u) (1, 5) + (6, 4) − 2∞ 6 + u
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and normalized (numerators and denominators are monic polynomials). We will use
them in the construction below.

3.3. Construction of the wave and τ functions. In order to find a solution of the
discrete KdV equation let us fix the following points of the curve C:

A0 = ∞, A1 = (2, 2), A2 = (1, 5), A3 = (1, 1),

with the uniformizing parameters t0 = u2/v, t1 = u − 2, t2 = t3 = u − 1, and

B1 = (12, 6), B2 = (47, 6).

Then

A1 − A0 ∼ 10D1 + D4, A2 − A0 ∼ −D1 ∼ 30D1, A3 − A0 ∼ D1,

B1 + B2 − 2A0 ∼ 29D1 + D4,

and the points X1(n1, n2, n3) and X2(n1, n2, n3), where the wave function ψ(n1, n2, n3)
has additional zeros (here Xi can be ∞) can be found from Table 3 and

X1(n1, n2, n3) + X2(n1, n2, n3) − 2∞ = [nD1 + mD4]r, (14)

where n ∈ {0, 1, . . . , 30} and m ∈ {0, 1} are given by

n ≡ 29 − (n3 − n2 + 10n1) mod 31, (15)

m ≡ 1 − n1 mod 2. (16)

REMARK. The choice of the infinity point ∞ as A0 is a violation of the assumption
of general position of points used in the construction (∞ is the Weierstrass point of the
curve C). This will not destroy the construction but in some situations, which we will
point out, will affect uniqueness of the wave function. We remark that such a choice is
indispensable in reduction of the method from the discrete KP equation to the discrete
KdV equation (see, for example [11, 4]).

The key idea in constructing of the wave function is to express ψ(n1, n2, n3)
for any parameters from (n1, n2, n3) ∈ �3 by a set of functions related to J(C; �)
(transition functions and few auxiliary functions). Let us introduce functions h1 and
h4 corresponding to generators of the two cyclic subgroups of J(C; �7). The function
h1 with the divisor 31D1 ∼ 0 and normalized at the infinity point is equal to

h1 =
30∏

i=0

g0(i),

and reads

h1 = 1 + 2u + u2 + 4u3 + 3u5 + u6 + 3u7 + u8 + 4u9 + 4u10 + 2u11 + 5u12

+ 2u13 + 4u14 + 3u15 + (5u + 2u2 + 5u3 + 4u5 + 6u6 + 4u7 + 3u9

+ 5u10 + 5u11 + 4u12 + u13)v,

where we also used the equation of the curve (13) to reduce higher order terms in v.
The normalized function h4 with the divisor 2D4 ∼ 0 is

h4 = u − 6.
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Let us introduce other auxilliary functions f1 and f2 to factorise the zeros at A1 and A2

of the wave function. Notice that

(2, 2) + 21(1, 1) + (6, 4) − 23∞ ∼ 0,

which implies that there exists a polynomial function on C with simple zero at A1 and
other zeros in the distinguished (by our choice of description of J(C; �7)) points (1, 1)
and (6, 4). Define f1 as the unique such function normalized at the infinity point ∞,
then

f1 = 1 + 5u + u2 + 4u4 + 6u5 + 4u6 + 4u7 + 3u8 + 4u9

+ 6u11 + (6 + 4u + 2u2 + 5u3 + 6u4 + 6u6 + u7 + u8 + u9)v.

The zeros at A2 can be factorised using function

f2 = (u − 1).

Uniqueness of the wave function ψ implies that it can be decomposed as follows

ψ(n1, n2, n3) = f n1
1 f n2

2

hp
1hq

4

W (m1, m2), (17)

where new variables m1 and m2 are given by

21n1 − n2 + n3 = 31p − m1, m1 ∈ {0, 1, . . . , 30}, (18)

n1 = 2q − m2, m2 ∈ {0, 1}, (19)

and the function W (m1, m2) has the divisor

m1D1 + m2D4 + Y1(m1, m2) + Y2(m1, m2) − (12, 6) − (47, 6). (20)

The additional zeros

Y1(m1, m2) + Y2(m1, m2) = X1(n1, n2, n3) + X2(n1, n2, n3),

can be found by projection from n-variables into the m-variables.
To find the functions W (m1, m2) for all m1 ∈ {0, 1, . . . , 30} and m2 ∈ {0, 1} let us

notice that W (0, 0) = 1 and W (0, 1) is given by

(W (0, 1)) = D4 + (1, 5) + (1, 5) − (12, 6) − (47, 6),

and hence can be written in a form

W (0, 1) = 2 + 3u + 4u2 + v

6 + 4u + u2
.

Define the multipliers wm2 (m1) as follows

W (m1, m2) = wm2 (m1)W (m1 − 1, m2),

for m1 ∈ {0, 1, . . . , 30} and m2 ∈ {0, 1}. Equations (14)–(16) and (18)–(20) give

wm2 (m1) = gm(n),

where

m2 = 1 − m mod 2, m1 = 29 − n mod 31.
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Setting wm2 (0) = W (0, m2) we obtain

W (m1, m2) =
m1∏

i=0

wm2 (i).

Together with factorisation (17) it gives the wave function ψ for all (n1, n2, n3) ∈ �3.

REMARK. For (m1, m2) = (29, 1) we have X1 = X2 = ∞. Because the infinity point
∞ is the Weierstrass point of order two, there exist functions with divisor of poles
equal to 2∞. This means that ψ is not uniqely determined in this case. However it is
natural to keep the divisor of ψ , and therefore ψ itself, exactly like it is given from the
flow on J(C; �). Notice that because for X1 = X2 = ∞ we stay in the non-generic case,
then this ambiguity does not affect construction of the τ -function.
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Figure 1. The �7-valued solution of the discrete KP equation out of genus g = 2
hyperelliptic curve C; n2 = −1, 0, 1, 2 for subsequent figures, n1 = 0, 1, . . . , 34

(horizontal axis), n3 = 0, 1, . . . , 34 (vertical axis)
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Figure 2. The �7-valued solution of the discrete KdV equation out of genus g = 2
hyperelliptic curve C; n1 = 0, 1, . . . , 79 (horizontal), n3 = 0, 1, . . . , 79 (vertical),

(n2 = 0)

The coefficients ζ0
(k)(n1, n2, n3), k = 1, 2, 3, of expansion of the wave function can

be obtained from factorisation (17) and are given by

(2, 2) : ζ
(1)
0 (n1, n2, n3) = 6n1 5q4pW (m1, m2)|t1=0, (21)

(1, 5) : ζ
(2)
0 (n1, n2, n3) = 2n1 4qW (m1, m2)|t2=0, (22)

(1, 1) : ζ
(3)
0 (n1, n2, n3) = 6p4q W (m1, m2)

tm1
3

∣∣∣∣
t3=0

. (23)

Using the definition of the τ -function for nonzero ρi, i.e. equation (4), and putting
τ = 0 for points related with nongeneric case we obtain a solution of the discrete
KP equation (6) taking value in the finite field �7. This τ -function is presented in
Figure 1.

To obtain a τ̃ -function which is a solution of the discrete KdV equation we use
the formula (11). For our settings we have δ2 = δ3 = 1, so finally

τ̃ = τ (−1)−n3(n3−1)/2.

The τ̃ -function which is a solution of the discrete KdV equation is presented in Figure 2.
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Equations (21)–(23) with (18)–(19) and the cyclic structure of the multiplicative
group �∗ (of nonzero elements of finite field �) imply periodicity of the functions ζ

(i)
0

and ρi for i = 1, 2, 3. In finite field case the τ -function and τ̃ -function are also periodic.
Positions of the zeros of the τ -function (and the τ̃ -function), marked in figures, directly
reflect the cyclic structure of the group J(C; �).
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