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Abstract

Neural networks-based learning of the distribution of non-dispatchable renewable electricity generation from
sources, such as photovoltaics (PV) and wind as well as load demands, has recently gained attention. Normalizing
flow density models are particularly well suited for this task due to the training through direct log-likelihood
maximization. However, research from the field of image generation has shown that standard normalizing flows
can only learn smeared-out versions of manifold distributions. Previous works on normalizing flow-based scenario
generation do not address this issue, and the smeared-out distributions result in the sampling of noisy time series. In
this paper, we exploit the isometry of the principal component analysis (PCA), which sets up the normalizing flow in a
lower-dimensional space while maintaining the direct and computationally efficient likelihood maximization. We
train the resulting principal component flow (PCF) on data of PVandwind power generation aswell as load demand in
Germany in the years 2013–2015. The results of this investigation show that the PCF preserves critical features of the
original distributions, such as the probability density and frequency behavior of the time series. The application of the
PCF is, however, not limited to renewable power generation but rather extends to any dataset, time series, or
otherwise, which can be efficiently reduced using PCA.

Impact Statement

Normalizing flows applied to renewable energy time series tend to sample outliers and noisy data, which results
from the time series being embedded on lower-dimensional manifolds. The diffeomorphic normalizing flow then
attempts to fit a diffeomorphism between spaces of different dimensionality. Since the diffeomorphism describes
a unique match for all points of the Gaussian, normalizing flows assign nonzero probabilities to areas outside of
the manifold. To address this problem, we show how principal component analysis can be used to build
normalizing flows in a lower-dimensional space and, thereby, avoid the dimensionality mismatch. In an
application to three energy time series, the principal component normalizing flow results in significantly better
matches of the learned distributions and the fluctuational behavior compared to the standard normalizing flow.
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1. Introduction

The renewable electricity generation technologies photovoltaics (PV) and wind depend on natural
occurrences and are therefore non-dispatchable. Additionally, the realization of these renewable power
generation outputs exhibits uncertain and volatile behavior, which poses new challenges for the design
and operation of energy systems compared to dispatchable fossil power generation (Mitsos et al., 2018;
Agora Energiewende and Sandbag, 2020). To account for the uncertainty in renewable electricity
sources and other relevant energy system parameters like electricity demands system operators require
information about possible realizations. This information can either be provided via short-term point-
forecasting (Tascikaraoglu and Uzunoglu, 2014) or via consideration of multiple scenarios (Morales
et al., 2013). Here, the term scenario refers to a possible realization of the uncertain and volatile
parameter over a certain time span. A set of scenarios thus refers to a collection of time series of equal
length. Decision-making based on scenarios covers the broad spectrum of possible realizations and is,
therefore, highly relevant for design problems (Morales et al., 2013). Scenarios can be applied in
stochastic programming formulations for the design and operation of energy systems as well as energy-
related scheduling tasks (Kaut andWallace, 2003; Birge and Louveaux, 2011). The distributions of time
series intervals are often unknown and consist of many nonindependent dimensions due to the
correlation between time steps. These distributions typically do not follow standard distribution models
like multivariate Gaussians. Thus, sampling these distributions for scenario generation remains an open
research question.

There are many contributions to the literature on how to generate scenarios. In general, the published
approaches can be classified as univariate modeling approaches, that is, step-by-step models, and
multivariate modeling approaches, where multiple time steps are modeled in parallel (Ziel and Weron,
2018). Multivariate modeling approaches are trained on sets of scenarios created from historical time
series. The equidistant segments of univariate scenarios are viewed as multidimensional points, for
example, a scenario of 1 day with hourly recordings is viewed as a 24-dimensional data point.
Contributions on univariate modeling approaches include the traditional Box–Jenkins approach (Box
et al., 1967) for sampling stochastic processes (Sharma et al., 2013) and artificial neural network (ANN)-
based autoregressive models (Vagropoulos et al., 2016). Examples of multivariate modeling approaches
are Gaussianmixture models (Wang et al., 2018), Copula methods (Pinson et al., 2009; Kaut andWallace,
2011), and moment matching techniques (Chopra and Selvamuthu, 2020).

With the increase of computational power and the development of advanced machine learning
algorithms, it is now possible to train specialized ANNs, so-called deep generative models (DGMs), to
learn high-dimensional probability distributions without any statistical assumptions about the data. Thus,
DGMs are powerful tools for multivariate modeling. In 2018, Chen et al. (2018c) proposed the use of
generative adversarial networks (GANs; Goodfellow et al., 2014) for scenario generation. Since then,
scenario generation using GANs and other DGMs has become a popular topic (Jiang et al., 2018; Chen
et al., 2018c; Wei et al., 2019; Zhang et al., 2020; Zhang and Zhang, 2020). Chen et al. (2018c) later
extended their original work by introducing a scenario selection procedure (Chen et al., 2018b) and by
using Bayesian GANs (Chen et al., 2018a). Other examples of GANs for wind and PV power output
scenarios are presented in Jiang et al. (2018), Jiang et al. (2019), and Zhang et al. (2020). For more
consistent convergence in training, the authors in Jiang et al. (2018), Chen et al. (2018c), Jiang et al.
(2019), and Zhang et al. (2020) used Wasserstein generative adversarial networks (W-GANs; Arjovsky
et al., 2017) where they enforce a Lipschitz constraint on the critic network. Besides the generation of
wind and PV scenarios, GAN-based scenario generation was also applied to residential load forecasts
(Gu et al., 2019) and hydro–wind–solar hybrid systems (Wei et al., 2019). Schreiber et al. (2019) study
different loss functions for GANs and found the Wasserstein distance to be superior to the binary cross-
entropy. Besides GANs, a popular type of DGMs are variational autoencoders (VAEs; Kingma and
Welling, 2014). Examples of VAEs for scenario generation include electric vehicle load demand (Pan
et al., 2019), hydro–wind–solar hybrid systems (Zhanga et al., 2018), as well as hydro-concentrated solar
power hybrid systems (Qi et al., 2020).

e7-2 Eike Cramer et al.

https://doi.org/10.1017/dce.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.7


Despite their recent success in scenario generation for renewable power generation, both GANs and
VAEs show inconsistencies in training. Specifically, the Nash Equilibria obtained through GAN training
are reported to be unstable, and there is no guarantee for the generator to sample from the target
distribution (Arjovsky et al., 2017). The VAE uses the evidence lower bound loss function in training,
which gives no concrete measure on the actual quality of the fit (Kingma and Welling, 2014).

In contrast to GANs and VAEs, a third DGM structure, normalizing flows (Dinh et al., 2017;
Papamakarios et al., 2020), can directly fit the probability density function (PDF) of the unknown
distribution by log-likelihood maximization. Similar to the more established transport map approach
(Marzouk et al., 2016), normalizing flows model the distribution of a dataset as a deterministic
transformation of a Gaussian. While transport maps typically use triangular maps (Marzouk et al.,
2016) to set up convex fitting problems, normalizing flows are designed using invertible neural networks
to build more flexible designs. In theory, using a sufficiently expressive normalizing flow network and
enough training data, the trained distribution will converge to the true distribution. However, normalizing
flows are not as well established as GANs and VAEs in scenario generation yet. To the best of our
knowledge, the only works using normalizing flows in the context of energy time series are Zhang and
Zhang (2020) and Ge et al. (2020) focusing on demand time series and Dumas et al. (2021) generating PV
and wind electricity time series.

Recently, Brehmer and Cranmer (2020) and Behrmann et al. (2021) showed that normalizing flows are
by design unable to fit distributions that lie on lower-dimensional manifolds. Instead, fitting a full-
dimensional normalizing flow to a manifold distribution results in exploding likelihood functions from
numerically singular Jacobians (Behrmann et al., 2021) and a smeared-out version of the true distribution
(Brehmer and Cranmer, 2020). Sampling from the smeared-out fit then leads to the samples outside of the
true distribution, for example, noisy time series. In 2016, Gemici et al. (2016) presented the necessary
foundations to build normalizing flows on manifolds, that is, to perform density estimation in a lower-
dimensional space. However, they do not further elaborate on such an approach and do not report on any
numerical experiments. Brehmer and Cranmer (2020) build normalizing flows in lower-dimensional
space by fixing some of the latent space dimensions to a constant.

We find manifolds to be frequently present in energy time series due to the temporal correlation
between time steps. However, Ge et al. (2020), Zhang and Zhang (2020), and Dumas et al. (2021)
employ standard normalizing flow structures to such data, that is, real non-volume preserving trans-
formation (RealNVP; Dinh et al., 2017) or nonlinear independent component estimation (Dinh et al.,
2015). As a result, their works suffer from complications resulting from data manifolds. For instance,
the training of Ge et al. (2020) results in extremely high-density values ( logp xð Þ≈4,000), which
indicates that the model is trying to describe an infinite density. The validation loss shown by the
authors indicates strong overfitting. However, the authors do not declare the exploding likelihood and
the overfitting as issues and present the spurious results without further discussion. Zhang and Zhang
(2020) acknowledge that their scenarios exhibit noisy behavior that does not match the expected results.
However, they attribute this noise to their conditional training approach. Dumas et al. (2021) draw a
comparison between normalizing flows, GANs, and VAEs at the example of PV, wind, and load time
series. The authors find that their normalizing flow models are unable to recover the autocorrelation
within the time series and instead exhibit very high fluctuations. However, they still conclude that
scenarios generated from normalizing flows show good results despite the unrealistic characteristics.
Based on our observation of the frequent complications resulting from data manifolds, we argue that
normalizing flows should be set up with a lower-dimensional latent space to avoid generating
unrealistic energy time series scenarios.

As part of this paper, we provide the following contributions: We elicit the contradiction between
manifolds and the diffeomorphic transformations required for normalizing flows. Furthermore, we use
simple two-dimensional examples to highlight how data manifolds lead to the generation of unrealistic
and out-of-distribution data. In addition, we show how the principal component analysis (PCA) can be
used to reduce the dimensionality of energy time series effectively and show theoretically that the
resulting principal component flow (PCF) does not affect the density estimation procedure, which avoids

Data-Centric Engineering e7-3

https://doi.org/10.1017/dce.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.7


the need for balancing reconstruction and likelihood maximization losses like in Brehmer and Cranmer
(2020). In numerical experiments, we train the PCF on data of PVand wind power generation as well as
load demand in Germany in the years 2013–2015. For reference, we compare our results with scenarios
generated using the alternative methods Copulas (Pinson et al., 2009) and W-GANs (Chen et al., 2018c).
The results show that the PCF learns the distributions better than the full-space normalizing flow (FSNF)
and also maintains the frequency behavior of the original time series. The PCF-generated scenarios
perform equally good or better compared to the Copula and W-GAN scenarios in all considered metrics.

The remainder of this paper is organized as follows: In Section 2, we introduce the general concept of
normalizing flows and review the RealNVP affine coupling layer (Dinh et al., 2017), which will serve as
the underlying flow structure in this paper. In Section 3, we continue the discussion started by Brehmer
and Cranmer (2020) and Behrmann et al. (2021) about the effects of manifolds on normalizing flows
through a clarifying toy example and show theoretically that PCA does not affect the density estimation in
lower-dimensional latent space. In Section 4,we present the results of simulation studies on data of PVand
wind power generation as well as load demand in Germany (Open Power Systems Data, 2019). Finally, in
Section 5, we conclude our work.

2. Density Estimation Using Normalizing Flows

Normalizing flows are invertible transformations f between a complex target distribution and a well-
described base distribution, for example, a multivariate Gaussian (Papamakarios et al., 2020). Analog to
the inverse transport mapmethodology (Marzouk et al., 2016), normalizing flows aim tomodel a complex
distribution as a transformation of a simple one instead of manually deriving a complex model that fits the
data. Thus, the sampling takes place in the known base distribution, and the transformation does not have
to consider the randomness in the data.

A normalizing flow transformation must be set up as a diffeomorphism, that is, both the forward and
the inverse transformation must be continuously differentiable (Papamakarios et al., 2020). In their
standard form, normalizing flows require equal dimensionality of base and target distributions, in which
case the density of the target distribution is well described using the change of variables formula (CVF;
Papamakarios et al., 2020)

pX xð Þ¼ pZ f�1 xð Þ� �
det Jf f�1 xð Þ� ��� ���1

, (1)

where pX xð Þ and pZ zð Þ are the densities of the samples x and z of the target distribution X and the base
distribution Z, respectively, and Jf�1 xð Þ is the Jacobian of the inverse transformation f�1. To fit complex
distributions, the diffeomorphic transformation f needs to be flexible and expressive. However, expres-
sive and yet easily invertible functions with tractable Jacobian determinants are often difficult to engineer.
Fortunately, diffeomorphisms are composable, and therefore normalizing flow models can be built using
compositions of simple transformations, that is,

f ¼ fK∘fK�1∘⋯∘f2∘f1, (2)

where f1 to fK are simple diffeomorphisms and the operator ∘ denotes function composition. In
logarithmic form, the CVF of compositions is given by

log pX xð Þ¼ log pZ f�1 xð Þ� �þXK
k¼1

log det Jf k f�1
k xkð Þ� ��� ���1

, (3)

where xk is an intermediate variable xk ¼ f k xk�1ð Þ. In practice, the transformation is often set up as a
trainable function fθ with parameters θ. By using the CVF, the transformation fθ can be trained via direct
likelihoodmaximization, and for numerical reasons, the log form in Equation (3) ismaximized in training:

max
θ

log pX x;θð Þ¼ log pZ f�1
θ xð Þ� �þ log det Jfθ f�1

θ xð Þ� ��� ���1
: (4)
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Here, the likelihood pX x;θð Þ is parameterized by the trainable parameters θ of the transformation fθ and
the historical samples of the target distribution x take the role of training data.

In the past 6 years, many flow constructionmethods have been proposed (e.g., Dinh et al., 2015, 2017).
A prominent normalizing flowmodel is RealNVP (Dinh et al., 2017), which uses an affine coupling layer
and has shown promising results in a prior application to time series data (Zhang and Zhang, 2020). The
idea of the RealNVP affine coupling layer is to split the full input vector z¼ z1:D of dimensionD and apply
an affine transformation to one part of the input vector zdþ1:D conditioned on the remaining part of the
input vector z1:d that is kept constant. Here, d is usually set to d¼D=2 to allow for maximal interaction
between dimensions but can take other values 1< d<D, for example, if D is uneven. The standard
forward transformation fCL : z! x is given by

x1:d ¼ z1:d , (5)

xdþ1:D ¼ exp sθ z1:dð Þð Þ⊙ zdþ1:Dþ tθ z1:dð Þ, (6)

where the functions sθ z1:dð Þ and tθ z1:dð Þ are feed-forward ANNs called conditioner networks with
parameters θ and input and output dimensions d and D�d, respectively. The ⊙ operator denotes
elementwise multiplication. Note that when applied as a composition in alternating form, RealNVP
can build flexible and easily invertible transformations with tractable Jacobian determinants. A visual
description of a composition of two affine coupling layers is presented in Figure 1.

The affine coupling layer in Equations (5) and (6) has the advantage that the Jacobian of the
transformation fCL is a lower triangular matrix, that is,

JfCL zð Þ¼
I 0

∂xdþ1:D

z1:d
diag exp sθ z1:dð Þð Þ½ �

2
4

3
5, (7)

which means that the log of the absolute value of its determinant is simply given by

log det JfCL zð Þð Þj j ¼
XD
i¼dþ1

sθ,i z1:dð Þ, (8)

and the Jacobian of the inverse transformation f�1
CL : x! z satisfies

log det Jf�1
CL

xð Þ
� ���� ���¼�

XD
i¼dþ1

sθ,i x1:dð Þ, (9)

according to the inverse function theorem (Papamakarios et al., 2020).With Equations (8) and (9), the log-
Jacobian determinant is computed from a simple evaluation of the forward or inverse transformation.

Figure 1. Real non-volume preserving transformation (Dinh et al., 2017) with two coupling layers with
alternating identity and affine transformations. Arrows point in generative direction. Compositions may
include more than two coupling layers. Functions sIθ z1:dð Þ, tIθ z1:dð Þ, sIIθ zIdþ1:D

� �
, and tIIθ zIdþ1:D

� �
are

trainable artificial neural networks with parameters θ.
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For amore detailed introduction and a review of other normalizing flow designs, the interested reader is
referred to the original RealNVP paper by Dinh et al. (2017) and the review articles by Kobyzev et al.
(2020) and Papamakarios et al. (2020) .

3. Principal Component Density Estimation

In this section, we first discuss the effects of manifolds on the Jacobians and the contradiction between
manifolds and diffeomorphic transformations and visualize how distributions get smeared out at the
example of a one-dimensional distribution embedded in two-dimensional space. Second, we show how
unlike many other dimensionality reduction techniques PCA can be used in combination with standard
normalizing flows for manifold density estimation with tractable and direct likelihood computation.

3.1. Normalizing flows and manifolds

Normalizing flows are transformations between the space of observable variables (target distribution) and
a latent space with independent variables, that is, a space with zero covariance (base distribution;
Papamakarios et al., 2020). As a consequence, normalizing flows disentangle the information contained
in the observable variables, for example, the power generation over a given period, to the set of
independent latent variables, that is, the normalizing flow transformation eliminates the correlation
between the dimensions (Kobyzev et al., 2020; Papamakarios et al., 2020). For the disentanglement to
function properly, the normalizing flow transformation f and its inverse f�1 must be continuously
differentiable, that is, the Jacobian of f must be non-singular for f�1 to be differentiable and vice versa
(Papamakarios et al., 2020). The distributions of many datasets do not occupy the entire space of
observable variables, that is, the distributions lie on lower-dimensional manifolds (Fefferman et al.,
2016). A transformation from a latent spaceGaussianwith equal dimensionality to the space of observable
variables must compress the Gaussian samples to the lower-dimensional space and, therefore, have a
singular Jacobian (Hyvärinen and Pajunen, 1999; Behrmann et al., 2021). Consequently, a Gaussian with
equal dimensionality cannot be matched to a manifold distribution using a diffeomorphic transformation.

However, normalizing flow transformations like RealNVP (Dinh et al., 2017) are designed to be
diffeomorphic between spaces of equal dimensionality. When applied to manifold data, they have to
include all latent space variables in the transformationwith a nonzero gradient even if the data do not show
any related variance. This leads to a contradiction between a problem that cannot be solved using a
diffeomorphism and a strictly diffeomorphic normalizing flow. In practice, fitting a normalizing flow to
manifolds leads to numerically singular Jacobians (Behrmann et al., 2021) as the training attempts to
compress the Gaussian to the lower-dimensional space. For sampling, the learned distribution is then
smeared out around the true distribution (Brehmer and Cranmer, 2020), causing skewed distribution
densities and generation of out-of-distribution data.

To illustrate this fundamental problem, we train two RealNVP models with identical architecture on
samples of a one-dimensional, uniform distribution embedded in a two-dimensional curve and a two-
dimensional distribution. Figures 2 and 3 show the encoded training data (Data latent) and samples of a
two-dimensional Gaussian (Gauss latent) on the left, the training data (True) and samples generated using
the RealNVP in the center, and training and validation loss on the right for the two different distributions,
respectively. The example in Figure 2 highlights that the points from the one-dimensional curve remain on
a one-dimensional curve after the transformation with the diffeomorphism. Accordingly, any point in the
latent space outside of this curve has no counterpart in the true data distribution. Thus, the samples drawn
in the Gaussian latent space (left) are transformed to out-of-distribution data, as can be seen by the
RealNVP samples outside of the curve in the center of Figure 2. Nevertheless, the generated distributions
resemble the shape of the true distributions, and the out-of-distribution samples may not be noticed for
higher-dimensional distributions, for example, time series, that cannot be viewed in their ambient space.

The absolute values of the loss functions are not comparable as they describe different distributions.
However, while the validation loss of the one-dimensional example in Figure 2 indicates overfitting and
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unstable training, the validation loss of the two-dimensional example in Figure 3 indicates good
generalization, stable training, and convergence in fewer epochs. Besides the loss functions, the data
transformed to the latent space in the left of Figure 3 and the RealNVP generated data in the center of
Figure 3 show good matches of the Gaussian and true data distribution, respectively.

3.2. Principal component flow layer

Given an available injective map ψ :ℝM !ℝD,x¼ψ exð Þ with D>M transforming data points from the
lower-dimensional latent spaceex to their full-space embedding x, a flow on aRiemannianmanifold can be
built (Gemici et al., 2016). Since the injective map expands the dimensionality, the typical CVF relation
(Equation (3)) of infinitesimal volumes using the Jacobian determinant does no longer apply. Instead, the
relation between the two infinitesimal volumes is given by (Ben-Israel, 2000)

dX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det JTψJψ

� �r
dZ, (10)

with Jacobian Jψ of the mapping ψ. The generalized form of the CVF for the injective flow then is (Ben-
Israel, 2000; Gemici et al., 2016):

pXðxÞ¼ pZðψðxÞ�1Þ½jdetðJψðψ�1ðxÞÞTJψðψ�1ðxÞÞÞj��0:5
(11)

Figure 2. Real non-volume preserving transformation (RealNVP; Dinh et al., 2017) trained on 1D
manifold in 2D space (x1,x2). Left: samples of 2DGaussian (blue) and training data after transformation
to Gaussian (orange). Center: samples from trained RealNVP (blue) and true (orange) data distribution.

Right: training and validation loss over number of epochs.

Figure 3. Real non-volume preserving transformation (RealNVP; Dinh et al., 2017) trained on 2D kite-
shaped distribution in 2D space (x1,x2). Left: samples of 2D Gaussian (blue) and training data after
transformation to Gaussian (orange). Center: samples from trained RealNVP (blue) and true (orange)

data distribution. Right: training and validation loss over number of epochs.
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For the injective map ψ to be applicable for the use in combination with normalizing flows, its inverse
ψ�1 must be available and easy to compute, and the Jacobian determinant term in Equation (11) must be
computationally tractable during training. Brehmer andCranmer (2020) propose to build an injectivemap
by fixing some of the latent space dimensions of a normalizing flow to a constant. However, their
approach still results in expensive Jacobian computations and requires balancing a reconstruction loss
with the likelihood maximization. To avoid expensive Jacobian computations and achieve easily
invertible dimensionality reduction, we exploit the isometric, that is, distance preserving, characteristic
of the affine PCA (Pearson, 1901). PCA is based on the singular value decomposition of the sample
covariance matrix KX,X of the data distribution X, that is,

KX,X ¼ 1
N�1

XN
i¼1

xi�μXð Þ xi�μXð ÞT ¼UV�1, (12)

where N is the number of data points, x are the data points, and μx is the empirical mean vector of the
distribution. The covariancematrixKX,X is decomposed into a diagonal matrix of singular values and two
unitarymatricesU andV of left and right singular vectors, respectively. The columns of thematrix of right
singular vectorsV corresponding to the largest singular values are called the principal components of the
data distribution X.By truncating the columns with small or zero singular values, we can use the resulting
semi-orthogonal matrix VP for the affine embedding function:

x¼ψPCA exð Þ¼VPexþμX (13)

with VP as the truncated matrix of right singular vectors and μx as the mean value of the distribution
(Pearson, 1901).

In general, isometries are defined via:

Jψ exð ÞTJψ exð Þ¼ IM , ∀ex∈ℝM : (14)

Here, IM is the M � M identity matrix. For PCA, Equation (14) holds as the Jacobian of ψPCA is
JψPCA

exð Þ¼VP, where VP is semi-orthogonal. Thus:

JψPCA
exð ÞTJψPCA

exð Þ¼VT
PVP ¼ IM , ∀ex∈ℝM : (15)

The isometric property of PCA results in two major advantages for the combination with normalizing
flows. First, the PCA (pseudo-)inverse can be computed using the transpose of VP:

ex¼ψ�1
PCA xð Þ¼VT

P x�μXð Þ, (16)

which makes the inverse explicit and computationally efficient. Second, the PDF described by the CVF is
invariant to the PCA dimensionality reduction, as the expression in Equation (15) enters in the Jacobian
determinant term of Equation (11), that is,

det JψPCA
exð ÞTJψPCA

exð Þ� ��� ��� 	�0:5 ¼ det VT
PVP|fflffl{zfflffl}
¼IM

0
B@

1
CA

�������
�������

2
64

3
75
�0:5

¼ 1, ∀ex∈ℝM : (17)

When we build a composition of a standard normalizing flow and the PCA following Equation (3), it
becomes apparent that the PCA transformation does not influence the PDF described by the CVF:

log pX xð Þ¼ log pZ f�1∘ψ�1
PCA xð Þ� �þ log det Jf�1 ψ�1

PCA xð Þ� �� ��� ��þ log det VT
PVP

� ��� ��� 	�0:5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

¼ log pZ f�1 exð Þ� �þ log det Jf�1 exð Þð Þj j:
(18)

In Equation (18), ex¼ψ�1
PCA xð Þ is the lower-dimensional representation (Equation (13)) and f is a standard

normalizing flow model, for example, RealNVP (Dinh et al., 2017). Because PCA does not influence the
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CVF, it can be solved prior to fitting the normalizing flow and the PCF layer does not include trainable
variables for the log-likelihood maximization. Hence, we avoid composite loss functions that balance
reconstruction loss and likelihood maximization as in Brehmer and Cranmer (2020). The available
inverse and separation of PCA fit and normalizing flow training make the use of PCA computationally
very efficient, as neither the inverse nor the Jacobian has to be computed at any point. Note that the
efficient inverse and the omittable Jacobian determinant do not transfer to most other dimensionality
reduction techniques, for example, local linear embeddings (Roweis and Saul, 2000) or diffusion maps
(Coifman and Lafon, 2006). A graphical description of the combination of the PCA and RealNVP is
shown in Figure 4.

4. Numerical Experiments

In this section, we train the PCF on real-world time series data. The three different datasets considered
contain data of PV power generation, wind power generation, and load demand, where each represents the
total values in Germany in the years 2013–2015 (Open Power SystemsData, 2019). In the analysis below,
we treat each of the time series independently. Prior to any processing, we clean the data of any days with
missing values. To the best of our knowledge, there are no curtailment effects in the data. PV and wind
scenarios are scaled by the installed capacity at each time step. Thus, the networks are trained on the so-
called capacity factor. The load demand data are scaled to the [0,1] interval resulting in what we refer to as
the demand factor in the following. Learning the capacity factor distribution avoids skewness of the
distribution due to the addition of further generation capacity in the given time frame. We have not
observed long-term trends in the load demand data of the selected period. To be processed by the
normalizing flow, the univariate time series are cut into intervals of 1 day each.With sampling intervals of
15 min, this leads to a set of 96-dimensional time series fragments that will serve as training data, that is, a
set of 96-dimensional vectors, which is a typical approach in the field of DGM scenario generation (Chen
et al., 2018c; Zhang and Zhang, 2020). This approach is known as multivariate prediction (Ziel and
Weron, 2018) as multiple time steps are predicted at the same time.

For a comparison with more established scenario generation approaches, we also generate scenarios
using Copulas and W-GANs. In contrast to autoregressive models (Sharma et al., 2013) and similar to
normalizing flows, Copulas andW-GANs describe the full distribution independent of conditional inputs.
We use the linear interpolation of the inverse cumulative distribution function to fit the Copula to the data
(Pinson et al., 2009), and for theW-GANs, we follow the approach by Chen et al. (2018c). Note that both
Copulas andW-GANs use the same idea ofmultivariate scenario generation, that is, treating scenarios as a
vector rather than a sequence of values.

First, we investigate the manifold dimensionality of the datasets by looking at the explained variance
ratio of the principal components. The explained variance ratio is the value of the singular values of the

Figure 4. Principal component flow structure with principal component analysis layer as last layer in
generative direction and real non-volume preserving transformation (see Figure 1) as trainable nor-

malizing flow in lower-dimensional space.
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covariance matrix scaled by their sum, that is, the relative amount of variance in the data, which is
described by the right singular vector (the principal component) corresponding to the given singular value
(Tipping and Bishop, 1999). As an indicator of the manifold dimensionality, we look at the cumulative
explained variance (CEV), which describes how much of the information in terms of variance is
maintained when the data are compressed to the space of principal components. Table 1 lists some
relevant CEV values and the corresponding latent space dimensionality for our datasets. The results show
that a significantly reduced dimensionality maintains close to all of the variance information in the data.
The 100% threshold is reached when the latent dimensionality is equal to the numerical rank of the
covariance matrix. The PV data reach this threshold at a latent dimensionality of 62. Note that the 100%
CEVappears with fewer principal components than dimensions of the data, if either one or more of the
dimensions have zero variance or if there is an exact linear dependency of one of the dimensions on one or
more of the other dimensions. Another important thing to consider is that the PCA is fitted using the
empirical covariance matrix, that is, with a finite number of samples. Hence, the numerical rank might be
different from the rank of the covariancematrix of the process and the low variance components identified
by the PCAmay not be fully representative of the underlying process. Hence, the low-variance and high-
frequency components identified by the PCA may not be desired.

We train FSNF and PCFmodels on each of the three different datasets and compare the generated to the
historical data (target). For each dataset, we select two latent dimensionalities, namely, 16 and 62 for PV to
represent 99.99 and 100% of the variance, and 6 and 10 for wind as well as 5 and 16 for demand to
represent 99 and 99.9% of the variance, respectively. In each training, 20% of the 1,096 scenarios are set
aside as validation sets for hyperparameter tuning and to avoid overfitting. All of the following analysis is
performed using the full historical scenario sets in comparison to sets of generated scenarios, to avoid
random errors in the evaluation as a result of too few data points.

We find that, for all networks, five RealNVP affine coupling layers with fully connected conditioner
networks with two hidden layers of the same size as the input dimension each are sufficient and additional
complexity does not improve the representation. All normalizing flow models are implemented using the
Python-based machine learning libraries TensorFlow version 2.4.0 (Abadi and Agarwal, 2015) and
TensorFlow-Probability version 0.12.1 (Dillon et al., 2017). We use the PCA routine from the open-
source scikit-learn Python library version 0.24.0 (Pedregosa et al., 2011) for dimensionality reduction.

We estimate the PDF of the data using kernel density estimation (KDE)with Gaussian kernels (Parzen,
1962) as shown in Figure 5. The top line of Figure 5 shows the PDF plots of the historical scenarios,
FSNF-generated scenarios, and scenarios generated using the proposed PCF for each of the three datasets.
For reference, Figure 5 compares the Copula- and W-GAN-generated scenario PDFs with the historical
scenarios, in the second line.

For the PV data in the left of Figure 5, the data from all three normalizing flow structures appear to
match the distribution. The FSNF data exhibit a higher density than the target for capacity factors smaller
than 0.05, between 0.1 and 0.45, and a lower density above a certain capacity factor of 0.45. The PCF62
data show an overestimation between capacity factors of 0.1 and 0.4; however, the PCF62 density is closer
to the density of the target distribution than the FSNF density, in particular, for capacity factors below 0.1.

Table 1. Number of principal components for cumulative explained variance (CEV). Data with 15-min
resolution (96 dimensions) from Open Power Systems Data (2019).

Explained variance PV Wind Load demand

≥ 99.00% 3 6 5
≥ 99.90% 6 10 16
≥ 99.99% 16 44 63
.00% 62 96 96

Abbreviation: PV, photovoltaics.
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Finally, the PCF16 data distribution is closest to the target distribution with good fits for capacity factors
smaller than 0.2 and similar deviations from the target as observed with the FSNF and the PCF62.

For the wind capacity factor (center of Figure 5) and the demand factor (right of Figure 5), we observe a
more drastic overestimation of the PDF for the highest densities and an underestimation of the tails by the
FSNF. As for the PV scenarios, the density estimates for wind and load demand scenarios show an
improved approximation of the distribution through dimensionality reduction with PCA, although the
covariance matrices are not rank deficient. It appears that the FSNF tends to ignore rare events during the
likelihood maximization and thus overestimates the areas of high density. With a lower dimensionality,
rare events occupy a relatively larger space and are therefore more likely to be considered by the PCF
likelihood maximization. Furthermore, the PDF fits of both wind and demand appear to improve by
considering fewer principal components. By adding more principal components to get from 99 to 99.9%
CEV, the training problem becomes less well conditioned as the additional dimensions are only narrowly
occupied by data, that is, the distribution comes closer to a lower-dimensional manifold.

The bottom line of Figure 5 shows goodmatches of PVandwind capacity factor PDFs for bothCopulas
andW-GANs. The Copula scenarios also show amatching demand factor PDF, while theW-GAN results
in a skewed PDF. A comparison of the top and bottom lines of Figure 5 highlights that PDF represen-
tations by the PCF are as good or better compared to the literature approaches.

Note that an exact evaluation of the KDE plot can be misleading since the KDE results are not exact, in
particular, at the tails of the distribution and in low-density parts (Wied and Weißbach, 2012). However,
the trends for all three datasets show improved fits of the PCF setups compared to the FSNF, which
indicates better distribution fits due to the dimensionality reduction.

To support the results from the visual comparison of KDE plots, we run a Kolmogorov–Smirnov test
(KS-test; Hodges, 1958). The KS-test is used to judge whether two distinct sets of samples stem from the
same distribution. Table 2 lists the p-values (p-value ∈ 0,1½ �Þ of the tests. In general, high p-values (≥.1)
can be interpreted as amatch of distributions, and low p-values indicate that the two sample sets stem from
different distributions (Hodges, 1958). For all three datasets, the p-values of the FSNF indicate that the

Figure 5. Comparison of the probability density function from kernel density estimation (Parzen, 1962).
Top: historical data (target, solid lines), generated data from full-space normalizing flow (dashed lines),

and generated data from principal component flow (dotted lines and dash-dotted lines). Bottom:
historical data (target, solid lines), generated data from the Copula (dotted lines), and generated data
from Wasserstein generative adversarial network (dash-dotted lines). Left: photovoltaic capacity factor.

Center: wind capacity factor. Right: demand factor.
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historical and the generated data do not follow the same distribution. In contrast, the p-values for PCF16
for PV, PCF6 for wind, and PCF5 for load demand are ≥.1, indicating a good representation of the
historical data distribution. The PCF10 for wind and the PCF16 for demand show p-values of ≥.05 and
≥.01, which still indicate good matches of the distribution and significantly better matches compared to
the FSNF. The PCF62 for PVgives a lower p-value and hence lower confidence that the data stem from the
historical data distribution. This result matches the observations in Figure 5, where we observed a slightly
worse fit from PCF62 compared to PCF16. Still, there is a significant improvement compared to the
FSNF. Furthermore, the KS-test confirms our observation of increasing quality of fit for the 99% CEV
compared to the 99.9% CEV.

The KS-test of the reference models returns high p-values for all datasets for the Copula-generated
scenarios, while only the wind capacity factor shows a high p-value among the W-GAN-generated
scenarios. In general, the KS-test indicates goodmatching distributions only for Copulas and for the PCFs
with low numbers of principal components.

In conclusion, the PCF returns significantly better fits of the distribution compared to the FSNF.
Furthermore, the PDF fits by the PCF are at least as good or better compared to the literature methods.
Considering fewer principal components appears to enhance the learning of the distributions, and
accepting CEV values around 99% does not compromise the overall match of the distribution.

We use the power spectral density (PSD) based on theWelch transform (Welch, 1967) to investigate in
the frequency domain whether the FSNF and the PCF can reproduce the fluctuational behavior of the
original time series. Figure 6 shows the PSD of the target distribution, the FSNF, and the PCF generated
scenarios for the three considered datasets, respectively.

For the PV data, the target distribution shows high amplitudes (>10�4) for low frequencies up to 1
3:5h,

which are well matched by all three DGMs. For higher frequencies (> 1
3:5h), the target amplitude

declines faster than the FSNF amplitudes, indicating the generation of noisy behavior over shorter
periods by the FSNF. In contrast, PCF16 produces lower amplitudes than the target distribution in the
regime of frequencies> 1

2h, which indicates the filtering of some of the low amplitude fluctuation in the
historical dataset. The PCF62 shows a good fit for the true behavior of the target up to the highest
frequencies.

The PSD analysis for the wind data shows a good match of the frequency behavior for the data
generated from the PCF6 and PCF10. The FSNF generated scenarios show a general underestimation of
the amplitudes. Note that the wind data exhibit higher fluctuation on all frequencies compared to the PV
data. Therefore, the fluctuations at high frequencies are represented in the principal components, and no
filter effect can be observed. As the overall PSD shape is matched, the FSNF appears to find the right
fluctuation behavior only with consistently lower amplitudes. Here, the narrower distribution described
by the FSNF (see Figure 5) leads to a smaller range of scenarios and, therefore, lower amplitudes.

As for the wind scenarios, the PSD analysis of the load demand data in Figure 6 shows a goodmatch of
the PCF-generated scenarios to the historical data. The FSNFmatches the overall PSD, but there are lower
amplitudes between frequencies of > 1

8h and > 1
2h.

Table 2. p-Values (p-value ∈ 0,1½ �) of Kolmogorov–Smirnov test (Hodges, 1958): statistical
comparison of historical and generated data. High p-values (≥.1) indicate high probability that

generated scenarios have same distribution as the historical scenarios. Results indicating a good
match of the distributions are marked with an asterisk *.

FSNF W-GAN Copula PCF5 PCF6 PCF10 PCF16 PCF62

Solar 2.67 � 10�22 1.21 � 10�4 0.4911* 0.2483* 2.07 � 10�5

Wind 6.69 � 10�20 0.268* 0.4782* 0.9502* 0.0537
Demand 3.85 � 10�81 6.35 � 10�21 0.7727* 0.2380* 0.0361

Abbreviations: FSNF, full space normalizing flow; PCF, principal component flow, W-GAN, Wasserstein generative adversarial network.
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The PSDs of the W-GAN-generated scenarios show an increase in amplitude for frequencies between
1
1h and

1
0:5h for all three datasets, indicating noisy scenarios. Furthermore, the PSDs of the PV capacity

factor and the demand factor of the W-GAN-generated scenarios are higher compared to the historical
scenario PSDs, that is, theW-GANs generate scenarioswith unrealistically high fluctuations. TheCopula-
generated scenarios reproduce the PSDs of the wind capacity factor and the demand factor well. However,
the Copula-generated PV capacity factor scenarios show high amplitudes for frequencies > 1

5h.
In conclusion, the PSD analysis of the PCF-generated scenarios clearly shows improved results for all

datasets due to the dimensionality reduction compared to the FSNF. Some effects are specific to the PCA
dimensionality reduction of the given data, for example, the filter effect observed for the PV data and the
noise in the case of the load demand data. Among all considered scenario generation approaches, the PCF
is the only approach that does not result in noisy behavior or otherwise higher fluctuations for all three
datasets.

Finally, we investigate whether the PCF recovers the dimensions with zero variance that occur during
the nighttime hours of the PV scenarios. Figure 7 shows the time between midnight and 4 am of five
randomly selected scenarios from the historical data, the normalizing flow models, and Copula- and
W-GAN-generated scenarios. The FSNF-generated scenarios clearly show noisy behavior. On the other
hand, PCF16 and PCF62 do not show any noise and thus preserve the zero-variance feature of the
respective dimensions. TheW-GAN scenarios show high fluctuations without any structure, whereas the
Copula scenarios appear to identify the zero variance of the nighttime hours correctly.

In addition to Figure 7, Table 3 lists the mean and the variance for the time steps between midnight and
4 am. The mean and variance values for PCF16 and PCF62 confirm the observations from Figure 7.
Figure 7 and Table 3 highlight the “smeared-out” characteristic of the learned distribution as described in
Section 3.1 and by Brehmer and Cranmer (2020). The results show that the FSNF is unable to detect
dimensions of zero variance and does not accurately fit themanifold distribution, whereas PCF detects the
manifold and correctly reproduces its features. In contrast to Figure 7, the mean and variance values of the
Copula-generated scenarios highlight that the Copula does not identify the zero-variance characteristic of
the nighttime hours. It appears that the Copula reproduces the zero-variance characteristic for most but not
all of the scenarios.

Figure 6. Power spectral density with Welch transform (Welch, 1967). Top: historical data (target, solid
lines), generated data from full-space normalizing flow (dashed lines), and generated data from PCF
(dotted lines and dash-dotted lines). Bottom: historical data (target, solid lines), generated data from the
Copula (dotted lines), and generated data fromWasserstein generative adversarial network (dash-dotted

lines). Left: photovoltaic capacity factor. Center: wind capacity factor. Right: demand factor.
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In conclusion, the PCF is the onlymethod among the considered approaches that consistently identifies
the zero-variance characteristic of the PV scenarios during nighttime.

5. Conclusion

In this paper, we illustrate the issues associatedwith learning the probability distribution of electricity time
series scenarios using normalizing flow density models. We find that these distributions lie on lower-
dimensional manifolds due to the high autocorrelation between time steps. We show that standard
normalizing flows are ill-suited to learn these manifold distributions and, instead, induce ill-conditioned
or singular Jacobians that interfere with the normalizing flow training. However, this problem was
previously not addressed in the literature on scenario generation, and we argue that this has led to some
spurious results. To mitigate the problems arising from data manifolds, we use dimensionality reduction.
Here, we exploit the isometric characteristic of the PCA. We show theoretically that the PCA does not
influence the density estimation since its log-Jacobian determinant is by design always zero. Thus, we
avoid having to balance reconstruction loss and likelihood maximization. Furthermore, no expensive
Jacobian or matrix inverse computations are necessary, whichmakes PCAvery computationally efficient.
Critically, neither the explicit inverse nor the omittable Jacobian determinant applies to most other
dimensionality reduction techniques.

We apply the combined PCF next to a standard FSNF to learn the distribution of PV capacity factors,
wind capacity factors, and load demand scenarios from Germany from 2013 to 2015. The results show
that the PCF can generate realistic PV, wind, and load demand scenarios despite a significant dimen-
sionality reduction, whereas the FSNF overestimates the PDF in areas of high density and underestimates
the tails. Moreover, the PDF fits improve with 99% CEV as opposed to 99.9% CEV, as the training
problem becomes better conditioned. Besides the PDF, the PSD analysis reveals that PCF recovers the
general periodic behavior of the time series. As observed for the PV scenarios, PCA can introduce a
potentially desired filter effect. On the other hand, there may be a trade-off between accurate distribution
fits and inclusion of all the details in the dataset. Therefore, it is critical to test how PCA-based
dimensionality reduction affects the data and the final selection of principal components should always
be made considering the desired application of the scenarios.

Figure 7. Five photovoltaic (PV) capacity factor scenarios from target, FSNF, PCF16, PCF62, Copula,
and W-GAN, respectively. Time frame between midnight and 4 am. Abbreviations: FSNF, full-space

normalizing flow; PCF, principal component flow; W-GAN,Wasserstein generative adversarial network.
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Table 3. Marginal mean and variance values for photovoltaic scenarios between midnight and 4 am. Historical scenarios in comparison to FSNF-,
PCF16-, and PCF62-generated scenarios as well as Copula- and W-GAN generated scenarios.

Mean Variance

Historical FSNF PCF16 PCF62 Copula W-GAN Historical FSNF PCF16 PCF62 Copula W-GAN

0:00 0 �3.94 � 10�5 0 0 9.88 � 10�5 0.0046949 0 �3.94 � 10�5 0 0 9.88 � 10�5 0.00469491

0:15 0 4.91 � 10�5 0 0 0.0018714 0.0030314 0 4.91 � 10�5 0 0 0.00187143 0.00303145

0:30 0 3.89 � 10�5 0 0 0.000323 0.0048844 0 3.89 � 10�5 0 0 0.00032296 0.00488435

0:45 0 �7.77 � 10�5 0 0 0.0007804 0.0029591 0 �7.77 � 10�5 0 0 0.00078039 0.0029591

1:00 0 �0.0001856 0 0 0.0005853 0.0030573 0 �0.00018558 0 0 0.00058527 0.00305727

1:15 0 �2.28 � 10�5 0 0 0 0.0028363 0 �2.28 � 10�5 0 0 �1.00 � 10�10 0.00283627

1:30 0 0.0001475 0 0 0 0.0028889 0 0.00014755 0 0 �8.00 � 10�10 0.00288887

1:45 0 0.0001189 0 0 0.0005246 0.0032642 0 0.0001189 0 0 0.00052463 0.00326423

2:00 0 �1.14 � 10�5 0 0 0 0.0030402 0 �1.14 � 10�5 0 0 6.00 � 10�10 0.00304017

2:15 0 �1.81 � 10�5 0 0 0 0.0031055 0 �1.81 � 10�5 0 0 6.00 � 10�10 0.00310545

2:30 4.00 � 10�6 9.91 � 10�5 3.10 � 10�6 1.64 � 10�5 0.0008303 0.0028191 4.04 � 10�6 9.91 � 10�5 3.05 � 10�6 1.64 � 10�5 0.00083027 0.00281913

2:45 4.21 � 10�5 �0.0001062 3.31 � 10�5 0.0001311 0.0005581 0.0029713 4.21 � 10�5 �0.00010616 3.31 � 10�5 0.00013112 0.00055814 0.00297128

3:00 0.0002261 �0.0002776 0.0001789 0.0004552 0.0002479 0.0029983 0.00022609 �0.00027757 0.00017895 0.00045525 0.00024788 0.00299829

3:15 0.0006365 0.000326 0.0005092 0.0010372 0.0013232 0.0037313 0.00063655 0.00032604 0.00050917 0.00103717 0.00132324 0.00373134

3:30 0.0016171 0.000278 0.0013039 0.0022794 0.0026894 0.0047879 0.00161713 0.00027802 0.00130388 0.00227943 0.0026894 0.00478792

3:45 0.0032558 0.0006409 0.0026619 0.0040074 0.0040934 0.0062684 0.00325582 0.00064086 0.00266187 0.00400742 0.00409343 0.00626838

4:00 0.0058694 0.0021747 0.0049369 0.0066868 0.0068678 0.009123 0.0058694 0.00217466 0.00493695 0.00668681 0.0068678 0.00912296

Abbreviations: FSNF, full-space normalizing flow; GAN, generative adversarial network; PCF, principal component flow.
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In addition to our analysis of the PCF-generated scenarios, we run a comparison to two more
established methods, namely Copulas and Wasserstein-GANs. Our results highlight that the PCF
performs either similarly good or better in all considered metrics compared to the literature methods.
In fact, the PCF is the only method that shows good matches in the PDFs, scores high p-values in the KS-
test, does not have any unexpected fluctuation, and recovers the zero-variance characteristic of the PV
time series during the nighttime.

In conclusion, our results highlight the importance of considering the inherent latent dimensionality of
the datawhen using normalizing flow generativemodels, and that the combination of PCAdimensionality
reduction and normalizing flows can build powerful distribution models for energy time series scenarios.

Nomenclature

Acronyms
ANN artificial neural network
CEV cumulative explained variance
CVF change of variables formula
DGM deep generative model
FSNF full-space normalizing flow
GAN generative adversarial network
KDE kernel density estimation
NICE nonlinear independent component estimation
PCA principal component analysis
PCF principal component flow
PDF probability density function
PSD power spectral density
PV photovoltaic
RealNVP real non-volume preserving transformation
VAE variational autoencoder

Greek letters
θ trainable parameters of conditioner networks sθ and tθ
μX mean value of distribution X
ψ injective transformation

Latin letters
d dimension
D dimensionality of target distribution
f transformation
fCL coupling layer transformation
I identity matrix
J Jacobian
K number of transformations in composition
M dimensionality <D
pX/pY probability density of X and Y
Sθ conditioner network
tθ conditioner network
V matrix of right singular vectors
VP truncated matrix of right singular vectors
x target distribution sampleex compressed target distribution sample
X target distribution
z base distribution sample
Z base distribution
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