COMMUTATIVITY RESULTS FOR RINGS

Hazar Abu-Khuzam

Abstract

Let R be an associative ring. We prove that if for each finite subset F of R there exists a positive integer $n=n(F)$ such that $(x y)^{n}-y^{n} x^{n}$ is in the centre of R for every x, y in F, then the commutator ideal of R is nil. We also prove that if n is a fixed positive integer and R is an $n(n+1)$-torsion-free ring with identity such that $(x y)^{n}-y^{n} x^{n}=(y x)^{n}-x^{n} y^{n}$ is in the centre of R for all x, y in R, then R is commutative.

A theorem of Herstein [5] states that a ring R which satisfies the identity $(x y)^{n}=$ $x^{n} y^{n}$ where n is a fixed positive integer greater than 1 , must have nil commutator ideal. In [1], the author proved that if n is a fixed positive integer greater than 1 , and R is an $n(n-1)$-torsion-free ring with identity such that $(x y)^{n}=x^{n} y^{n}$ for all x, y in R, then R is commutative. In this direction we prove the following results. Theorem 3 below generalises the above mentioned result in [1]. Throughout, let Z denote the centre of R.

We start by stating without proof the following known lemma [4].
Lemma 1. Let R be a prime ring and let x and y be elements of R with $x \neq 0$. If $x \in Z$ and $x y \in Z$ then $y \in Z$.

Theorem 1. Let R be an associative ring such that for each finite subset F of R there exists a positive integer $n=n(F)$ such that $(x y)^{n}-y^{n} x^{n}$ is in the centre Z of $R, \forall x, y \in F$. Then the commutator ideal of R is nil.

Proof: To prove that the commutator ideal of R is nil it is enough to show that if R has no nonzero nil ideals then it is commutative. So we suppose that R has no nonzero nil ideals. Then R is a subdirect product of prime rings R_{α}, having no nonzero nil ideals. Each R_{α} being a homomorphic image of $R, R_{\alpha}=\phi_{\alpha}(R)$, satisfies the hypothesis of R. For let $F_{\alpha}=\left\{x_{1 \alpha}, x_{2 \alpha}, \ldots, x_{k \alpha}\right\}$ be a finite subset of R_{α} and let $F=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a finite subset of R such that $\phi_{\alpha}\left(x_{i}\right)=x_{i \alpha}, i=1, \ldots k$. There exists a positive integer $n=n(F)$, such that $(x y)^{n}-y^{n} x^{n} \in Z$ for all $x, y \in F$. Clearly $\left(x_{\alpha} y_{\alpha}\right)^{n}-y_{\alpha}^{n} x_{\alpha}^{n} \in Z_{\alpha}$ [the center of R_{α}] for all $x_{\alpha}, y_{\alpha} \in F_{\alpha}$. So we may assume that R is a prime ring having no nonzero nil ideals. Let x and y be any two

Received 3 November, 1987
This research is supported by King Fahd University of Petroleum and Minerals.
elements of R. By the hypothesis, there exists a positive integer $n=n(x, y, x y, y x)$ such that

$$
\begin{gather*}
(x y)^{n}-y^{n} x^{n}=z \in Z \tag{1}\\
(y x)^{n}-x^{n} y^{n}=z^{\prime} \in Z \tag{2}\\
((x y) x)^{n}-x^{n}(x y)^{n} \in Z \tag{3}\\
(x(y x))^{n}-(y x)^{n} x^{n} \in Z . \tag{4}
\end{gather*}
$$

Now (3) and (1) imply that

$$
((x y) x)^{n}-x^{n}\left(y^{n} x^{n}+z\right) \in Z
$$

Thus,

$$
\begin{equation*}
(x y x)^{n}-x^{n} y^{n} x^{n}-z x^{n} \in Z \tag{5}
\end{equation*}
$$

Using (4) and (2) we have

$$
(x(y x))^{n}-\left(x^{n} y^{n}+z^{\prime}\right) x^{n} \in Z
$$

Thus,

$$
\begin{equation*}
(x y x)^{n}-x^{n} y^{n} x^{n}-z^{\prime} x^{n} \in Z . \tag{6}
\end{equation*}
$$

Combining (5) and (6), we conclude that

$$
\begin{equation*}
\left(z-z^{\prime}\right) x^{n} \in Z \tag{7}
\end{equation*}
$$

Since R is prime and using Lemma 1 , (7) implies that

$$
z=z^{\prime} \text { or } x^{n} \in Z
$$

We now distinguish two cases.
Case 1. $(x y)^{n}-y^{n} x^{n}=(y x)^{n}-x^{n} y^{n}=z \in Z$. Then since $y(x y)^{n}=(y x)^{n} y$ we conclude that

$$
y\left(y^{n} x^{n}+z\right)=\left(x^{n} y^{n}+z\right) y
$$

and hence

$$
\begin{equation*}
y^{n+1} x^{n}=x^{n} y^{n+1} \tag{8}
\end{equation*}
$$

Case 2. $x^{n} \in Z$. This implies that

$$
\begin{equation*}
y^{n+1} x^{n}=x^{n} y^{n+1} \tag{9}
\end{equation*}
$$

Using (8) and (9), we see that, in either case, $y^{n+1} x^{n}=x^{n} y^{n+1}$, which implies that R is commutative by a well-known theorem of Herstein [6].

In preparation for the proof of our next theorem, we first state without proof the following known lemmas (see [8, p. 221] and [10, Lemma 2]). We use the usual notation $[x, y]=x y-y x$.

Lemma 2. If $[x, y]$ commutes with x, then $\left[x^{k}, y\right]=k x^{k-1}[x, y]$ for all positive integers k.

Lemma 3. Let $x, y \in R$. Suppose that for some positive integer $k, x^{k} y=0=$ $(x+1)^{k} y$. Then necessarily $y=0$.

We use Theorem 1 to prove our next theorem which deals with the case where n is a fixed positive integer.

Theorem 2. Let R be an associative ring with identity 1 and n is a fixed positive integer such that $(x y)^{n}-y^{n} x^{n}=(y x)^{n}-x^{n} y^{n} \in Z, \forall x, y$ in R. If R is $n(n+1)$ -torsion-free, then R is commutative.

Proof: Let x, y be any two elements of R. From the hypothesis we have

$$
\begin{equation*}
(x y)^{n}-y^{n} x^{n}=(y x)^{n}-x^{n} y^{n}=z \in Z \tag{10}
\end{equation*}
$$

But $y(x y)^{n}=(y x)^{n} y$. Using (10), we get

$$
y\left(y^{n} x^{n}+z\right)=\left(x^{n} y^{n}+z\right) y
$$

and since $z \in Z$, we get

$$
\begin{equation*}
\left[y^{n+1}, x^{n}\right]=0, \quad x, y \in R \tag{11}
\end{equation*}
$$

Let N be the set of all nilpotent elements of R and let $u \in N$. There exists a minimal positive integer p such that

$$
\begin{equation*}
\left[u^{k}, x^{n}\right]=0 \text { for all integers } k \geqslant p, p \text { minimal. } \tag{12}
\end{equation*}
$$

Suppose $p>1$. Combining (11) and (12), we get

$$
0=\left[\left(u^{p-1}+1\right)^{n+1}, x^{n}\right]=(n+1)\left[u^{p-1}, x^{n}\right]
$$

and hence $\left[u^{p-1}, x^{n}\right]=0$, since R is ($n+1$)-torsion-free. But this contradicts the minimality of p. This shows that $p=1$ and hence by (12)

$$
\begin{equation*}
\left[u, x^{n}\right]=0 \text { for all } x \in R, u \in N \tag{13}
\end{equation*}
$$

Let S be the subring of R generated by all n-th powers of elements of R. Then by (13) we have

The nilpotent elements of S are central to S.

From Theorem 1, the commutator ideal of S is nil, and hence by (14) we get

$$
\begin{equation*}
[a, b] \text { is central in } S \text { for all } a . b \in S \tag{15}
\end{equation*}
$$

Now using (11). (15) and Lemma 2 we obtain

$$
\begin{equation*}
n a^{n-1}\left[a, b^{n+1}\right]=0 \text { for all } a, b \in S \tag{16}
\end{equation*}
$$

Since R is n-torsion-free, (16) implies that $a^{n-1}\left[a, b^{n+1}\right]=0$ for all $a, b \in S$. By replacing a by ($a+1$) we have $(a+1)^{n-1}\left[a, b^{n+1}\right]=0$, and hence by Lemma 3 we get

$$
\begin{equation*}
\left[a, b^{n+1}\right]=0 \text { for all } a, b \in S \tag{17}
\end{equation*}
$$

Now using (17), (15) and Lemma 2 we obtain

$$
\begin{equation*}
(n+1) b^{n}[a, b]=0 \text { for all } a, b \in S \tag{18}
\end{equation*}
$$

Since R is $(n+1)$-torsion-free, (18) implies that $b^{n}[a, b]=0$ for all $a, b \in S$. By replacing b by $(b+1)$ and applying Lemma 3 , we get

$$
\begin{equation*}
[a, b]=0 \text { for all } a, b \in S \tag{19}
\end{equation*}
$$

Since S is generated by all n-th powers of elements of R, (19) implies that

$$
\begin{equation*}
\left[x^{n}, y^{n}\right]=0 \text { for all } x, y \in R \tag{20}
\end{equation*}
$$

But $(x y)^{n}-y^{n} x^{n}=(y x)^{n}-x^{n} y^{n}$. This implies using (20) that $(x y)^{n}=(y x)^{n}$, and since R is n-torsion-free, R is commutative by a theorem of Bell [3]. This completes the proof of Theorem 2.

The following lemma is needed for Theorem 3 below. This lemma is proved in [7] by applying a result of Kezlan [9] and Bell [2].

Lemma 4. Let R be a ring such that for each pair of elements x, y in R there exists an integer $n=n(x, y)$ such that $1 \leqslant n \leqslant N$ and $\left[(x y)^{n}-x^{n} y^{n}, x\right]=0$, where N is a fixed positive integer greater than 1. Then the commutator ideal of R is nil.

Theorem 3 is a generalisation of the theorem of [1] mentioned above. The proof of Theorem 3 proceeds exactly as the proof of Theorem 2 except at one point where Theorem 1 is used. Instead, Lemma 4 should be used. We omit the proof of Theorem 3 to avoid repetition.

Theorem 3. Let R be an associative ring with identity 1 and n is a fixed positive integer greater than 1, such that $(x y)^{n}-x^{n} y^{n}=(y x)^{n}-y^{n} x^{n} \in Z$ for all x, y in R. If R is $n(n-1)$-torsion-free, then R is commutative.

Remark. Let $R=\left\{\left.\left(\begin{array}{lll}a & b & c \\ 0 & a & d \\ 0 & 0 & a\end{array}\right) \right\rvert\, a, b, c, d \in G F(3)\right\}$. Then $(x y)^{3}=x^{3} y^{3}$ and $(x y)^{4}=x^{4} y^{4}$. So, with $n=3, R$ is $(n-1)$-torsion-free and $(x y)^{n}-x^{n} y^{n}=$ $(y x)^{n}-y^{n} x^{n}=0 \in Z$; however, R is not commutative. With $n=4, R$ is n -torsion-free and $(x y)^{n}-x^{n} y^{n}=(y x)^{n}-y^{n} x^{n}=0 \in Z$ but R is not commutative. This shows that the condition " $n(n-1)$-torsion-free" in Theorem 3 cannot be replaced by " $n-1$)-torsion-free" or " n-torsion-free".

References

[1] H. Abu-Khuzam, 'A commutativity theorem for rings', Math. Japon. 25 (1980), 593-595.
[2] H.E. Bell, 'On some commutativity theorems of Herstein', Arch. Math. (Basel) 24 (1973), 34-38.
[3] H.E. Bell, 'On rings with commuting powers', Math. Japon. 24 (1979), 473-478.
[4] V. Gupta, 'Some remarks on the commutativity of rings', Acta Math. Acad. Sci. Hungar 36 (1980), 233-236.
[5] I.N. Herstein, 'Power maps in rings', Michigan Math. J. 8 (1961), 29-32.
[8] I.N. Herstein, 'A commutativity theorem', J. Algebra 38 (1976), 112-118.
[7] Y. Hirano, 'Some polynomial identities and commutativity of rings II', Proc. of the 14-th Symposium on Ring Theory, Okayama (1982), 9-24.
[8] N. Jacobson, Structure of Rings (A.M.S. Colloquium Publication, 1964).
[日] T.P. Kezlan, 'A note on commutativity of semiprime PI-rings', Math. Japon. 27 (1982), 267-268.
[10] W.K. Nicholson and A. Yaqub, 'A commutativity theorem', Algebra Universalis 10 (1980), 260-263.

Department of Mathematical Sciences,
King Fahd University of Petroleum and Minerals,
Dhahran 31261
Saudi Arabia

