COMMUTATIVITY RESULTS FOR RINGS

HAZAR ABU-KHUZAM

Let R be an associative ring. We prove that if for each finite subset F of R there exists a positive integer n = n(F) such that $(xy)^n - y^n x^n$ is in the centre of R for every x, y in F, then the commutator ideal of R is nil. We also prove that if n is a fixed positive integer and R is an n(n + 1)-torsion-free ring with identity such that $(xy)^n - y^n x^n = (yx)^n - x^n y^n$ is in the centre of R for all x, y in R, then R is commutative.

A theorem of Herstein [5] states that a ring R which satisfies the identity $(xy)^n = x^n y^n$ where n is a fixed positive integer greater than 1, must have nil commutator ideal. In [1], the author proved that if n is a fixed positive integer greater than 1, and R is an n(n-1)-torsion-free ring with identity such that $(xy)^n = x^n y^n$ for all x, y in R, then R is commutative. In this direction we prove the following results. Theorem 3 below generalises the above mentioned result in [1]. Throughout, let Z denote the centre of R.

We start by stating without proof the following known lemma [4].

LEMMA 1. Let R be a prime ring and let x and y be elements of R with $x \neq 0$. If $x \in Z$ and $xy \in Z$ then $y \in Z$.

THEOREM 1. Let R be an associative ring such that for each finite subset F of R there exists a positive integer n = n(F) such that $(xy)^n - y^n x^n$ is in the centre Z of R, $\forall x, y \in F$. Then the commutator ideal of R is nil.

PROOF: To prove that the commutator ideal of R is nil it is enough to show that if R has no nonzero nil ideals then it is commutative. So we suppose that R has no nonzero nil ideals. Then R is a subdirect product of prime rings R_{α} , having no nonzero nil ideals. Each R_{α} being a homomorphic image of R, $R_{\alpha} = \phi_{\alpha}(R)$, satisfies the hypothesis of R. For let $F_{\alpha} = \{x_{1\alpha}, x_{2\alpha}, \ldots, x_{k\alpha}\}$ be a finite subset of R_{α} and let $F = \{x_1, x_2, \ldots, x_k\}$ be a finite subset of R such that $\phi_{\alpha}(x_i) = x_{i\alpha}, i = 1, \ldots, k$. There exists a positive integer n = n(F), such that $(xy)^n - y^n x^n \in Z$ for all $x, y \in F$. Clearly $(x_{\alpha}y_{\alpha})^n - y_{\alpha}^n x_{\alpha}^n \in Z_{\alpha}$ [the center of R_{α}] for all $x_{\alpha}, y_{\alpha} \in F_{\alpha}$. So we may assume that R is a prime ring having no nonzero nil ideals. Let x and y be any two

Received 3 November, 1987

This research is supported by King Fahd University of Petroleum and Minerals.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

H. Abu-Khuzam

elements of R. By the hypothesis, there exists a positive integer n = n(x, y, xy, yx)such that

$$(1) (xy)^n - y^n x^n = z \in Z$$

$$(2) (yx)^n - x^n y^n = z' \in Z$$

$$(3) \qquad \qquad ((xy)x)^n - x^n(xy)^n \in Z$$

$$(4) \qquad (x(yx))^n - (yx)^n x^n \in Z.$$

Now (3) and (1) imply that

$$((xy)x)^n - x^n(y^nx^n + z) \in Z.$$

Thus,

(5)
$$(xyx)^n - x^n y^n x^n - zx^n \in \mathbb{Z}.$$

Using (4) and (2) we have

$$(x(yx))^n - (x^ny^n + z')x^n \in Z.$$

Thus,

$$(6) (xyx)^n - x^ny^nx^n - z'x^n \in Z.$$

Combining (5) and (6), we conclude that

$$(7) (z-z')x^n \in Z.$$

Since R is prime and using Lemma 1, (7) implies that

$$z = z' \text{ or } x^n \in Z.$$

We now distinguish two cases.

Case 1. $(xy)^n - y^n x^n = (yx)^n - x^n y^n = z \in Z$. Then since $y(xy)^n = (yx)^n y$ we conclude that

 $y(y^nx^n+z)=(x^ny^n+z)y,$

and hence

(8)
$$y^{n+1}x^n = x^n y^{n+1}.$$

Case 2. $x^n \in Z$. This implies that

$$(9) y^{n+1}x^n = x^n y^{n+1}$$

Using (8) and (9), we see that, in either case, $y^{n+1}x^n = x^ny^{n+1}$, which implies that R is commutative by a well-known theorem of Herstein [6].

In preparation for the proof of our next theorem, we first state without proof the following known lemmas (see [8, p. 221] and [10, Lemma 2]). We use the usual notation [x, y] = xy - yx.

192

LEMMA 2. If [x, y] commutes with x, then $[x^k, y] = kx^{k-1}[x, y]$ for all positive integers k.

LEMMA 3. Let $x, y \in R$. Suppose that for some positive integer $k, x^k y = 0 = (x+1)^k y$. Then necessarily y = 0.

We use Theorem 1 to prove our next theorem which deals with the case where n is a fixed positive integer.

THEOREM 2. Let R be an associative ring with identity 1 and n is a fixed positive integer such that $(xy)^n - y^n x^n = (yx)^n - x^n y^n \in \mathbb{Z}$, $\forall x, y$ in R. If R is n(n+1)-torsion-free, then R is commutative.

PROOF: Let x, y be any two elements of R. From the hypothesis we have

(10)
$$(xy)^n - y^n x^n = (yx)^n - x^n y^n = z \in \mathbb{Z}.$$

But $y(xy)^n = (yx)^n y$. Using (10), we get

$$y(y^nx^n+z) = (x^ny^n+z)y$$

and since $z \in Z$, we get

(11)
$$[y^{n+1}, x^n] = 0, \quad x, y \in \mathbb{R}.$$

Let N be the set of all nilpotent elements of R and let $u \in N$. There exists a minimal positive integer p such that

(12)
$$[u^k, x^n] = 0$$
 for all integers $k \ge p$, p minimal.

Suppose p > 1. Combining (11) and (12), we get

$$0 = [(u^{p-1}+1)^{n+1}, x^n] = (n+1)[u^{p-1}, x^n],$$

and hence $[u^{p-1}, x^n] = 0$, since R is (n+1)-torsion-free. But this contradicts the minimality of p. This shows that p = 1 and hence by (12)

(13)
$$[u, x^n] = 0 \text{ for all } x \in R, \ u \in N.$$

Let S be the subring of R generated by all n-th powers of elements of R. Then by (13) we have

(14) The nilpotent elements of S are central to S.

From Theorem 1, the commutator ideal of S is nil, and hence by (14) we get

(15)
$$[a,b]$$
 is central in S for all $a. b \in S$.

Now using (11). (15) and Lemma 2 we obtain

(16)
$$na^{n-1}[a, b^{n+1}] = 0$$
 for all $a, b \in S$.

Since R is n-torsion-free, (16) implies that $a^{n-1}[a, b^{n+1}] = 0$ for all $a, b \in S$. By replacing a by (a+1) we have $(a+1)^{n-1}[a, b^{n+1}] = 0$, and hence by Lemma 3 we get

(17)
$$[a, b^{n+1}] = 0 \text{ for all } a, b \in S.$$

Now using (17), (15) and Lemma 2 we obtain

(18)
$$(n+1)b^{n}[a,b] = 0 \text{ for all } a,b \in S.$$

Since R is (n+1)-torsion-free, (18) implies that $b^n[a,b] = 0$ for all $a, b \in S$. By replacing b by (b+1) and applying Lemma 3, we get

(19)
$$[a,b] = 0 \text{ for all } a,b \in S.$$

Since S is generated by all n-th powers of elements of R, (19) implies that

(20)
$$[x^n, y^n] = 0 \text{ for all } x, y \in R.$$

But $(xy)^n - y^n x^n = (yx)^n - x^n y^n$. This implies using (20) that $(xy)^n = (yx)^n$, and since R is n-torsion-free, R is commutative by a theorem of Bell [3]. This completes the proof of Theorem 2.

The following lemma is needed for Theorem 3 below. This lemma is proved in [7] by applying a result of Kezlan [9] and Bell [2].

LEMMA 4. Let R be a ring such that for each pair of elements x, y in R there exists an integer n = n(x, y) such that $1 \le n \le N$ and $[(xy)^n - x^n y^n, x] = 0$, where N is a fixed positive integer greater than 1. Then the commutator ideal of R is nil.

Theorem 3 is a generalisation of the theorem of [1] mentioned above. The proof of Theorem 3 proceeds exactly as the proof of Theorem 2 except at one point where Theorem 1 is used. Instead, Lemma 4 should be used. We omit the proof of Theorem 3 to avoid repetition. THEOREM 3. Let R be an associative ring with identity 1 and n is a fixed positive integer greater than 1, such that $(xy)^n - x^n y^n = (yx)^n - y^n x^n \in \mathbb{Z}$ for all x, y in R. If R is n(n-1)-torsion-free, then R is commutative.

Remark. Let $R = \{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} | a, b, c, d \in GF(3) \}$. Then $(xy)^3 = x^3y^3$ and

 $(xy)^4 = x^4y^4$. So, with n = 3, R is (n-1)-torsion-free and $(xy)^n - x^ny^n = (yx)^n - y^nx^n = 0 \in \mathbb{Z}$; however, R is not commutative. With n = 4, R is n-torsion-free and $(xy)^n - x^ny^n = (yx)^n - y^nx^n = 0 \in \mathbb{Z}$ but R is not commutative. This shows that the condition "n(n-1)-torsion-free" in Theorem 3 cannot be replaced by "(n-1)-torsion-free" or "n-torsion-free".

References

- [1] H. Abu-Khuzam, 'A commutativity theorem for rings', Math. Japon. 25 (1980), 593-595.
- [2] H.E. Bell, 'On some commutativity theorems of Herstein', Arch. Math. (Basel) 24 (1973), 34-38.
- [3] H.E. Bell, 'On rings with commuting powers', Math. Japon. 24 (1979), 473-478.
- [4] V. Gupta, 'Some remarks on the commutativity of rings', Acta Math. Acad. Sci. Hungar 36 (1980), 233-236.
- [5] I.N. Herstein, 'Power maps in rings', Michigan Math. J. 8 (1961), 29-32.
- [6] I.N. Herstein, 'A commutativity theorem', J. Algebra 38 (1976), 112-118.
- Y. Hirano, 'Some polynomial identities and commutativity of rings II', Proc. of the 14-th Symposium on Ring Theory, Okayama (1982), 9-24.
- [8] N. Jacobson, Structure of Rings (A.M.S. Colloquium Publication, 1964).
- [9] T.P. Kezlan, 'A note on commutativity of semiprime PI-rings', Math. Japon. 27 (1982), 267-268.
- [10] W.K. Nicholson and A. Yaqub, 'A commutativity theorem', Algebra Universalis 10 (1980), 260-263.

Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 Saudi Arabia