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COMMUTATIVITY RESULTS FOR RINGS

HAZAR ABU-KHUZAM

Let R be an associative ring. We prove that if for each finite subset F of R there exists a
positive integer n = n(F) such that (xy)" -ynxn is in the centre of R for every x, y in F,
then the commutator ideal of R is nil. We also prove that if n is a fixed positive integer and
R is an n(n + 1)-torsion-free ring with identity such that (xy)n - y"xn = (yx)n - x"yn

is in the centre of R for all a;, y in R, then R is commutative.

A theorem of Herstein [5] states that a ring R which satisfies the identity (xy)n =
xnyn where n is a fixed positive integer greater than 1, must have nil commutator
ideal. In [1], the author proved that if n is a fixed positive integer greater than 1, and
R is an n(n — 1)-torsion-free ring with identity such that (xy)" = xnyn for all x , y in
R, then R is commutative. In this direction we prove the following results. Theorem
3 below generalises the above mentioned result in [1]. Throughout, let Z denote the
centre of R.

We start by stating without proof the following known lemma [4].

LEMMA 1. Let R be a prime ring and let x and y be elements of R with x ^ 0.
If x £ Z and xy £ Z then y £ Z.

THEOREM 1. Let R be an associative ring such that for each finite subset F of
R there exists a positive integer n = n(F) such that (xy)n — ynxn is in the centre Z
of R, Vx,y 6 F. Then the commutator ideal of R is nil.

PROOF: TO prove that the commutator ideal of R is nil it is enough to show that
if R has no nonzero nil ideals then it is commutative. So we suppose that R has
no nonzero nil ideals. Then R is a subdirect product of prime rings Ra, having no
nonzero nil ideals. Each Ra being a homomorphic image of R, Ra = 4>a(R), satisfies
the hypothesis of JR. For let Fa = {xla, x2a, • • •, xka} be a finite subset of Ra and
let F = {xi,X2, • •. ,Xk} b e a finite s u b s e t of R s u c h t h a t cj>a(xi) — xia , i = 1 , . . .k.

There exists a positive integer n — n(F), such that (xy)n — ynxn £ Z for all x, y £ F.
Clearly [xaya)

n - y^x^ £ Za [the center of Ra] for all xa, ya £ Fa. So we may
assume that R is a prime ring having no nonzero nil ideals. Let x and y be any two
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elements of R. By the hypothesis, there exists a positive integer n — n(x,y,xy,yx)

such that

(1) ( x y ) n - y n x n = z € Z

( 2 ) (yx)n - xnyn = z' G Z

(3) ((*»)*)" - *n(xy)n e z

(4) (x(yx))n-(yx)nxneZ.

Now (3) and (1) imply that

{(xy)x)n - xn(ynxn + z) £ Z.

Thus,

(5) (xyx)n - x"ynxn - zxn G Z.

Using (4) and (2) we have

{x{yx))n - {xnyn + z')xn e Z.

Thus,

(6) (xyx)" - xny"x" - z'xn G Z.

Combining (5) and (6), we conclude that

(7) (z-zVGZ.

Since R is prime and using Lemma 1, (7) implies that

z = z or xn G Z.

We now distinguish two cases.

Case 1. (xy)n — y"xn = (yx)n — x"yn = z G Z. Then since y{xy)" = (yx)ny we
conclude that

y(ynxn + z) = (xnyn + z)y,

and hence

(8) nn+1x" = I y + 1 .

Case 2. xn G Z. This implies that

(9) yn+1xn = xnyn+1.

Using (8) and (9), we see that, in either case, yn+1xn — xnyn+1 , which implies that R

is commutative by a well-known theorem of Herstein [6]. |

In preparation for the proof of our next theorem, we first state without proof the
following known lemmas (see [8, p. 221] and [10, Lemma 2]). We use the usual notation
[x,y] = xy -yx.
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LEMMA 2. If [x,y] commutes with x, then [xh,y] = kxk~1\x,y] for all positive

integers k.

LEMMA 3. Let x, y £ R. Suppose that for some positive integer k, xky = 0 =
(x + 1) y. Then necessarily y = 0.

We use Theorem 1 to prove our next theorem which deals with the case where n

is a fixed positive integer.

THEOREM 2. Let R be an associative ring with identity 1 and n is a fixed positive
integer such that {xy)n - ynxn = (yx)n - xnyn £ Z, Vx,y in R. If R is n(n + 1)-
torsion-free, then R is commutative.

PROOF: Let x , y be any two elements of R. From the hypothesis we have

(10) (xy)n - ynxn = (yxf - xnyn = z £ Z.

But y(xy)n = (yx)ny. Using (10), we get

y{ynxn + z) = {xnyn + z)y

and since z £ Z, we get

(11) [y"+1,xn} = 0, x,yeR.

Let N be the set of all nilpotent elements of R and let u £ N . There exists a minimal
positive integer p such that

(12) [uk, x"] = 0 for all integers k ^ p, p minimal.

Suppose p > 1. Combining (11) and (12), we get

and hence [up~1,xn] — 0, since R is (n + 1)-torsion-free. But this contradicts the
minimality of p. This shows that p = 1 and hence by (12)

(13) [u,xn] = 0{orallxeR,uSN.

Let S be the subring of R generated by all n-th powers of elements of R. Then by
(13) we have

(14) The nilpotent elements of 5 are central to 5 .
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From Theorem 1, the commutator ideal of 5 is nil, and hence by (14) we get

(15) [a,b] is central in 5 for all a. b £ S.

Now using (11). (15) and Lemma 2 we obtain

(16) nan~1[a,bn+1} = Otoi all a,b £ S.

Since R is n-torsion-free, (16) implies that an~1[a,bn+1] — 0 for all a, b £ 5 . By
replacing a by (a + 1) we have (a + 1)" [a,6n+1] = 0, and hence by Lemma 3 we get

(17) [a, 6n+1] = 0 for all a,b £ S.

Now using (17), (15) and Lemma 2 we obtain

(18) (n + l)bn[a,b} = 0 for all a,6 € 5.

Since R is (n +1)-torsion-free, (18) implies that bn[a,b] = 0 for all a, b £ S. By
replacing b by (6 + 1) and applying Lemma 3, we get

(19) [a, b] = 0 for all a, b £ S.

Since S is generated by all n-th powers of elements of R, (19) implies that

(20) [xn,yn) = Ofoiailx,y£R.

But (xy)n - ynxn = (yx)n - x"yn. This implies using (20) that (xy)n = (yx)n, and
since R is n-torsion-free, R is commutative by a theorem of Bell [3]. This completes
the proof of Theorem 2. |

The following lemma is needed for Theorem 3 below. This lemma is proved in [7]

by applying a result of Kezlan [9] and Bell [2].

LEMMA 4. Let R be a ring sucJi that for each pair of elements x , y in R there

exists an integer n = n(x,y) such that 1 < n ^ N and [(xy)n — xny",x] — 0, wiiere
N is a fixed positive integer greater than 1. Then the commutator ideal of R is nil.

Theorem 3 is a generalisation of the theorem of [1] mentioned above. The proof
of Theorem 3 proceeds exactly as the proof of Theorem 2 except at one point where
Theorem 1 is used. Instead, Lemma 4 should be used. We omit the proof of Theorem
3 to avoid repetition.
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THEOREM 3. Let R be an associative ring with identity 1 and n is a fixed positive

integer greater than 1, such that (xy)n - x"y" — (yx)n - y"xn G Z for all x , y in R.

If R is n(n — 1)-torsi on-free, then R is commutative.

( a b c\

0 a d I \a,b,c,d E GF(3)}. Then (xy)3 = x3y3 and

0 0 a /

(xy) = x4y4. So, with n — 3, R is (n — 1)-torsion-free and {xy)n — xny" =

(yx)" — ynxn = 0 € Z; however, R is not commutative. With n = 4, R is re-

torsion-free and (xy)n — xnyn — (yx)n — y"xn = 0 e Z but R is not commutative.

This shows that the condition "n(n — 1)-torsion-free" in Theorem 3 cannot be replaced

by "(71 — 1)-torsion-free" or "n-torsion-free".
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