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Abstract

We model the evolution of the credit migration of a corporate bond as an inhomogeneous
semi-Markov chain. The valuation of a defaultable bond is done with the use of the
forward probability of no default up to maturity time. It is proved that, under the forward
probability measure, the semi-Markov property is maintained. We find the functional
relationships between the forward transition probability sequences and the real-world
probability sequences. The stochastic monotonicity properties of the inhomogeneous
semi-Markov model, which play a prominent role in these issues, are studied in detail.
Finally, we study the term structure of credit spread, provide an algorithm for the
estimation of the forward probabilities of transitions under the risk premium assumptions,
and present an estimation method for the real-world probability sequences.
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1. Introductory notes

A default risk is a possibility that a counterparty in a financial contract will not fulfill a
contractual commitment to meet their stated obligations. If this actually happens, we say that
the party defaults, or that the default event occurs. More generally, by a credit risk we mean the
risk associated with any kind of credit-linked event, for example a change in the credit quality,
a variation of credit spread, or the default event. Corporate bonds are debt instruments issued
by corporations. We shall concentrate on a discount bond, that is, we assume that the bond pays
no coupons. We shall use the term defaultable bond for any kind of bond with the possibility
of default.

Most of the techniques presented in this paper are applicable to the valuation of general
corporate liabilities, corporate loans, etc. However, merely for presentation purposes we choose
to limit the discussion to corporate bonds. If a fixed fraction of a bond’s face value is paid to
the bondholders at the time of default (usually denoted by τ in what follows), then the recovery
scheme is referred to as the fractional recovery of par value. There are other types of recovery
schemes but, since the methodologies presented below apply similarly to any type of recovery
scheme, we will not expand the discussion.
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Depending on the situation, a credit spread may be expressed, for example, as the difference
between respective yields to maturity or as the difference between respective instantaneous
forward rates. By the term structure of credit spreads we will refer to the term structure of such
differences. The determination of the credit spread is in fact the ultimate goal of most credit
risk models. A firm’s credit rating is a measure of the firm’s propensity to default.

Credit derivatives are privately negotiated derivative securities that are linked to a credit-
sensitive asset as the underlying asset. As estimated by J. P. Morgan, in April 2000 the total
nominal value of outstanding credit derivatives exceeded US$1012. The common feature of all
credit derivatives is that they allow for the transfer of the credit risk from one counterparty to
another; they thus constitute a natural and convenient tool to control risk exposure. In contrast
to standard interest-rate-sensitive derivatives, credit derivatives allow for the isolation of the
firm-specific credit risk from the overall market risk. They also provide a way to synthesize
assets that are otherwise not available to a particular investor.

The main objective of the quantitative models of credit risk is to provide ways to hedge
financial contracts that are sensitive to credit risk. The vast majority of mathematical research
devoted to credit risk is concerned with the modeling of the random time at which the default
event occurs, i.e. the default time. Two competing methodologies have emerged to model
the default/migration times and the recovery rates: the structural approach and the reduced-
form approach. Structural models are concerned with modeling and pricing credit risk that
is specific to a particular corporate obligator. Credit events are triggered by movements of
the firm’s value relative to some (random or nonrandom) credit-event-triggering threshold.
For this reason, the structural approach is frequently referred to as the firm value approach.
In the reduced-form approach, the value of the firm’s assets and its capital structure are not
modeled at all, and the credit events are specified in terms of some exogenously specified jump
process. We can distinguish between the reduced-form models that are only concerned with
the modeling of the default time (henceforth referred to as the intensity-based models), and the
reduced-form models with migrations between credit rating classes (called the credit migration
models).

Credit ratings are typically identified with elements of a finite set, referred to as the set of
credit classes or credit grades. In some cases, the credit classes may correspond to credit rating
systems, based on internally developed methodologies; in other cases they are attributed by
a commercial rating agency, such as Moody’s Investors Service, Standard and Poor’s, Fitch
IBCA, or Duff and Phelps.

Assume that the credit quality of a corporate bond is quantified and categorized into a finite
number of disjoint credit rating classes. Each credit class is represented by an element of a
finite set, denoted by K = {1, 2, . . . , k, k + 1}. It is natural to distinguish a particular element
k + 1 of the set K as formally corresponding to the default event, and to assume that credit
quality 1 is the highest. The main issue of the credit migrations approach is the modeling of the
transition probabilities/intensities of the migration process, both under the risk-neutral and the
real-world probabilities. The classical way of modeling the evolution of credit migrations is in
terms of either a discrete- or continuous-time homogeneous Markov chain (or a conditionally
homogeneous Markov chain), first introduced by Jarrow and Turnbull (1995) and Jarrow et al.
(1997). Works related to the simple Markov chain approach are those by Das and Tufano
(1996), Kijima (1998), Kijima and Komoribayashi (1998), Lando (1998), (2000), Arvanitis
et al. (1999), and Duffie and Singleton (1999). An excellent review of the above papers, the
mathematical foundation of their models, and the determination of their common core and
interrelations are given in Bielecki and Rutkowski (2002).
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In the study by Carty and Fons (1994), drawn from the Moody’s Investors Service proprietary
database, with a data span from 1976 to 1993, it was established that the duration of stay in a
specific credit rating class followed the Weibull distribution. The estimation of the parameters
of the particular Weibull distribution varied for each credit rating class. Thus, Carty and Fons
(1994) in fact established, without stating it, that the appropriate model was not a simple
Markov chain – in which case the duration of stay in each credit rating class would follow
the exponential distribution (or the geometric distribution in the discrete case) – but rather
was a semi-Markov process. The inhomogeneity in time of transition probabilities has been
reported by many authors, among whom are Duffie and Singleton (2003, p. 45), Lando (2004,
p. 88), Lando and Skoteberg (2001), Hamilton (2001), Fons (1991), and Jonsson and Frison
(1996). As these, and other, authors have reported, it seems that the real economic activity over
the business cycle is correlated with the fluctuation in transition and default probabilities. In
conclusion, there was thus a need to model the evolution of the credit migration of a corporate
bond as a discrete-time inhomogeneous semi-Markov chain, as a first step, and then study the
stochastic, measure-theoretic, and statistical problems that would arise from such an effort.
However, it is important to note that most of the present results, such as Theorem 4.1 and the
stochastic monotonicity theorems, are of interest in their own right in the theory of semi-Markov
processes.

In the present paper we model the evolution of the credit migration of a corporate bond
as an inhomogeneous semi-Markov chain. A first attempt to define the inhomogeneous semi-
Markov chain was made by Iosifescu-Manu (1972), who presented results of some simulations
of various aspects of the model, in particular its asymptotic behavior. The theory of ordinary
semi-Markov chains is well presented in Howard (1971, p. 577) and important further results
and applications can be found in McClean (1976), (1986) and Bartholomew (1982, p. 104),
(1986). A formal definition of the inhomogeneous semi-Markov chain was given in Vassiliou
and Papadopoulou (1992) and the problem of asymptotic behavior studied in Papadopoulou and
Vassiliou (1994). Furthermore, in Papadopoulou (1997) various other aspects of the asymptotic
behavior were treated, and in Vassiliou and Symeonaki (1999) perturbations in inhomogeneous
Markov systems were studied. A review of the evolution of the work on inhomogeneous semi-
Markov systems can be found in Vassiliou (1997). The inputs of our model are the real-world
probabilities, which are sufficient to uniquely determine an inhomogeneous semi-Markov chain.

In Section 2 we assume that there exists an arbitrage-free family of bond prices relative
to the interest rate process rt. The price at time t of a defaultable bond with maturity T is
estimated, with the recovery rate of the fractional recovery of par value scheme, δ, assumed to
be a constant. The valuation of the defaultable bond is given as a function of the probability of
no default up to maturity time under the forward probability measure. The forward probability
measure is equivalent to the probability martingale measure determined by the arbitrage-free
family of nonrisky bonds. In Section 3 we provide a new definition of a G-inhomogeneous
semi-Markov process. In Section 4 we study the change of real-world probability to forward
probability measure. In Theorem 4.1 we establish that the semi-Markov property is maintained,
and we find, in closed analytic form, the sequences of transition probabilities under the forward
probability measure as functions of the sequences of real-world transition probabilities. In
Section 5 we study stochastic monotonicities with the use of the general inhomogeneous semi-
Markov model. The case of stochastic monotonicities for the Markov model was studied by
Kijima (1998). In Theorem 5.1 we provide necessary conditions for the time of default of a
bond in credit class i to be stochastically greater than the time of default of a bond in credit
class i + 1. In Theorem 5.4 we provide necessary conditions for the time of default of a bond
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in credit class i to be greater in the hazard sense than the time of default of a bond in credit
class i + 1. In Theorem 5.5 we provide necessary conditions for the time of default of a bond
in credit class 1 to be new worse than used, and of a bond of credit class k to be new better than
used. In Section 6 we study the term structure of credit spread and provide an algorithm for
the estimation of the forward probabilities of transitions under the risk premium assumptions.
Finally we provide a method of estimating the real-world transition probability sequences for
the semi-Markov processes, and statistics for testing their homogeneity over time.

2. The price of a defaultable bond

Let the real-world filtered probability space be (�,G,Q), where Q is interpreted as the
real-world probability measure, and let the filtration Gt ⊆ G, t = 0, 1, 2, . . . , model the flow
of all observations available to traders. Let T ∗ > 0 be a fixed horizon date. We will present a
model that accounts for the migration of a defaultable bond between rating grades.

Let us assume that Bt is the savings account, opened with one unit of money. In accordance
with simple compounding convention in the discrete-time case, we have

Bt =
t∏

u=0

(1 + ru),

where rt denotes the interest rate process for t = 0, 1, 2, . . . .
By a zero-coupon bond (a discount bond) of maturity T , we mean a financial security paying

its holder one unit of money at a specified date in the future. This means that, by convention,
the bond’s principal (known also as face value or nominal value) is one unit. The price of a
zero-coupon bond of maturity T will, at any instant t ≤ T , be denoted by B(t, T ); it is thus
obvious thatB(T , T ) = 1. In our framework, we assume throughout that, for any fixed maturity
T , the price process B(t, T ), t ∈ [0, T ], follows a strictly positive and adapted process on the
filtered probability space (�,G, Q).

We are interested in the absence of arbitrage opportunities between all bonds with different
maturities and a savings account.

Definition 2.1. A familyB(t, T ), t ≤ T ≤ T ∗, of adapted processes is called an arbitrage-free
family of bond prices relative to rt if the following conditions are satisfied:

(a) B(T , T ) = 1 for every T ∈ [0, T ∗],
(b) there exists a probability measure Q∗ on (�,GT ∗), equivalent to Q, such that, for any

maturity T ∈ [0, T ∗], the relative bond price

B(t, T )

Bt
, t ∈ [0, T ],

follows a martingale under Q∗.

Any probability measure Q∗ of the type in Definition 2.1 is called a martingale measure
for the family B(t, T ) relative to rt or, briefly, a martingale measure for the family B(t, T ) if
no confusion may arise. The existence of such a martingale measure for the family B(t, T ) is
often called the fundamental theorem of asset pricing (Shreve (2004b, p. 231)). It is implicitly
assumed that we have already constructed an arbitrage-free model of a market in which all
bonds of different maturities, as well as a certain number of other assets, are primary traded
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securities. In addition, we assume that the market is complete, which makes the martingale
measure Q∗ unique and moreover allows us to postulate the existence of a replicating strategy
for any contingent claim in the default-free market.

From the above definition we find (see Musiela and Rutkowski (1997b, p. 283)) that

B(t, T ) = Bt EQ∗(B−1
T | Gt ), t ∈ [0, T ]. (2.1)

Let Dδ(t, T ) be the price at time t of a defaultable bond with a face value of one unit of
money. Then, as in (2.1), we obtain

Dδ(t, T ) = Bt EQ∗(B−1
T (δ1{T≥τ } + 1{T<τ }) | Gt ), (2.2)

where 1{T≥τ } equals 1 if T ≥ τ and equals 0 otherwise.
We assume throughout that the price B(t, T ) of a zero-coupon bond of maturity T follows

an Itô process under the martingale measure Q∗ (see Musiela and Rutkowski (1997a)):

dB(t, T ) = B(t, T )(rt dt + b(t, T ) dW
∗
t ).

Here W
∗ denotes a d-dimensional standard Brownian motion under the martingale measure Q∗

defined on the filtered probability space (�,G,Q). The σ -algebra G encompasses the filtration
generated by W

∗. In our case, of discrete time, the above equation changes accordingly.
A forward contract is an agreement, established at a time t < T , to pay or receive at the

settlement time T a preassigned payoff, say X, at an agreed forward price. We now provide
the definition of the forward probability measure introduced by Geman (1989) and further
developed by Geman et al. (1995), who observed that the forward price of any financial asset
follows a local martingale under the forward neutral probability associated with the settlement
date of a forward contract.

Definition 2.2. A probability measure QT on (�,GT ), equivalent to Q∗, with Radon–
Nikodým derivative given by the formula

d QT
d Q∗ = B−1

T

EQ∗(B−1
T )

= 1

BT B(0, T )
Q∗-almost surely (Q∗ -a.s.) (2.3)

is called the forward martingale measure (or, briefly, the forward measure) for the settlement
time T .

Notice that the above Radon–Nikodým derivative, when restricted to the σ -algebra Gt ,
satisfies

ηt := d QT
d Q∗

∣∣∣∣
Gt

= EQ∗
(

1

BT B(0, T )

∣∣∣∣
Gt

)
= B(t, T )

BtB(0, T )
(2.4)

for every t ∈ [0, T ].
The next result, which is known as the abstract version of the Bayes formula, applies in the

situation in which two mutually equivalent probability measures Q∗ and QT , say, are defined
on a common measurable space (�,G). Suppose that the Radon–Nikodým derivative of QT

with respect to Q∗ is
d QT
d Q∗ = η Q∗ -a.s. (2.5)

Note that the random variable η is strictly positive Q∗-a.s. and that η is Q∗-integrable (that is,
EQ∗(|η|) < ∞) with EQ∗(η) = 1.
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Equation (2.5) implies (Shreve (2004a, p. 62)) the apparently stronger condition that, for
any QT -integrable random variable ψ ,

EQT (ψ) = EQ∗(ψη).

Lemma 2.1. Let Gt be a σ -subalgebra of the σ -algebra G and let ψ be a random variable
integrable with respect to QT . Then

EQT (ψ | Gt ) = EQ∗(ψη | Gt )

EQ∗(η | Gt )
. (2.6)

The proof of Lemma 2.1 can be found in Musiela and Rutkowski (1997b, p. 458).
Now let

ψ = (δ1{T≥τ } + 1{T<τ }).

From (2.6) we then obtain

EQT ((δ1{T≥τ } + 1{T<τ }) | Gt ) = EQ∗([1/(BT B(0, T ))](δ1{T≥τ } + 1{T<τ }) | Gt )

EQ∗([1/BT B(0, T )] | Gt )

= EQ∗(B−1
T (δ1{T≥τ } + 1{T<τ }) | Gt )

B−1
t B(t, T )

, (2.7)

using (2.4) and (2.1), and from (2.2) and (2.7) we find that

Dδ(t, T ) = B(t, T )EQT ((δ1{T≥τ } + 1{T<τ }) | Gt )

= B(t, T )(δ + (1 − δ)QT {τ > T | Gt }). (2.8)

3. Discrete-time inhomogeneous semi-Markov process

In what follows, we model the evolution of the credit migrations of a defaultable bond
as an inhomogeneous semi-Markov process. We provide a new and more general definition
of an inhomogeneous semi-Markov process than that which first appeared in the literature
in Vassiliou and Papadopoulou (1992). Note that, apart from the generalization, the delicate
essential differences in the cores of the two definitions are those that make possible the change of
probability measure which follows later. Let the real-world filtered probability space (�,G,Q)
be as described in Section 2. Let {Xt }∞t=0 be a stochastic process on (�,G,Q) taking values in
K = {1, 2, . . . , k, k+1} and describing the state the defaultable bond enters at time t . Also, let
F
X be the natural filtration generated by the process {Xt }∞t=0, i.e. F

X
t = σ(Xn, n = 0, 1, . . . , t).

We assume that F
X is a subfiltration of G, i.e. F

X ⊆ G. Now let St+ be the random variable
valued in K that describes the selection at time t+ of the next transition of the bond, given
that its last entrance to a class was at time t . We assume that t+ = t + ε ∈ (t, t + 1), where
for simplicity ε is a small positive constant independent of t . Let F

S be the natural filtration
generated by the process {St+}∞t=0 and assume that F

S ∨F
X ⊆ G. We assume that the evolution

in K of a defaultable bond follows a G-inhomogeneous semi-Markov process the definition of
which we now provide.

Definition 3.1. The pair {Xt, St+}∞t=0 is a discrete-time G-inhomogeneous semi-Markov
process if the following conditions hold.
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(a) The stochastic process {St+}∞t=0 is a discrete inhomogeneous Markov process adapted to the
stochastic process {Xt }∞t=0 under Q with respect to G, i.e. for any function f : K → R we have

EQ(f (S(t+ν)+) | Gt ) = EQ(f (S(t+ν)+) | σ(Xt )), t, ν = 0, 1, . . . . (3.1)

(b) Let Xt = i and St+ = j . Then the times of transition, say 	ij (t), for any i, j ∈ K,
are positive, integer-valued random variables each governed by a probability density function
hij (t, m), where obviously

hij (t, m) = Q{	ij (t) = m | St+ = j,Xt = i}, t, m = 0, 1, 2, . . . .

The hij (t, m) are ‘estimated’ (known) one ‘click’ of time after t+, say at t++ with t < t+ <

t++ < t + 1.

(c) For any function f : K × K × N
∗ → R, we have

Q{f (Xt , St+ ,	Xt ,St+ (t)) | Gt+}
= Q{f (Xt , St+ ,	Xt ,St+ (t)) | σ(Xt ) ∨ σ(St+)}, (3.2)

where N
∗ = {0, 1, 2, . . .}.

We will call {St+}∞t=0 the inherent G-inhomogeneous Markov process.
If a stochastic process {St+}∞t=0 is a G-inhomogeneous Markov chain under Q it is also an

F
S-inhomogeneous Markov chain under Q, but the converse implication is not true, in general.

Since the set K is finite, condition (a) above is equivalent (Shreve (2004a, p. 44)) to the following
ones.

(i) Q{St+ = j | Gt } = Q{St+ = j | σ(Xt )}.
(ii) Let Kν be the Cartesian product of ν copies of K. For any function f : Kν → R for

which EQ(|f (S(t+1)+ , . . . , S(t+ν)+)|) < ∞, we have

EQ(f (S(t+1)+ , . . . , S(t+ν)+) | Gt ) = EQ(f (S(t+1)+ , . . . , S(t+ν)+) | σ(Xt )).
(iii) For every A(t+1)+ , A(t+2)+ , . . . , A(t+ν)+ ⊂ R, we have

Q{S(t+1)+ ∈ A(t+1)+ , S(t+2)+ ∈ A(t+2)+ , . . . , S(t+ν)+ ∈ A(t+ν)+ | Gt }
= Q{S(t+1)+ ∈ A(t+1)+ , S(t+2)+ ∈ A(t+2)+ , . . . , S(t+ν)+ ∈ A(t+ν)+ | σ(Xt )}.

Now let pij (t) = Q{St+ = j | Xt = i} and denote by P̃ (t) = {pij (t)}i,j∈K the matrix of
transition probabilities, which will be of the form

P̃ (t) =

⎛
⎜⎜⎜⎜⎜⎝

p11(t) p12(t) · · · p1k(t) p1,k+1(t)

p21(t) p22(t) · · · p2k(t) p2,k+1(t)
...

...
. . .

...
...

pk1(t) pk2(t) · · · pkk(t) pk,k+1(t)

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

=
(

P (t) p

k+1(t)

0 1

)
. (3.3)

Note that pk+1,k+1(t) = 1; thus, the default state is an absorption state for the process
{Xt }∞t=0. According to Definition 3.1, whenever a defaultable bond enters a state i it selects
the next credit class j to which it will move with probability pij (t) = Q{St+ = j | Xt = i}.
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However, after j has been selected, but before making the transition from class i to class j , the
process ‘holds’ for a time 	ij (t) in state i. Recall that the holding times 	ij (t) are positive,
integer-valued random variables each governed by a probability density function hij (t, m). The
matrix H̃ (t, m) = {hij (t, m)}i,j∈K is of the form

H̃ (t, m) =

⎛
⎜⎜⎜⎜⎜⎝

h11(t, m) h12(t, m) · · · h1k(t, m) h1,k+1(t, m)

h21(t, m) h22(t, m) · · · h2k(t, m) h2,k+1(t, m)
...

...
. . .

...
...

hk1(t, m) hk2(t, m) · · · hkk(t,m) hk,k+1(t, m)

0 0 · · · 0 1{m=t+1}

⎞
⎟⎟⎟⎟⎟⎠

=
(

H (t, m) h

k+1(t, m)

0 1{m=t+1}

)
. (3.4)

We assume that the means of all holding time distributions are finite and that all holding
times are nonzero, i.e. hij (t, 0) = 0 for every t .

4. Change of real-world probability to forward martingale measure

For the fixed time horizon T < ∞, we have defined the real-world probability measure Q
and the martingale measure Q∗ to be equivalent on (�,GT ). Let the Radon–Nikodým derivative
be given by

d Q∗

d Q

∣∣∣∣
GT

= ψT Q -a.s., (4.1)

where the GT -measurable random variableψT is strictly positive Q-a.s. and EQ(ψT ) = 1. Then
the density process ψt = EQ(ψT | Gt ), t = 0, 1, . . . , T , follows a strictly positive martingale
under Q.

From (2.3) and (4.1) we find that the real-world probability measure Q and the forward
martingale measure QT are equivalent on (�,GT ), and that their Radon–Nikodým derivative
will be given by

d QT
d Q

∣∣∣∣
GT

= ψT

BT B(0, T )
= θT Q -a.s., (4.2)

where the GT -measurable random variable θT is strictly positive Q-a.s. and EQ(θT ) = 1.
Note that the density process θt = EQ(θT | Gt ), t = 0, 1, . . . , T , follows a strictly positive
martingale under Q, i.e.

EQ(θt+1 | Gt ) = EQ(EQ(θT | Gt+1) | Gt ) = EQ(θT | Gt ) = θt .

Our next goal is to examine whether a G-inhomogeneous semi-Markov process under Q
remains a G-inhomogeneous semi-Markov process under QT . If the G-inhomogeneous semi-
Markov property is preserved under QT , we would also like to relate the real-world transition
probabilities pij (t) = Q{St+ = j | Xt = i} and density functions

hij (t, m) = Q{	ij (t) = m | St+ = j,Xt = i}

to the respective probabilities under QT . We provide the result in the following theorem.
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Theorem 4.1. Let the random variable θ−1
t θt+ be (σ (Xt ) ∨ σ(St+))-measurable for any t =

0, 1, . . . , T − 1. Consequently, for every such t we have

θ−1
t θt+ = gt (Xt , St+)

for some function gt : K × K → R. In addition, assume that θ−1
t+ θt++ is (σ (Xt ) ∨ σ(St+) ∨

σ(	XtSt+ (t)))-measurable for any t = 0, 1, . . . , T − 1. In other words,

θ−1
t+ θt++ = ft+(Xt , St+ ,	XtSt+ (t))

for some function ft+ : K × K × N
∗ → R. If the pair {Xt, St+}∞t=0 follows a discrete-

time G-inhomogeneous semi-Markov process under Q then it also follows a discrete-time
G-inhomogeneous semi-Markov process under QT and, in addition,

(a) Fpij (t) := QT {St+ = j | Xt = i} = gt (i, j)pij (t) and

(b) F hij (t, m) := QT {	ij (t) = m | St+ = j,Xt = i} = ft+(i, j,m)hij (t, m).

Proof. Using Lemma 2.1, we fix a t ∈ N
∗ and, for any state j ∈ K, obtain

QT {St+ = j | Gt } = EQT (1{St+=j} | Gt )

= EQ(θT 1{St+=j} | Gt )

EQ(θT | Gt )
(from Lemma 2.1 and (4.2))

= EQ(θ
−1
t θT 1{St+=j} | Gt )

= EQ(EQ(θ
−1
t θT 1{St+=j} | Gt+) | Gt )

= EQ(θ
−1
t EQ(θT | Gt+)1{St+=j} | Gt )

= EQ(θ
−1
t θt+1{St+=j} | Gt )

= EQ(gt (Xt , St+)1{St+=j} | Gt )

= EQ(gt (Xt , St+)1{St+=j} | σ(Xt ))
(from (3.1) with f (St+) = gt (Xt , St+)1{St+=j}). (4.3)

The third equality follows from the facts that EQ(θT | Gt ) = θt is a martingale under Q and θt
is Gt -measurable. Equation (4.3) shows that the conditional probability is a σ(Xt )-measurable
random variable. Since σ(Xt ) ⊆ Gt , we conclude that

QT {St+ = j | Gt } = QT {St+ = j | σ(Xt )},

which in fact proves that {St+}t+ is a G-inhomogeneous Markov process under QT .
We will now prove part (a) of the theorem. It follows simply from

Fpij (t) = QT {St+ = j | Xt = i}
= EQ(θ

−1
t θt+1{St+=j} | Xt = i)

= EQ(gt (Xt , St+)1{St+=j} | Xt = i)

= gt (i, j)pij (t).
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We will now prove that the pair {Xt, St+}∞t=0 is a discrete-time G-inhomogeneous semi-
Markov process under QT . In this respect, we have

QT {	ij (t) = m | Gt+}
= EQT (1{	ij (t)=m} | Gt+)

= EQ(θT 1{	ij (t)=m} | Gt+)

EQ(θT | Gt+)
(from Lemma 2.1)

= EQ(θ
−1
t+ θT 1{	ij (t)=m} | Gt+)

= EQ(θ
−1
t+ EQ(θT | Gt++)1{	ij (t)=m} | Gt+)

= EQ(θ
−1
t+ θt++1{	ij (t)=m} | Gt+)

= EQ(ft+(Xt , St+ ,	XtSt+ (t))1{	ij (t)=m} | Gt+)

= EQ(ft+(Xt , St+ ,	XtSt+ (t))1{	ij (t)=m} | σ(Xt ) ∨ σ(St+)) (from (3.2)). (4.4)

Equation (4.4) shows that the conditional probability QT {	ij (t) = m | Gt+} is a (σ (Xt ) ∨
σ(St+))-measurable random variable. Since σ(Xt ) ∨ σ(St+) ⊆ Gt+ , we conclude that Xt is a
G-inhomogeneous semi-Markov process under QT , and that

QT {	ij (t) = m | Gt+} = QT {	ij (t) = m | σ(Xt ) ∨ σ(St+)}.
Now, from (4.4) it also follows that

F hij (t, m) = QT (	ij (t) = m | St+ = j,Xt = i)

= EQ(θ
−1
t+ θt++1{	ij (t)=m} | St+ = j,Xt = i)

= ft+(i, j,m)hij (t, m),

which concludes the proof of the theorem.

Remark 4.1. It is well known (Howard (1971, p. 579)) that the homogeneous semi-Markov
process is a generalization of the homogeneous Markov chain model used by Jarrow et al.
(1997) for the evolution of a defaultable bond. It is easy to see (Howard (1971, p. 586)) that
the discrete-time homogeneous Markov chain is a discrete-time homogeneous semi-Markov
process for which all holding times are exactly one unit in length. A simple extension of
the above argument is that a discrete-time G-homogeneous Markov chain is a discrete-time
G-inhomogeneous semi-Markov process for which

pij (t) = pij for every i, j ∈ K and t = 0, 1, 2, . . . ,

hij (t, 1) = hij (1) = 1 for every t = 0, 1, 2, . . . ,

hij (t, m) = 0 for m > 1 and for every t = 0, 1, 2, . . . .

For the model of Jarrow et al. (1997), Theorem 4.1, where now {Xt }∞t=0 is a discrete-time
G-homogeneous Markov chain under Q, can be stated as follows.

Let the random variable θ−1
t θt+1 be σ(Xt ,Xt+1)-measurable for any t = 0, 1, . . . , T − 1,

meaning that for every such t we have θ−1
t θt+1 = gt (Xt ,Xt+1) for some function gt : K

2 → R.
Then {Xt }∞t=0 follows a discrete-time G-inhomogeneous Markov chain under QT and, in
addition, Fpij (t) = pijgt (i, j).

This is in full agreement with assumption (6) of Jarrow et al. (1997), showing that their
assumption was based on sound intuition.
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5. Stochastic monotonicity

In order to study various forms of stochastic monotonicity, we first need to define the hazard
function of default for a defaultable bond that at time 0 is in class j . Thus, let us denote by τj
the absorption time of Xt when X0 = j. The hazard function of τj is then defined to be

dj (t) = Q{τj = t | τj ≥ t}, t = 1, 2, . . . .

Let d
(t) = [d1(t), d2(t), . . . , dk(t)]
 and, as inVassiliou and Papadopoulou (1992), define
the interval transition probability, i.e. the probability of a bond that entered state i at time s
being in state j at time t , s ≤ t :

q̃ij (s, t) = Q{the bond is in state j at time t | Xs = i},
i, j = 1, 2, . . . , k, k + 1, s, t = 0, 1, . . . .

Then define the matrixQ̃(s, t) = {q̃ij (s, t)}i,j∈K, which will be of the form

Q̃(s, t) =
(

Q(s, t) q

k+1(s, t)

0 1

)
,

where our notation is similar to that in (3.3). Also define

W (s, t) = diag{W1(s, t),W2(s, t), . . . ,Wk(s, t)},
where Wi(s, t) is the survival function of a bond’s credit class i.

We now turn to the matter of developing an expression for the interval transition probabilities.
How can a process that started in state i at time s be in state j at time t? One way this can
happen is for i and j to be the same state and for the process never to leave state i throughout
the period (s, t). This requires that the process makes its first transition after time t . Every
other way to get from state i to state j in the interval (s, t) requires that the process makes at
least one transition within this interval. By taking into account all the possible states and times
that constitute mutually exclusive paths, we obtain

Q(s, t) = W (s, t)+
t−s∑
m=0

[P (s)�H (s,m)]Q(s +m, t), (5.1)

where P (s)�H (s,m) is the Hadamard product of the two matrices (see Horn and Johnson
(1991, Chapter 5)). We similarly obtain

q

k+1(s, t) =

t−s∑
m=0

{[P (s)�H (s,m)]q

k+1(s +m, t)+ p


k+1(s)�h

k+1(s,m)}. (5.2)

We now provide the following proposition.

Proposition 5.1. The vector of hazard functions d
(t) can be given as a function of the interval
transition probabilities, as follows:

d
(t) = 1
 − (I − diag{qi,k+1(0, t − 1)}ki=1)
−1

×
(

1
 −
t∑

m=0

{[P (0)�H (0,m)]q

k+1(m, t)+ p


k+1(0)�h

k+1(0,m)}

)
.

Here, 1
 is the column vector consisting of 1s and I is the identity matrix.
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Proof. Because state k + 1 is absorbing, we have

qj,k+1(0, t) = Q{τj ≤ t}, j = 1, 2, . . . , k, t = 1, 2, . . . .

In addition it is inherently assumed that

Q{τj ≤ 0} = 0 for j = 1, 2, . . . , k.

We have Q{τj ≥ t} = 1 − Q{τj ≤ t − 1} and, thus,

Q{τj = t} = Q{τj ≤ t} − Q{τj ≤ t − 1}.
The hazard function for default is

dj (t) = Q{τj = t | τj ≥ t}
= Q{τj = t}

Q{τj ≥ t}
= Q{τj ≤ t} − Q{τj ≤ t − 1}

Q{τj ≥ t}
= 1 − 1 − qj,k+1(0, t)

1 − qj,k+1(0, t − 1)
, (5.3)

where qj,k+1(0, t − 1) < 1 for i = 1, 2, . . . , k and t = 1, 2, . . . . From (5.2) and (5.3) we
obtain the desired result.

Let

eij (s, t) = Q{the bond enters credit class j at time t | it entered credit class i at time s}
(5.4)

for i, j ∈ K, and by E(s, t) = {eij (s, t)}, i, j = 1, 2, . . . , k, and Ẽ(s, t) define the matrices
of entrance probabilities such that

Ẽ(s, t) =
(

E(s, t) e

k+1(s, t)

0 1{t−s=1}

)
, (5.5)

with our usual notation. Just as we proved (5.1), we can prove that

E(s, t) =
t−s∑
m=0

[P (s)�H (s,m)]E(s +m, t) for s < t, (5.6)

with E(s, s) = 1 for s = 0, 1, . . . . Furthermore, we can also prove that

e

k+1(s, t) =

t−s∑
m=0

[P (s)�H (s,m)]e

k+1(s +m, t)+ p


k+1(s)�h

k+1(s, t − s) (5.7)

and that

Q(s, t) =
t−s∑
m=0

E(s, s +m)W (s +m, t).

We now continue, with the formal definition of first-order stochastic dominance (Kijima
(1997, p. 129)).

https://doi.org/10.1239/aap/1143936146 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936146


The term structure of credit risk spreads 183

Definition 5.1. For random variables X and Y , X is said to be stochastically greater than Y
(written X ≥st Y ) if

E(f (X)) ≥ E(f (Y ))

for all increasing functions f (x) for which the expectation exists.

In the study of stochastic monotonicity, the following matrices have been proved useful (see
Kijima (1997, p. 103)):

V =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠
, V −1 =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠
. (5.8)

We will now prove that bonds of lower credit classes are riskier than their respective upper
classes in terms of their times to default.

Theorem 5.1. If, for i = 1, 2, . . . , k − 1, ν = 1, 2, . . . , k, and s = 0, 1, . . . ,

ν∑
j=1

pij (s)hij (s, s + 1) ≥
ν∑
j=1

pi+1,j (s)hi+1,j (s, s + 1), (5.9)

then τj ≥st τj+1 for all j .

Proof. Consider two inhomogeneous semi-Markov chains {Xt }∞t=0 and {Yt }∞t=0 whose evo-
lution is generated by the same transition probability matrices {P (t)}∞t=0 and {H (t, m)}∞t=0,
with X0 = j and Y0 = j + 1. Let

πX(t) = [π1X(t), π2X(t), . . . , πk+1,X(t)],
where

πiX(t) = Q{Xt enters state i at time t | X0 = j},
and define

πY (t) = [π1Y (t), π2Y (t), . . . , πk+1,Y (t)]
analogously.

We can easily prove that

πX(t) = πX(0)Ẽ(0, t) = πX(t − 1)Ẽ(t − 1, t),

and consequently obtain

πX(t + 1)V − πY (t + 1)V = (πX(t)V − πY (t)V )V
−1Ẽ(t, t + 1)V . (5.10)

For t = 0 this equation becomes

πX(1)V − πY (1)V = (πX(0)V − πY (0)V )V
−1Ẽ(0, 1)V .

Since πiX(0) = 1{i=j} and πiY (0) = 1{i=j+1}, we easily find that πX(0)V ≥ πY (0)V . Let

1
− = [0, 0, . . . ,−1]
.
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From (5.8) we then obtain

V−1Ẽ(0, 1)V =
(

V −1 1
−
0 1

) (
E(0, 1) e


k+1(0, 1)
0 1

) (
V 1

0 1

)

=
(

V −1E(0, 1)V 0

0 1

)
. (5.11)

Thus, in order to prove that πX(1)V ≥ πY (1)V , it is sufficient to show that

V −1E(0, 1)V ≥ 0.

From (5.6) we obtain

V −1E(0, 1)V = V −1
{ 1∑
m=0

[P (0)�H (0,m)]E(m, 1)

}
V

= V −1[P (0)�H (0, 1)]V , (5.12)

since H (0, 0) = 0,E(0, 0) = I , and E(1, 1) = I .
The (i, r)th element of the matrix V −1[P (0)�H (0, 1)]V , for i = 1, 2, . . . , k − 1 and

r = 1, 2, . . . , k, is

r∑
j=1

pij (0)hij (0, 1)−
r∑
j=1

pi+1,j (0)hi+1,j (0, 1),

which, according to (5.9), is nonnegative. The remaining elements of the matrix (in the last
row) are also nonnegative and, consequently, the matrix is nonnegative.

Now, for t = 1 (5.10) becomes

πX(2)V − πY (2)V = (πX(1)V − πY (1)V )V
−1Ẽ(1, 2)V .

We have already proved that πX(1)V ≥ πY (1)V ; thus, in order to obtain πX(2)V ≥ πY (2)V
it remains to show that V −1E(1, 2)V ≥ 0. This can be proved similarly to (5.12). By arguing
recursively, we consequently arrive at the conclusion that, according to (5.9),

πX(t)V ≥ πY (t)V for t = 0, 1, . . . ,

from the kth component of which we obtain

k∑
j=1

πjX(t) ≥
k∑
j=1

πjY (t)

or, equivalently,

1 − Q{Xt = k + 1 and enters at time t | X0 = j and enters at time 0}
≥ 1 − Q{Yt = k + 1 and enters at time t | Y0 = j + 1 and enters at time 0}.

Thus,
Q{τj = t} ≤ Q{τj+1 = t} for t = 1, 2, . . . ,

from which the theorem follows.
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Our next proposition reflects an interesting property of the matrix V −1[P̃ (t)�H̃ (t, m)]V ,
which, as we have seen, plays an important role.

Proposition 5.2. We have

∞∑
m=0

V −1[P̃ (t)�H̃ (t, m)]V =
(

V −1P (t)V 0

0 1

)
.

Proof. From (3.4) and (3.3) we have

V −1[P̃ (t)�H̃ (t, m)]V =
(

V −1 1
−
0 1

)

×
(

P (t)�H (t, m) p

k+1(t)�h


k+1(t)

0 1{m=t+1}

) (
V 1

0 1

)

=
(

V −1[P (t)�H (t, m)]V V −1w
(t, m)+ 1
−1{m=t+1}
0 1{m=t+1}

)
,

where
w
(t, m) = [P (t)�H (t, m)]1
 + p


k+1(t)�h

k+1(t)

is the column vector of the probabilities of a defaultable bond moving out of a specific credit
class. From

∞∑
m=0

V −1[P (t)�H (t, m)]V = V −1P (t)V ,

∞∑
m=0

V −1w
(t, m)+
∞∑
m=0

1
−1{m=t+1} = 0,

and
∞∑
m=0

1{m=t+1} = 1,

the result then follows.

Now define by τj (ν) the time to default of a bond which at time 0 entered state j and
made ν transitions up to the time at which it entered the default state k + 1. The question that
immediately arises, and which we will answer in what follows, is, under what condition does
τj (ν) ≥st τj+1(ν) hold for every j = 1, 2, . . . , k and ν = 0, 1, . . .? To answer this, we first let

eij (0, ν, t) = Q{Xt = j, tr(t) = ν | X0 = i},

where tr(t) = ν means that the process makes ν transitions in t time steps. Let Ẽ(s, ν, t) =
{eij (s, ν, t)}i,j∈K and E(s, ν, t) = {eij (s, ν, t)}, i, j = 1, 2, . . . , k, be the matrices of counting
transitions entrance probabilities. The matrix Ẽ(s, ν, t) can be written in the form

Ẽ(s, ν, t) =
(

E(s, ν, t) e

k+1(s, ν, t)

0 1{t−s=1}1{ν=1}

)
,
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with our usual notation. Just as we proved (5.6), we can prove that

E(s, ν, t) =
t−s−ν+1∑
m=0

[P (s)�H (s,m)]E(s +m, ν − 1, t),

e

k+1(s, ν, t) =

t−s−ν+1∑
m=0

[P (s)�H (s,m)]e

k+1(s +m, ν − 1, t)

+ 1{ν=1}[p

k+1(s)�h


k+1(s, t − s)].
Define

πX(0, ν, t) = [π1X(0, ν, t), π2X(0, ν, t), . . . , πkX(0, ν, t)],
where

πiX(0, ν, t) = Q{Xt = i, tr(t) = ν | X0 = j}.
It can be proved that

πX(0, ν, t) = πX(0, 0, 0)E(0, ν, t).

These definitions give us the tools to prove the following theorem along the same lines as
Theorem 5.1.

Theorem 5.2. If, for i = 1, 2, . . . , k − 1, µ = 1, 2, . . . , k, and s = 0, 1, . . . ,

µ∑
j=1

pij (s)hij (s, s + 1) ≥
µ∑
j=1

pi+1,j (s)hi+1,j (s, s + 1),

then τj (ν) ≥st τj+1(ν) for all j .

We will now present in a compact way some other known results on various stochastic
monotonicities (for details, see Kijima (1997, p. 121), (1998)), which will prove to be useful
later.

Definition 5.2. Suppose that the random variables X and Y have respective distribution func-
tions F(x) andG(y), probability density functions f (x) and g(y), and survival functions F(x)
and G(y).

(i) X is said to be greater than Y in the sense of likelihood ratio ordering, written X ≥lr Y , if
f (x)g(y) ≥ f (y)g(x) for all x > y.

(ii) X is said to be greater than Y in the sense of hazard rate, written X ≥hr Y , if F(x)G(y) ≤
F(y)G(x) for all x < y.

(iii) X is said to be greater than Y in the sense of reversed hazard rate, written X ≥rh Y , if
F(x)G(y) ≤ F(y)G(x) for all x < y.

Definition 5.3. A nonnegative matrix A is called totally positive of order 2, written A ∈ TP2,
if its 2 × 2 minors are all nonnegative.

Proposition 5.3. Let X and Y be discrete random variables defined on N. Then

X ≥hr Y if and only if dXi ≤ dY i .
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Proof. The hazard function is

dXi = Q{X = i}
Q{X ≥ i} .

From the definition above, for x = i and y = i + 1 we have X ≥hr Y if and only if

F(i + 1)

F(i)
≥ G(i + 1)

G(i)
⇔ dXi ≤ dY i .

Lemma 5.1. (Kijima (1997, p. 122).) Suppose that X and Y are discrete random variables
defined on N with respective probability vectors p = (pi) and q = (qj ). Then

(i) X ≥lr Y if and only if

(
q

p

)
∈ TP2,

(ii) X ≥hr Y if and only if

(
q

p

)
V 
 ∈ TP2,

(iii) X ≥rh Y if and only if

(
q

p

)
V ∈ TP2.

Corollary 5.1. (Kijima (1997, p. 111).) Let A and B be finite, nonnegative matrices.

(i) Suppose that A,B ∈ TP2. Then AB ∈ TP2.

(ii) Suppose that AV and BV have no null rows or columns. If AV ,BV ∈ TP2 and
V −1BV ≥ 0, then ABV ∈ TP2.

(iii) Suppose that AV 
 and BV 
 have no null rows or columns. If AV 
,BV 
 ∈ TP2 and
(V 
)−1BV ≥ 0, then ABV 
 ∈ TP2.

Theorem 5.3. (Kijima (1997, p. 123).) For two discrete random variables X and Y , X ≥lr Y

implies that both X ≥hr Y and X ≥rh Y. Both X ≥hr Y and X ≥rh Y imply that X ≥st Y.

Let K̂ = {1, 2, . . . , k} be the set of nonabsorbing states. Define by X̂t the stochastic process
with state space K̂ given that absorption has not occurred up to time t . Let π

X̂
(0) be the initial

probability distribution of X̂0 and suppose that it is concentrated on K̂, i.e. π
X̂
(0) 
= 0. It is

easy to see that
Q{τ ≥ t | π

X̂
(0)} = π

X̂
(0)E(0, t − 1)1
.

Now let

π
X̂
(t) = [Q{Xt = 1 | τ ≥ t,π

X̂
(0)}, . . . ,Q{Xt = k | τ ≥ t,π

X̂
(0)}].

It is then easy to prove that

π
X̂
(t) = π

X̂
(0)E(0, t)

π
X̂
(0)E(0, t)1
 = π

X̂
(0)Ê(0, t).

We will refer to X̂t as the conditional inherent inhomogeneous semi-Markov chain ofXt . Since
state k + 1 is absorbing, we have

Q{τ = t | X0 = j} =
∑
i 
=k+1

Q{Xt−1 = i, Xt = k + 1 | X0 = j}
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and it easy to prove that the hazard function of τj is given by

dj (t) = E(f (X̂t−1) | X0 = j),

where f (X̂t−1 = i) = ei,k+1(t − 1, t). We can now present the following theorem.

Theorem 5.4. For the conditional inherent inhomogeneous semi-Markov chain {X̂t }, assume
that V −1Ê(t, t + 1)V ≥ 0 for every t . If, in addition, Ê(t, t + 1)V ∈ TP2, then τj ≥hr τj+1
for all j .

Proof. Let X̂t be the conditional inherent inhomogeneous semi-Markov process of Xt
starting at j , and let Ŷt be the conditional inherent inhomogeneous semi-Markov process ofXt
starting at j + 1. Then obviously

π̂X(t) = π̂X(0)Ê(0, t) and π̂Y (t) = π̂Y (0)Ê(0, t).

From Definition 5.3 and (5.8), we easily obtain(
π̂X(0)

π̂Y (0)

)
V ∈ TP2.

As an induction hypothesis, assume that(
π̂X(t)

π̂Y (t)

)
V ∈ TP2. (5.13)

From the assumptions of the theorem and of Corollary 5.1, we find that(
π̂X(t)

π̂Y (t)

)
Ê(t, t + 1)V ∈ TP2

and, for every t , from (5.13) we immediately obtain(
π̂X(t + 1)

π̂Y (t + 1)

)
V ∈ TP2.

From Lemma 5.1 we then have Ŷt ≥rh X̂t , and, since Ŷt ≥rh X̂t implies Ŷt ≥st X̂t , it follows
that

dj (t + 1) = E(f (X̂t ) | X0 = j) ≤ E(f (Ŷt ) | Y0 = j + 1) = dj+1(t + 1),

from which the result follows.

Definition 5.4. A random variable X with survival function F is called new better than used,
written X ∈ NBU, if

F(x + y) ≤ F(x)F(y). (5.14)

If the opposite inequality is valid then the random variable X is called new worse than used,
written X ∈ NWU.

From the above equation and its physical meaning it is apparent why the name NBU is used.

Theorem 5.5. Assume that

U−1[P (s)�H (s,m)]U ≥ 0 for every s,m = 0, 1, . . . , (5.15)

where U = V 
. Let τ be the time of default. If the initial state is 1 then τ ∈ NWU, and if the
initial state is k then τ ∈ NBU.
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Proof. Let π̂X(0) have a 1 in state 1. Then

Q{τ ≥ t | π̂X(0)} = π̂X(0)E(0, t − 1)1
.
From (5.14), we have

U−1E(0, 1)U = U−1[P (0)�H (0, 1)]U ≥ 0.

Now consider the matrix of entrance probabilities E(s, t), for t − s = 2. For easier exposition
we set s = 0. Then, using (5.6), we obtain

U−1E(0, 2)U = U−1[P (0)�H (0, 1)]UU−1E(1, 2)U

+ U−1[P (0)�H (0, 2)]U
≥ 0. (5.16)

Working by induction, assume that

U−1E(s, t)U ≥ 0 for every t and s such that t − s = 1, 2, . . . , k.

From (5.6) we then obtain

U−1E(s, t + 1)U =
t−s∑
m=0

U−1[P (s)�H (s,m)]UU−1E(s +m, t + 1)U

+ U−1[P (s)�H (s, t − s + 1)]U
≥ 0.

Thus, from (5.6) and (5.16),

U−1E(s, t)U ≥ 0 for every s, t = 0, 1, . . . .

We also have

U−1E(0, t)1
 = U−1E(0, t)UU−11
 = U−1E(0, t)Uπ̂

X (0) ≥ 0
,

from which we conclude that the sums of the rows of E(0, t) are increasing as the number of
the row i (i = 1, 2, . . . , k) increases, and that result holds for every t = 1, 2, . . . . From the
last conclusion, (5.15), and since π̂X(0) = [1, 0, . . . , 0], we obtain

E(0, t − 1)1
 ≥ Q{τ ≥ t | π̂X(0)}1
 for every t = 1, 2, . . . .

Finally, we have

F0(x + y) := Q{τ ≥ x + y | π̂X(0)} = π̂X(0)E(0, x + y − 1)1


and, as can be proved,

E(0, x + y − 1) ≥ E(0, x − 1)E(x, x + y − 1).

From this it follows that

F0(x + y) ≥ π̂X(0)E(0, x − 1)E(x, x + y − 1)1


≥ π̂X(0)E(0, x − 1)Q{τ ≥ y | π̂X(x)}1


≥ Q{τ ≥ y | π̂X(x)}π̂X(0)E(0, x − 1)1


≥ Q{τ ≥ x | π̂X(0)} Q{τ ≥ y | π̂X(x)}
= F0(x)Fx(y)

for every x, y = 1, 2, . . . , whence τ ∈ NWU. The other case follows similarly.
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6. Term structure of credit spread and model calibration

We have proved that the valuation process of a defaultable bond is given by (2.8). By
definition, the one-step forward rate of the defaultable bond at the future time T , as seen at time
t ≤ T , is given by

fD(t, T ) = −log

(
Dδ(t, T + 1)

Dδ(t, T )

)
.

Likewise, for the default-free bond, we define the one-step forward rate by

f (t, T ) = −log

(
B(t, T + 1)

B(t, T )

)
.

It follows that the credit spread process will be given by

s(t, T ) = fD(t, T )− f (t, T ) = log

(
δ + (1 − δ)QT {τ > T | Gt }

δ + (1 − δ)QT+1{τ > T + 1 | Gt }
)
.

The above formula is apparently valid for any credit state i that the defaultable bond is in at
time t . For the value at time t of the defaultable bond with maturity T that is in credit state i
at time t , we then have

Dδi (t, T ) := B(t, T )(δ + (1 − δ)QT {τ > T | Xt = i}), i = 1, 2, . . . , k. (6.1)

Note that different values are brought into the formula each time by the calculation of the
probability QT {τ > T | Xt = i}.

We will now discuss the issue of calibration of the inhomogeneous semi-Markov model.
The calibration of the simple Markov chain model by Jarrow et al. (1997) was discussed by
Bielecki and Rutkowski (2002, p. 360) and was extended, taking into consideration some
empirical problems motivated by actual values of the real-world probabilities, by Kijima and
Komoribayashi (1998). In the present case, modifications arise from two sources: the change of
the model into a semi-Markov model and the inhomogeneity in time imposed in the
proposed general model, which also alters the data needed to calibrate the model.

We assume that we have data for a time window [0, T ∗], where T ∗ is the present. The inputs
in our problem are assumed to be the following.

(i) Data estimated from the available historical data on credit migrations for real-world
probability matrix sequences {P (t)}T ∗−1

t=0 and {H (t, m)}T ∗−1
t,m=0 during our time window [0, T ∗].

Methods of estimation with good properties for the estimators for inhomogeneous semi-
Markov models are provided in Subsection 6.1.

(ii) The term structure of default-free bonds, that is, the market values of B(t, T ), for t =
0, 1, . . . , T ∗ and T = t + 1, . . . , T ∗.

(iii) The observed term structures of defaultable bonds from various credit classes Dδi (t, T ),
for i = 1, 2, . . . , k, t = 1, 2, . . . , T ∗, and T = t + 1, . . . , T ∗.

(iv) Data estimated from the available historical data on recovery rates, δ, of corporate bonds.
Note that the methods presented allow for δ to be a function of the initial credit state, say i. All
that is needed in such cases is the replacement of δ by δi in our formulae.
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Our aim is to identify the probability matrix sequences, {FP (t)}T ∗−1
t=0 and {FH (t, m)}T ∗−1

t,m=0,
of the probabilities Fpij (t) and F hij (t, m) defined in Theorem 4.1, that cause the observed
market prices Dδi (t, T ) within our time window [0, T ∗] to coincide with the theoretical values
given by the inhomogeneous semi-Markov model, through (6.1).

At this stage of the calibration process, we make assumptions on the inhomogeneous
semi-Markov model analogous to those made by Jarrow et al. (1997) on the simple Markov
model. Furthermore, we will also take into consideration the risk premium adjustments
proposed by Kijima and Komoribayashi (1998). The following assumptions are compatible
with Theorem 4.1.

Assumption 6.1. (The risk premium assumptions.) (i) For every t ∈ [0, T ∗ − 1] and i, j =
1, 2, . . . , k, assume that

Fpij (t) = πi(t)pij (t) and Fpi,k+1(t) = 1 − πi(t)(1 − pi,k+1(t)). (6.2)

(ii) For every t ∈ [0, T ∗ − 1], i = 1, 2, . . . , k, and j = 1, 2, . . . , k + 1, assume that

F hij (t, m) = ηi(t, m)hij (t, m). (6.3)

We call the functions πi(t) and ηi(t, m) the risk premium adjustments for the probabilities
Fpij (t) and F hij (t, m), respectively. The conditions that the risk premium adjustments should
satisfy are

0 < πi(t) ≤ 1

1 − pi,k+1(t)
for all t ∈ [0, T ∗ − 1] and i = 1, 2, . . . , k, (6.4)

which is a consequence of the facts that

k+1∑
j=1

Fpij (t) = 1 for all t ∈ [0, T ∗ − 1] and i = 1, 2, . . . , k

and

∞∑
m=0

ηi(t, m)hij (t, m) = 1 for all t ∈ [0, T ∗ − 1], i = 1, 2, . . . , k, and j = 1, 2, . . . , k + 1.

Note here that the pi,k+1(t) values are typically very small numbers (Carty and Fons (1994),
Kijima and Komoribayashi (1998)) and, thus, (6.4) is easily satisfied in practice.

Now, from (5.4) and (5.5) we have

QT {τ > T | Xt = i} = 1 − QT {τ ≤ T | Xt = i}

=: 1 −
T∑
s=t

F ei,k+1(s, T ), i = 1, 2, . . . , k.

Using (6.1) and the above formula we easily find that

F ei,k+1(t, t + 1) = B(t, t + 1)−Dδi (t, t + 1)

(1 − δ)B(t, t + 1)
for every t ∈ [0, T ∗ − 1].
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Since by Theorem 4.1 the change of measure retains the semi-Markov process properties,
we can use (5.7) and the risk premium assumptions (6.2) and (6.3) to show that, for every
t ∈ [0, T ∗ − 1],

F ei,k+1(t, t + 1) = Fpi,k+1(t)F hi,k+1(t, 1) = πi(t)ηi(t, 1)pi,k+1(t)hi,k+1(t, 1)

and

πi(t)ηi(t, 1) = B(t, t + 1)−Dδi (t, t + 1)

(1 − δ)B(t, t + 1)pi,k+1(t)hi,k+1(t, 1)
.

Having thus found the products of the risk premiums πi(t)ηi(t, 1), t ∈ [0, T ∗ − 1], and
knowing the corresponding real-world probabilities P (t) and H (t, 1), we can immediately find
FP (t)�FH (t, 1) and, from (5.6), obtain

FE(t, t + 1) = FP (t)�FH (t, 1), t ∈ [0, T ∗ − 1].
These considerations suggest a method of evaluating the risk premiums, which we summarize

in the following algorithm.

Algorithm 6.1. (Risk premium algorithm.)

Step 1. For t = 0, 1, . . . , T ∗ − 1, for i = 1, 2, . . . , k, find

F ei,k+1(t, t + 1) = B(t, t + 1)−Dδi (t, t + 1)

(1 − δ)B(t, t + 1)
,

from which can be obtained

πi(t)ηi(t, 1) = B(t, t + 1)−Dδi (t, t + 1)

(1 − δ)B(t, t + 1)pi,k+1(t)hi,k+1(t, 1)
.

Since the change to forward measure preserves the semi-Markov process, it is straightforward
to find the products FP (t)�FH (t, 1) and, consequently, the probabilities:

FE(t, t + 1) = FP (t)�FH (t, 1).

Step 2. For t = 0, 1, . . . , T ∗ − 2, for i = 1, 2, . . . , k, find

F ei,k+1(t, t + 2) = B(t, t + 2)−Dδi (t, t + 2)

(1 − δ)B(t, t + 2)
− F ei,k+1(t, t + 1). (6.5)

From (5.7), since the change to forward measure preserves the semi-Markov process, we
find that

F e

k+1(t, t + 2) = [FP (t)�FH (t, 1)]F e


k+1(t + 1, t + 2)+ Fp

k+1(t)�Fh


k+1(t, 2)

= [FP (t)�FH (t, 1)]F e

k+1(t + 1, t + 2)

+ πi(t)ηi(t, 2)[p

k+1(t)�h


k+1(t, 2)]. (6.6)

Solving the simple system of equations (6.5) and (6.6) yields πi(t)ηi(t, 2).
From (5.6), since the change to forward measure preserves the semi-Markov process, we

have

FE(t, t + 2) = [FP (t)�FH (t, 1)][FP (t + 1)�FH (t + 1, 1)] + FP (t)�FH (t, 2),

from which we calculate the probabilities FE(t, t + 2).
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We continue in the way step 2 indicates to find πi(t)ηi(t, 3), πi(t)ηi(t, 4), and so on, until
all possible products of the form πi(t)ηi(t, m), t ∈ [0, T ∗ − 1], have been calculated. Note
that, in our time window [0, T ∗], for a specific value of t the maximum value of m for which
we can find the risk premium products πi(t)ηi(t, m) ism = T ∗ − t . As we have seen from the
algorithm, the risk premium products πi(t)ηi(t, m) provide sufficient information to find the
probabilities FP (t)�FH (t, m) and Fp


k+1(t)�Fh

k+1(t, m), which in turn provide sufficient

information to find the probabilities FE(t, t +m) and F e

k+1(t, t +m).

In addition, there is a way to find the separate values ofπi(t) and ηi(t, m) for which sufficient
information has been calculated with the proposed algorithm from our time window [0, T ∗].
Assume that, for a specific t ,Mij (t) is the maximum value ofm for which hij (t, m) is positive,
and then set

hij (t,Mij (t)) = 1 −
Mij (t)−1∑
m=1

hij (t, m).

Since, by Theorem 4.1, the semi-Markov property is preserved,
∑∞
m=0 F hij (t, m) = 1 for

every t ∈ [0, T ∗ −1] and i, j = 1, 2, . . . , k, and, consequently,
∑Mij (t)

m=0 ηi(t, m)hij (t, m) = 1.
From this we obtain

πi(t) =
Mij (t)∑
m=0

πi(t)ηi(t, m)hij (t, m),

which provides the values πi(t) and, consequently, the corresponding values

ηi(t, m), ηi(t, m+ 1), . . . , ηi(t,Mij (t)).

6.1. Estimation

One of the questions which naturally arises for the practitioner is that of how to estimate, from
the available data, the real-world probabilities for the inhomogeneous semi-Markov process.
In the studies by Carty and Fons (1994), Lando (2004, p. 95), and Christensen et al. (2004),
the rating transition histories were taken from the complete ‘Moody’s Corporate Bond Default
Database’, that is, the edition containing complete issuer histories since 1970. In all studies
seven rating categories were distinguished: Aaa, Aa, A, Baa, Ba, B, Caa, and Default.

The rating category Aaa is the most senior and we denote it by 1; Aa is the next most senior
category and is denoted by 2, and so on along the list. In statistical analysis, the estimation
method is closely connected to the sampling scheme, i.e. the type of data available. In the
Moody’s Investors Service database the data are collected as shown in Table 1, which contains
two typical examples from Lando (2004, p. 94) and Carty and Fons (1994).

The entry with rating WR reports that the issuers had their rating withdrawn at the date
referred to. A senior rating might be withdrawn for any number of reasons, from retirement of
all rated debt to completion of an exchange offer for all rated debt. We will treat the ‘withdrawn’
flow as Type III censoring (Lee (1992, p. 26)), as is very common with biomedical data, or as
right censoring, which is common elsewhere. We will also assume that our censoring scheme
is independent, which in our case means that the reason for the rating WR is not that they
understand that their possibilities of default have increased.

In the semi-Markov chain model we have provided, one important variable to be estimated
is the conditional density function of transition of a credit rating from state i to any other
credit rating or default, given either that a specific credit rating or default has been selected for
transition, or, equivalently, that transition to a specific credit rating or default will eventually
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Table 1: Database examples.

Example 1 Example 2

Date Rating Date Rating

29 May 1998 Ba 11 January 1984 A
27 December 2000 B 20 June 1991 Baa
1 October 2001 Default 7 February 1993 WR

occur. This problem is essentially the same as that, in manpower planning, of people moving
among the grades of an organization, or leaving it, as discussed in Bartholomew et al. (1991,
p. 184). It is also essentially the same as the competing risk model in the medical literature, as
discussed by Kalbfleisch and Prentice (2002, Chapter 8), Lee (1992, p. 26), and Cox and Oakes
(1984, Chapter 4), where the event of interest is frequently time elapsed prior to either the
appearance of various symptoms or death. Similar problems also appear in reliability theory,
where the event of interest is time elapsed until a component breaks down, and actuarial studies,
as discussed in Elandt-Johnson and Johnson (1980, Chapter 7). For all the above kinds of data,
much work has been done on both parametric and nonparametric estimation. For our present
purposes, we will start by providing a nonparametric estimation method for the probabilities
pij (t) and hij (t, m), i, j = 1, 2, . . . , k + 1, t, m = 1, 2, . . . , that is an extension of the
competing risks estimation methods for semi-Markov processes discussed by Bartholomew
et al. (1991, p. 184).

It is well known that our semi-Markov process can be completely specified by using the
transition probabilities pij (t) and either the probability distributions hij (t, m), i, j = 1,
2, . . . , k+1, t, m = 1, 2, . . . , or the hazard rates rij (t, m), which correspond to the probability
distributions hij (t, m). The two ways are equivalent, so which one is chosen is purely a matter
of convenience and is often determined by ease of estimation.

We assume the data to be grouped into cohorts of bonds entered into a specific rating category
at about the same time, from 1970 onwards, at intervals of three months, six months, or a year
(see Hamilton (2001, Exhibit 43)). In this way, we assume that each cohort is a homogeneous
group of entrants to credit rating i at time t . For each (i, t) cohort, for i = 1, 2, . . . , 7 and
t = 1, 2, . . . , T ∗ − 1, collect the data into intervals [m,m+ 1), where the length of the interval
is equal to the time interval for t = 1, 2, . . . , T ∗ − 1 and m = 1, 2, . . . ,M . Here M is the
maximum length of stay in any credit rating before revaluation. Let R(m)ij (t) be the number
of bonds that leave credit rating i to go to credit rating j in the mth interval, given that they
entered credit rating i at time t . Also, let W(m)

i (t) be the number of bonds withdrawn in the
time interval m, given that they entered credit rating i at time t . Then the bond movements for
each (i, t) cohort can be tabulated in the typical form seen in the following array:

1 2 3 · · · M − 1 M

R
(1)
i1 (t) R

(2)
i1 (t) R

(3)
i1 (t) · · · R

(M−1)
i1 (t) R

(M)
i1 (t)

R
(1)
i2 (t) R

(2)
i2 (t) R

(3)
i2 (t) · · · R

(M−1)
i2 (t) R

(M)
i2 (t)

...
...

...
. . .

...
...

R
(1)
i,k+1(t) R

(2)
i,k+1(t) R

(3)
i,k+1(t) · · · R

(M−1)
i,k+1 (t) R

(M)
i,k+1(t)

W
(1)
i (t) W

(2)
i (t) W

(3)
i (t) · · · W

(M−1)
i (t) W

(M)
i (t)

.
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Define

Wi(t) =
M∑
m=1

W
(m)
i (t), i = 1, 2, . . . , k, t = 1, 2, . . . , T .

This is the number of bonds withdrawn (right censored) over the entire time of observation
of cohort (i, t) or, equivalently, the number of bonds eventually censored from cohort (i, t).
Then define

Nij (t) =
M∑
m=1

R
(m)
ij (t), i = 1, 2, . . . , k, j = 1, 2, . . . , k + 1, t = 1, 2, . . . , T .

This is the total number of bonds that move from credit rating i to credit rating j in cohort (i, t)
or, equivalently, the number of bonds that eventually move from credit rating i to credit rating
j . The total size of cohort (i, t) is thus

Ni(t) =
k+1∑
j=1

M∑
m=1

R
(m)
ij (t)+

M∑
m=1

W
(m)
i (t).

The probability of a bond that enters credit rating i at time t selecting to move to credit rating
j or, equivalently, of a bond that enters credit rating i at time t to eventually move to credit
rating j is then estimated (using multinomial flow) as

p̂ij (t) = Nij (t)

Ni(t)−Wi(t)
, i = 1, 2, . . . , k, j = 1, 2, . . . , k + 1, t = 1, 2, . . . , T .

We now estimate the probability distribution hij (t, m) for specific values of i and j , and for
m = 1, 2, . . . ,M . As estimator, we take ĥij (t, m), which is the probability of a bond moving
from credit rating i to credit rating j during the interval [m−1,m), given that the bond entered
credit rating i at time t and selected to move to credit rating j in its next transition. Equivalently,
this is the probability of a bond moving from credit rating i to credit rating j during the interval
[m− 1,m), given that the bond entered credit rating i at time t and eventually moves to credit
rating j . Thus,

ĥij (t, m) = R
(m)
ij (t)/Ni(t)

Nij (t)/(Ni(t)−Wi(t))

= R
(m)
ij (t)

Nij (t)

Ni(t)−Wi(t)

Ni(t)

= R
(m)
ij (t)

Nij (t)
Pt (i),

where Pt(i) is the probability of a bond entering credit rating i at time t to be uncensored or,
equivalently, not to be withdrawn.

By looking at R(m)ij (t) as a multinomial sample from the population Nij (t) with probability
hij (t, m) of moving to state j within the interval [m − 1,m), we obtain the standard error of
ĥij (t, m) to be

se(ĥij (t, m)) =
[
ĥij (t, m)(1 − ĥij (t, m))

Nij (t)

]1/2

Pt(i).
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Now consider the null hypothesis that the transition probabilitiespij (t) remain constant with
respect to the time t of entering credit rating i: pij (t) = pij for a specific j , given i.

An application of the results of Anderson and Goodman (1957) and Vassiliou (1976),
considering the flow of bonds which eventually move from credit rate i to credit rate j as
a multinomial random variable, then leads to the conclusion that the statistic

χ2(i, j) =
T ∗−1∑
t=0

Ni(t)
(p̂ij (t)− p̂ij )

2

p̂ij
,

where

p̂ij =
∑T ∗−1
t=0 Nij (t)∑T ∗−1

t=0 [Ni(t)−Wi(t)]
is the maximum likelihood estimate under the null hypothesis, is chi-square distributed with
T ∗ − 1 degrees of freedom.

In an obvious analogous way we can test the constancy over time of the probabilitieshij (t, m)
for specific values of i, j , and m. Alternatively, if we estimate the survivor function by

Ĥij (t, m) = 1 −
∑
x≤m

ĥij (t, x), t = 1, 2, . . . , T ,

then we can use the statistics designed for biomedical data testing survivor distributions under
T ∗ −1 different treatments; see, for example, Lee (1992, p. 26) or Elandt-Johnson and Johnson
(1980, Chapter 7). However, in such a case we lose information from the sample since, for
example, for the 2002 cohort we will not have an estimate of the survivor function for all the
possible values of m.

The way the ‘Moody’s Corporate Bond Default Database’ is organized permits an alternative
estimation of the survivor distributions Hij (t, m) through the use of the Kaplan–Meyer esti-
mators for semi-Markov processes (see Kalbfleisch and Prentice (2002, Chapter 8), McClean
(1976), (1986), McClean and Gribbin (1987), (1991), McClean et al. (1997), and McClean
and Montgomery (1999)). To do so we must extend the existing results for the inhomogeneous
case in an analogous way as previously. However, there will still be a need to find the discrete
estimates of the survivor functions at each time t = 1, 2, . . . , T ∗ − 1. This makes the Kaplan–
Meyer estimators more appropriate to the continuous-time version of the present theory.

The inhomogeneity in time of transition probabilities has been reported by many authors,
such as Duffie and Singleton (2003, p. 45), Lando (2004, p. 88), Lando and Skoteberg (2001),
Hamilton (2001), Fons (1991), and Jonsson and Frison (1996). As these, and other, authors
reported, it seems that the real economic activity over the business cycle is correlated with the
fluctuation in transition and default probabilities. Duffie and Singleton (2003, p. 47) stated that
the correlation between the four-quarter moving averages of default rates and national gross
domestic product growth rates for the sample period 1983–1997 was −0.78. Fons (1991),
Jonsson and Frison (1996), and Hamilton (2001) included various additional time covariates,
such as industrial productivity, as predictors.

It is possible that the practitioner will need to predict the real-world transition probabilities
in the semi-Markov process model based on the available data. Two possible solutions are
suggested in such a case. First, let x1ij (t), x2ij (t), . . . , xnij (t) be possible time covariates
correlated with the transition probabilities p̂ij (t) and ĥij (t, m), for t = 1, 2, . . . , T ∗ − 1. Then

https://doi.org/10.1239/aap/1143936146 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936146


The term structure of credit risk spreads 197

logistic stepwise regression is an appropriate model for these probabilities. For example, for
the pij (t), we assume that

p̂ij (t) = exp[a0 + a1x1ij (t)+ a2x2ij (t)+ · · · + anxnij (t)]
1 + exp[a0 + a1x1ij (t)+ a2x2ij (t)+ · · · + anxnij (t)] .

If we define

logit(x) = log

(
x

1 − x

)
,

then we may write

logit(p̂ij (t)) = a0 + a1x1ij (t)+ a2x2ij (t)+ · · · + anxnij (t)

and stepwise regression techniques can be applied to estimate the ai . In a similar way, a
predictive stochastic model can be created for the probabilities ĥij (t, m). Second, existing time
series models can be used for the purposes of predicting the probabilities pij (t), hij (t, m),
πi(t)ηi(t, m), πi(t), and ηi(t, m).
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