Notes on an Orthocentric Triangle.

By R. Tucker, M.A.

Figule 18.

1. In the accompanying figure DEF is the pedal triangle of $A B C$ and P, Q, R are the orthocentres of $A F E, B D F, C E D$.
$A P, B Q, C R$ evidently meet in the circumcentre, O, of $A B C$, which is the orthocentre of $P Q R$,
2. Now the circumradius of $\operatorname{AFE}\left(\rho_{a}\right)=\mathrm{R} \cos \mathrm{A}$,

$$
\begin{aligned}
\therefore \mathrm{EP}=2 \rho_{a} \cos \mathrm{~B} & =2 \mathrm{R} \cos \mathrm{~A} \cos \mathrm{~B} \\
& =\mathrm{FH}=\mathrm{DQ}:
\end{aligned}
$$

hence the sides of $P Q R$ are equal and parallel to the sides of DEF, i.e., the triangles are congruent, and their centre of perspective, L, bisects DP, EQ, FR.

The hexagon DQFPER = twice the pedal triangle.
3. The coordinates of P, D are respectively

$$
\begin{array}{cll}
R[\cos A-\cos 2 A \cos (B-C)], & 2 R \cos ^{2} A \cos B, & 2 R \cos ^{2} A \cos C ; \\
0 & , & R \sin 2 C \sin B,
\end{array} \quad R \sin 2 \mathrm{~B} \sin \mathrm{C} ;
$$

hence the coordinates of L are as

$$
\cos A-\cos 2 A \cos (B-C), \quad \cos B-\cos 2 B \cos (C-A)
$$

$\cos \mathrm{C}-\cos 2 \mathrm{C} \cos (\mathrm{A}-\mathrm{B}), \quad$ or $\sin \mathrm{A} . \Pi \sin \mathrm{A}-\cos \mathrm{A} . \Pi \cos \mathrm{A}, \ldots, \ldots$, ,
4. The perpendicular from P on $E F=2 R \cos A \cos B \cos C=$ the perpendicular from D on QR ; and so for the other vertices and sides.
5. The equation to the circle $P Q R$ is

$$
\sin \mathrm{A} \sin \mathrm{~B} \sin \mathrm{C} \cdot \Sigma a \beta \gamma=\Sigma a \alpha \cdot \Sigma u \sin \mathrm{~A} \cos ^{2} \mathrm{~A}(1+2 \cos 2 \mathrm{~B} \cos 2 \mathrm{C})
$$

and the α-coordinate of the centre is

$$
\mathrm{R}[\cos \mathrm{C} \sin (2 \mathrm{~A}-\mathrm{C})+\cos \mathrm{B} \sin (2 \mathrm{~A}-\mathrm{B})] / 2 \sin \mathrm{~A} .
$$

The equation to $P Q$ is
$\alpha \sin 2 \mathrm{~A} \cos 2 \mathrm{~B} \cos \mathrm{~A}+\beta \cos 2 \mathrm{~A} \sin 2 \mathrm{~B} \cos \mathrm{~B}+\gamma \sin \mathrm{C}(1+\cos 2 \mathrm{~A} \cos 2 \mathrm{~B})=0$.

[^0]6. If v is the incentre of PQR then
$$
\mathrm{P} v=\mathrm{DH}=2 \mathrm{R} \cos \mathrm{~B} \cos \mathrm{C},
$$
and the a - ordinate of v is $2 R \cos A\left(\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}\right)$:
hence $v \mathrm{LH}$ is a straight line, as is also readily seen from the symmetry of the figure, L being the mid point of $v \mathrm{H}$.
7. The a - ordinate of H , the orthocentre of DEF, is (l.c.),
$$
-R \cos 2 A \cos (B-C)
$$
hence $O L H^{\prime}$ is a straight line, in fact it is the circum-Brocard axis of ABC .
8. If $\mathrm{OP}, \mathrm{OQ}, \mathrm{OR}$ cut $\mathrm{EF}, \mathrm{FD}, \mathrm{DE}$ in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$,
then since
$$
\frac{E X}{X F}=\frac{\tan C}{\tan B},
$$
it is seen that DX, EY, FZ cointersect in a point, viz., in v.
9. If a side, as PR, is cut by EF, ED in x, y, then
$$
\mathrm{P} x: x y: y \mathrm{R}=\sin 2 \mathrm{~A}: \sin 2 \mathrm{~B}: \sin 2 \mathrm{C} .
$$
[Since the above Note was written, vol. i. of the Society's Proceedings has been published. I must refer readers to Figs. 58, 59, from which it will be seen that some of my points were noted in that admirable piece of Geometry by Dr Mackay.]

[^0]: * See Proccodings, London Mathematical Society, Vol. xv., Appendix.)

