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Abstract. We associate to a group-like monoidal group6ié principal bundleE satisfying most

of the axioms defining a biextension. The obstruction to the existence of a genuine biextension
structure onE is exhibited. When this obstruction vanishes, the biextengids alternating and

a trivialization of E induces a trivialization o€. The analogous theory for monoidalcategories is

also examined, as well as the appropriate generalization of these constructions in a sheaf-theoretic
context. In then-categorical situation, this produces a higher commutator calculus, in which some
interesting generalizations of the notion of an alternating biextension occut. £02, the corres-
ponding cocycles are constructed explicitly, by a partial symmetrization process, from the cocycle
describing the:-category.
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0. Introduction

Let A and B be a pair of Abelian groups. Central extensions
0O-A—-E—-B—0

of B by A are classified up to equivalence by thevalued cohomology group
H?(B, A) (where A is viewed as a trivialB-module). To such an extension is
associated the commutator map

A:BxB — A
(b1,b2) = [s(b1),s(b2)]

determined by the choice of an arbitrary set-theoretic sectiohthe projection
from E to B. It is easily verified that this commutator map is independent of the
choice of the sectiom, and that it is a bilinear alternating map frabhx B to A.
By construction, the map measures the lack of commutativity of the group law
of E. In particular, the central extensidn is actually commutative whenever the
mapA vanishes, so that it then determines an element of the grodpHExX).

These facts, which are well known, may be interpreted as follows in cohomolo-
gical terms. Since the group is Abelian, its first integral homology groufi; (B)
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is isomorphic to the grouB itself. Furthermore, the Pontryagin product map
H,(B) x Hi(B) — H,(B) is bilinear, alternating, and therefore induces a map
A’B — H,(B) which is an isomorphism. The previous discussion now follows
directly by considering the exact sequence

0 — Ext(B, A) > H?(B, A) —> Hom(A%B, A) (0.1)

provided by the universal coefficient theorem. The funci@rhere denotes the
second exterior powek2, applied to the group viewed as &-module. Unless
explicitly stated the corresponding higher exterior power functofswill in the
sequel simply be denoted hy/.

Our aim in the present paper is to analyze in a similar manner some of the
higher cohomology group#/”(B, A). These have various geometric interpreta-
tions, analogous to the description HP?(B, A) in terms of central extensions,
most of which are mentioned in [23]. The most general one of these interpretations
of degreen cohomology groups provides a classificatiomahonoidal categories.

In the first case of interest, that in whieh= 3, this was first worked out (for
symmetric monoidal categories) in the barely accessible [27], wHé(8, A) was
interpreted as the group of equivalence classes of group-like monoidal groupoids
C, whose grouprg(C) of isomorphism classes of objects is isomorphidtcand
whose group Aui(7) of self-arrows of the identity objedt of € is isomorphic to

the B-moduleA.

Our approach to the study of such monoidal category derives from the observa-
tion that there exists a natural filtration, determined by powers of the augmentation
ideal, on the chains on a free Abelian simplicial resolutiorK@B, 1). We intend
to study this in some detail in [9], where we will examine the effect of this filtration
on the integral homology of the Abelian gro# Let us merely observe here that
such a filtration on the chains & determines a corresponding one #xvalued
cochains, and therefore induces a filtration on the cohomology gratpB, A).
Theith associated graded piece of this filtration is the group(Ext’ B, A), where
i + j = n. Here LA/ B is the object in the derived category of Abelian groups
obtained by applying the exterior power functar to a free Abelian simplicial
resolution of B placed in degree zero, so that a more traditional notation for this
derived object would b& A/ (B, 0).

Let us begin by considering the case= 3. The filtration onH3(B, A) determ-
ines threea priori nontrivial terms in the associated graded group. The first of these
is the group HomiLA3B, A). Since this group is isomorphic to Hgw®B, A), a
monoidal category of the type described above determines a trilinear alternating
mape € Hom(A3B, A). When this mapy vanishes, an element of the group
Ext'(LA®B, A) can be associated to the categ@rylt was shown in [6] that this
group classifies, up to equivalence, the set of alternating biexteAsidrB x B by
A. This may be understood in the present context by considering the commutator of
C. This is a principald-bundleEs on B x B, first introduced by P. Deligne in [15],
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whose fibre over an eleme@t, y) € Bx B isthe sett, , ofallarrows Y X — XY

in C (X andY being chosen representative object€ifor the isomorphism classes

x andy). Such a bundle may be endowed with a pair of partial composition laws
determined by the multiplication law i@, which are both associative, and compat-
ible with each other. The obstruction to the commutativity of both of these partial
group laws is described by the alternating map\*B — A mentioned above.
Wheng is trivial, the commutator-bundle E¢ is therefore a genuine biextension

of B x B by A, and in fact it is automatically an alternating one. Passing from
the bundleEe to its isomorphism class, we obtain in this manner the sought-after
element of the group EXL A%B, A). When this element vanishes, the category
C determines an element in the last component of the graded group associated to
H3(B, A), in other words in the group BB, A). In geometric terms, this may be
interpreted as the assertion that a trivializatiorEgfas an alternating biextension
determines or€ a strictly symmetric monoidal structure. By [14], we know that
such strictly symmetric group-like monoidal groupoids are indeed classified by the
sought-after group Ex¢B, A). However, this group of extensions always vanishes
in the category of Abelian groups, so that it does not provide a genuine invari-
ant attached t@. In geometric term, this is reflected in the assertion that such a
strictly symmetric group-like monoidal groupoid is always equivalent to the trivial
symmetric monoidal category associated to the pair of gr&dupad A.

It is instructive to carry out the previous discussion purely in terms of a given
A-valued three-cocyclef (x, vy, z) on B. The alternating mag which one then
encounters is a very familiar one, being simply the map obtained by evaluating
f on the decomposable elementsH{(B). In order to interpret the commutator
biextensionE directly in terms off (x, y, z), we have found it necessary to insert
in our text a description of alternating biextensions in purely cocyclic terms. We be-
lieve that such a description, which was not carried out in [6], can be of independent
interest. It turns out that the pair of cocyclesX, y; z), h(x; y, z)) which describe
the commutator biextensioR of ¢ are obtained from the given three-cocycle
f(x,y,z) by a partial symmetrization process which already occurs (without the
assumption thaB is Abelian) in a computation by R. Dijkgraaf and E. Witten of
the two-cocycle associated by Chern—Simons theory to a given three-cocycle [6]
Section 6.6.

The rest of this text is devoted to various generalizations of the previous discus-
sion. The first of these extends the theory from the study of monoidal categories
to that of monoidal stacks. This level of generalization is analogous to that which
occurs when one passes from the classification of central extensions of Abelian
groups to that of topological Abelian groups [25] or of algebraic groups ([26],
Chapter VII). The choice of objects or arrows@mrequired for a cocyclic descrip-
tion of the monoidal stack can in general only be made locally. The cohomolo-
gical obstruction to a global choice of objects is determined, as explained in [8],

* We will generally denote byXY, rather than by the more customaXy® Y, the product of two
objectsX andY in a monoidal categorg.
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by the underlying gerbe af. The obstruction to a corresponding global choice of
arrows is reflected in the fact that the commutator biextengigof € no longer
has, as in the category case, a global section above itshas®8. E¢ is how a
genuine biextension @ x B by A in the sense of [19], rather than one which may
be described, as in the category case, by a pair of cocyglés.

Our next generalization consists in passing from the cohomology group
H3(B, A) to the groupH*(B, A). The latter classifies the monoidal two-groupoids
C which satisfy the conditionsy(C) = B, m1(€) = 0 andr,(C) = A. The natural
action of B on A is once more assumed to be trivial. A geometrical discussion of
the associated graded pieces for the filtrationstB, A) requires a geometrical
understanding of the corresponding groups @xA’ B, A) for i 4 j = 4. We inter-
pret these groups as the groups of equivalence classes of certain geometric objects
which we call the(i, j)-extensions oB by A. Wheni = 1, these are simply, for an
arbitrary j, the j-fold extensions oB by A introduced by A. Grothendieck in [19].

We will therefore use this concept here fpr= 3, and we will call such objects
triextensions ofB by A. The next term in the filtration requires that we understand
the notion of a(2, 2)-extension ofB by A. This is an interesting new concept,
consisting in a category (or more generally a sta€kpr which 7o(6) = B x B
andr,1(€) = A, and which is endowed with a pair of coherently associative and
appropriately compatible partial group laws, which define on the restrictiofis of
to all subsetsc x B and B x y the structure of a group-like symmetric monoidal
category.

While these definitions of a triextension and of a (2,2)-extension present no
great difficulty, there remains the question of imposing on each of these objects
an alternating structure. In order to achieve this, we make use of Koszul complex
techniques, and interpret the requisite groups @a’ B, A) in geometric terms.
Once the appropriate definitions have been obtained, we can describe the geomet-
ric objects which our higher commutator calculus associates to a given monoidal
2-category. Part of this discussion is carried out in cocyclic terms, an efficient
substitute in the present context for pasting diagrams in 2-categories. A pleasant
feature of this discussion is the occurrence of a systematic partial symmetrization
process, analogous to the one mentioned above in three-cocycle situation, and
which points quite clearly to a general statement for the corresponding filtration on
the cohomology groups of arbitrary degree. Certain of these symmetrized higher
cocycles occur, for a non-Abelian grodj as the images of higher transgressions
in recent work of J.-L. Brylinski and D. A. McLaughlin [11].

We have assumed throughout this text that the grBupas Abelian, but the
constructions carried out here remain for the most part valid without that hypo-
thesis. Indeed, in Deligne’s original construction [15] of the commut&tpof a
monoidal categorny®, no such commutativity assumption on the group lawBof
was made, nor was it required in the previously mentioned texts [16] and [11].
Without such a commutativity hypothesis, the torgiris only defined above that
part of B x B which consists of pairs of commuting elements of B. The partial
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group laws which are introduced here no longer yield in that case a biextension, but
a weaker structure which deserves to be formalized. While we have not carried out
this formalization here in order not to overburden this text, we intend to return

to this question in the future. Let us simply observe for the present that those
central extensions whose associated commutator maps are the most interesting are
central extensions for which the quotient gragijs not abelian. It is therefore to be
expected that the same will be true for the higher constructions which we examine
here.

While we have emphasized in this introduction the cohomological interpretation
of our constructions, in terms of the derived functors of the exterior algebra functor,
this will not be the case in the sequel. Indeed, the emphasis will henceforth be on
the determination of the new higher alternating structures, rather than on the quest
for an interpretation in geometric terms of the universal coefficient theorem. This
text is therefore independent of the forthcoming [9]. Both approaches are, how-
ever, fully compatible, and shed light upon each other. In the present context, this
is illustrated in [6], where alternating biextensions are analyzadhe universal
coefficient theorem.

1. Cohomology and Categories

The most general interpretation of the cohomology gréifyB, A) is the one

due to A. Grothendieck. It expresses degree three cohomology classes in terms
of monoidal categories (see [27], [12] Section 2.1 and also, in a sheaf-theoretic
context in which the three-cocycles do not appear explicitly, [14]). We begin by
recalling this interpretation o 3(B, A), and refer to [10], IV Section 5, and to [23]

and references therein for related descriptions of this cohomology group. Observe
first of all that if (€, ®, a) is a monoidal group-like groupdidwith unit object

I, then the monoidal structure an determines, for each objedt € G, a right
multiplication isomorphism

A = Aut() 25 Aut(x) (1.1)

through which any group of automorphismsdrwill henceforth be identified with
A. The image in AutX) by the left multiplication isomorphism

A = Aut(l) =& Aut(x) (1.2)

of an elementz: € A may be identified by (1.1) with an elemett € A which
actually only depends on the isomorphism clasé$ X in the groupB of isomorph-
ism classes of objects @f, and which will therefore be denotéd. It is readily
verified that this action oB on A endowsA with a B-module structure.

* Also referred to as gr-category [27] or a categorical group [21].
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We now choose, for each € B, an objectX, € ¢ whose isomorphism class
is x. For each pair of elements y € B, the objectsX, X, and X,, both live in
the component o€ described by the elemeny € B, so that there exist arrows
between them. Choose such an arrow

Coy: X Xy — Xy (1.3)
for eachx, y € B. For everyx, y, z € B, the associativity isomorphism
ax,y,z:Xx(Xsz) — (Xny)Xz

determines an elemerft(x, y, z) € Aut(X,,;) = A such that the diagram

X (X, X)) —5 (X, X)X,

Cx,y Xz
chy,zl \)”‘

X, Xy, XX, (1.4)

. Cxy.z
Cx,yz

Xxyz f(x,y,z) Xxyz

commutes. The pentagon axiomGrthen implies thaif (x, y, z) is a three-cocycle.
We may even assume, by choosing the objéttsand the arrows (1.3) carefully,
that the three-cocyclg is normalized (as will be all those occurring from now on,
unless explicitly stated). Other choices for these objects and arro@syddld a
cohomologous three-cocycle, so that the clas® wf H3(B, A), for the B-module
structure oA determined by (1.1)—(1.2), is well-defined.

Remarkl.1l. (i) The previous construction may be interpreted as follows in
topological terms. The nervg = NC of C is a two-stage Postnikov system with
homotopy groupsro($) = B andni(4, 1) = A. The monoidal structure o@
determines am, H-space structure of, so thatg deloops to a connected space
X = B4 whose homotopy groupB and A live respectively in degrees one and
two. Thek-invariantk € H3(B, A) of the two-stage syster is the sought-for
cohomology class associated to the monoidal categof§onversely, one can start
from such 2-stage Posnikov systel The spacey = QX of loops onX is
essentially the nerve of a groupaid and theH -space structure oy corresponds
to the monoidal structure o@.

(i) When the group law ir€ is strict, the monoidal catego® may be repres-
ented by a crossed module — E with E (resp.N) the group of objects (resp.
the group of arrows sourced at the identity object)cofA comparison between
the terms in the formula [10], IV (5.7) and the arrows in diagram (1.4) implies that
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the standard method [10] IV Section 5 for associating a three-cocycle to a crossed
module is consistent with the one given above.

(iii) Suppose that the monoidal catego@is endowed with a commutativ-
ity isomorphismss, ,: X, X, — X, X,. This determines, via the commutative
diagram

Sx,y

X, X, X, X,

Cy,x t \Cx 7

Xy g(x.y) Xy

amapg: B x B — A for which the braiding axioms [21] imply that the cocycle

conditions
f(x’y’Z) _f(x’Z’)’) +f(Z’x’y)
=g(x+y,2) —gx,2) — g, 2), (1.5)

—f(X,y,Z)‘i‘f(y,x,Z)—f(y,Z,x)

=gx,y+2z)—gl,y) —g,z2)

are satisfied. Alternate choices yield a well-defined clagg 16k (B, 2), A) [21],
Proposition 3.1, [8] Section 7.8. The braiding axioms allow a double delooping of
the nerveg of C to a two-stage spacy, whosek-invariant is this cohomology
class. Where€ is symmetric monoidal, the additional conditigix, y) = g(y, x)

is satisfied. The two conditions (1.5) then coalesce and a class in the stable co-
homology groupH®(K (B, 3), A), corresponding to thé-invariant of a further
delooping of4, is defined. It follows thag is in that case an infinite loop space.
Finally, when the stronger condition

glx,x)=0 (1.6)

is satisfied, the monoidal catego@yis strict Picard. Prolonging by one step the
canonical resolution [19] VII (3.5.1) of the Abelian grouf it is apparent that

the pair(f, g) now describes a class in the group ##, A). The nerve of§ is

now equivalent to a simplicial Abelian group, and the appropriate trunctation of its
associated Moore complex determines the class in question. We observed earlier
that such a group Exis always trivial in the category of Abelian groups. All such
strict Picard categories are therefore equivalent to trivial ones. The cacfgle

which describes such a strict Picard categ@ris therefore a coboundary, so that
there exists a map: B> — A satisfying the following conditions:

fx,y,2) =h(y,2) —h(x+y,2) +h(x,y+2) —h(x,y), (1.7)
g(x,y) =h(x,y) — h(y, x). (1.8)

* In other words a strictly symmetric group-like monoidal groupoid.
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In particular, the underlying monoidal category®fis trivial, as reflected by the
fact thath is a group cohomology coboundary fér

We now investigate the conditions under which the given group law in the
monoidal categorg satisfies some form of commutativity. One possible approach
would consist in expressing in geometric terms the obstructions to the surjectivity
of the successive suspension maps

H5%(K(B,3), A) > HXK(B,2), A) - H3(B, A)

which control the level of commutativity of the group law én We will instead
examine here, without passing through these intermediate steps, the conditions
under which the monoidal category can be endowed with a fully symmetric
monoidal structure. Let us begin by making the following additional assumption.

HYPOTHESIS 1.2. The group is Abelian, and theB-module structure on is
trivial.

Note that this is a very weak commutativity condition. Indeed, the requirement
that there exists, for each pair of objedfsY in ¢, an isomorphism betweenX
andXY implies that the grou of isomorphism classes of objects®fs Abelian.

If we also ask that this family of isomorphisms be natural in the obj&¥cédY,
and compatible in the obvious sense with the identity object, theBtheodule
structure ond is trivial, the triviality being expressed by the commutativity of the
following diagram

N,
o N
N

In particular, Hypothesis 1.2 is automatically satisfied whenever the catégisry
braided.

Hypothesis 1.2 allows us to apply the universal coefficient theorem to the com-
putation of H3(B, A), and therefore to obtain an analog fHF of the exact se-
guence (0.1). Let us begin with the naive approach to this question. The terms of
the universal coefficient exact sequence

0 — Ext(Hx(B), A) - H3(B, A) - Hom(H5(B), A) — 0 (1.9
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can be made explicit since the appropriate homology groups are known (see [9]).
To the given class i/ 3(B, A) of a monoidal group-like groupoid satisfying Hy-
pothesis 1.2 is associated a trilinear alternating mam 3B — A. If ¢ vanishes,

then a second mape: 2, B — A may be associated t®. The source, B of this

arrow is a group2 B first defined by Eilenberg—Mac Lane [17], and which can be
interpreted as the first (nonadditive) left derived fundten?(B, 0) of the Abelian
group B set in degree zero. A specific presentatiof2ef3 expresses the mafae

in terms of a family of quadratic mapg,: ,B — A for varying positive integers

n, related to each other in an appropriate manner. Finallyeifs trivial, the class

of € is determined by an elemept in the extension group EXtA2B, A).

While this is a complete discussion, there remains the question of interpreting it
in geometric terms. The fact that the funcfesB is the first derived functor of the
exterior algebra functak?B suggests that the real object of interest, encompassing
both ¥ and xe, lives in the group EX(LA?B, A). Indeed it is shown in [6]
Remark 3.6 that an element in this group determines by dévissage appropriate ele-
mentsye andxe. The next three sections will provide a construction of the object
Ee whose class determines the sought-after element in the groti@AaB, A).

2. Alternating Biextensions

The group ExX(LA?B, A) was given a geometrical interpretation in [6], as the
group of equivalence classes of alternating biextensioskf A. Let us begin by
reviewing the definition of an alternating biextension. Eebe anA-torsor above

B x B. lts fiber above a pointx, y) € B x B will be denotedE, ,. Recall first

of all that an (ordinary) biextension & x B by A is such anA-torsor E above

B x B, endowed with a pair of partial composition laws whose restrictions to the
appropriate fibers may be depicted as morphismé-tdrsors

1
+ ExyANEyy —> Eyv,, (2.1)

2
+ E,yANE,y — E,,y, (2.2)

whereA = A4 denotes the contracted product of the correspondirtgrsors.
These two composition laws are required to be associative, commutative and com-
patible with each other [24], [19] exposé VII Section 2. A torsor endowed with
a pair of partial multiplication laws which are merely associative and compatible
will be called a weak biextension

For the reader’s convenience, we review the manner in which the structure on a
biextensionE whose underlying torsor is trivialized may be described in terms
of cocycles. The triviality hypothesis asserts that the underlying taEsonay
simply be defined by = A x B x B. The first and second partial group laws

1 2
* In that case, a better notation for the two partial group laws would bed x.
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are respectively determined by map@, by; b') andh(b; by, b,) from B3to A
such that

1
(a,b1,b') + (a,b2,b") = (a+g(b, bz b'), bi+ by, b)), 2.3)
, .
(a,b,b)) + (a,b,by) = (a+h(b;by,by), b, by + by)
on E. The associativity conditions for these laws translate to the following cocycle
conditiong on g andh [24].
8(b2, b3; b') g(b1, by + b3; b))
g(b1+ b2, b3; V') g(b1, bz b)
h(b; by, by) h(b; by, b, + by)
h(b; by + b5, by) h(b; by, by)

= 1, (2.4)

in other words to the standard two-cocycle condition for the ngéps —; b’) and

h(b; —, —) from B2 to A, for all fixedb, b’ € B. Similarly, the commutativity
conditions, when they are satisfied, translate to the standard symmetry cocycles
with the last (resp. the first) variable fixed

g(b1,b2;b') = g(b2, b1 b), h(b; by, by) = h(b; by, b)).
Finally, the compatibility condition now becomes the rule

h(by + bz by, b)) B g(b1, by by + b))
h(by; by, by) h(by; by, by)  g(by, bo; b)) g(by, ba; b))

(2.5)

A cocycle pair(g, k) is cohomologous to zero and, therefore, defines a trivial
biextension structure, whenever there exists a indpx B — A such that

k(b + b, b')

b1,by: b)) = ,
81 b2 b)) = ) k(o )

(2.6)
k(b, by + b))

hb;b,b) = ————=—,
( 2 k(b, by) k(b, bl

Let us now pass from ordinary to alternating biextensions. Their description in
[6] was modelled on the exact triangle derived from the Koszul sequence

0—IyB— B®B— A’B — 0. (2.7)

One begins by considering an (ordinary) biextensionf B x B by A. The re-
striction AE of E to the diagonal inBB x B is anA-torsor onB with the following
additional properties.

* The group law ofB will henceforth be written additively, and that afmultiplicatively.
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(1) The torsorA E is symmetric, in other words there exist, for varyings B, a
family of symmetry isomorphisms

o,: AE_, — AE,. (2.8)

(2) AE is endowed with a cube structure which is compatible, in a strong sense,
with the symmetry isomorphism.

The precise sense in which the cube structure ondthersor L = AE on B

is compatible with the symmetry isomorphissn i*. — L (2.8) is best ex-
plained as follows. It is essentially shown in [7] Section 5, though not made explicit
there, that for anyA-torsor L on B endowed with a cube structure tietorsor

L A i*L~1 on B is canonically endowed with a composition law, which makes it
into a (commutative) extension & by A. The compatibility between cube struc-
ture and symmetry ol may be expressed as the requirement that the symmetry
isomorphismo, viewed as a section df A i*L~! on B, splits it as a group ex-
tension. When this condition is satisfied, one says thattiersor L is endowed
with a Z-structure. An alternating structure on a biextensions then defined

as follows.

DEFINITION 2.1. An alternating biextension @& x B by A is a biextensiorE
of B x B by A, together with a trivialization: B — E of the restrictionAE of E
to the diagonal compatible with the-structure ofAE.

When the underlying torsor of has a global section, this definition of an
alternating biextension can be made explicit in terms of the pair of cocyglés
attached tdE. A trivialization r of A E compatible with the symmetry isomorphism
(2.8) is expressed by a map B —> A (for which we may assume that0) = 1)
such that

u(=b) g, —b;b)

— , (2.9)
u(b) h(=b; b, —b)

for all b € B. We now introduce a maj: B2 — A which may, in view of (2.5), be
defined by either of the two following equations

A(b1, b2) = g(b1,b2; b1+ b2) h(by; b1, by) h(bz; by, ba)
= h(by+ ba; by, by) g(by, ba; b1) g(b1, ba; b)). (2.10)

The requisite compatibility between the trivializatiorof A E and the cube struc-
ture onA E may now be expressed as the condition

A(b1 + by, b3)
® by, by, b3) = b1, by b3) h(bs; by, by), 2.11
(u)(by, b, b3) 301, o) (ba. b) 8(b1, ba; b3) h(b3; by, bo) ( )
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where® (u) is the second difference of the mapdefined by

u(by + bz + b3) u(by) u(bz) u(bsz)

u(by + bo) u(by + ba) u(by + bz)

Finally, an alternating biextensiamg, %, u) is trivialized by amag: B x B — A

satisfying the trivialization conditions (2.6), together with the additional condition
k(x,x) = u(x). (2.12)

A somewhat more intuitive description of an alternating biextension is obtained
by introducing first the simpler concept of an anti-symmetric biextension. Consider
the functor A4B of anti-symmetric tensors oR, which fits into the following
commutative diagram whose horizontal lines are exact whenfree.

O ) (b1, ba, b3) =

0 Syn?B ®%B As’B 0

0 I'»B ®°B A°B 0
By the snake lemma, this determines for every free Abelian g®apshort exact
sequence

0— B/2B — As’B — A’B — 0. (2.13)

Anti-symmetric biextensions are to be thought of as those biextengiafisB x B

by A which are classified up to isomorphism by the group'BxAs’B, A). De-
noting bys the map fromB? to itself which permutes the factors, this means that
they are the biextensiors for which we are given a trivialization of the induced
biextensionF = E As* E compatibly with the natural symmetric biextension struc-
ture onF'. Such a trivializationr may also be described by the induced biextension
isomorphism

Moy Exy = Eyx (2.14)

betweenE~! and the pullback*E of E. The symmetry condition on then be-
comes the requirement that for eaahy) € B x B, the mapx, ,: E;; — Ex,
induced byr coincides withr, . It is readily verified that any alternating biexten-
sion is anti-symmetric ([6] Proposition 1.4). The distinguished triangle associated
to (2.13) gives us a new description of an alternating biextengidn terms of

the underlying anti-symmetric one. Observe first of all that for any anti-symmetric
biextensionE of B x B by A, the pullbackA E of E along the diagonal is actually

a commutative extensiorof B by A. Furthermore, the pullback of this extension

by the ‘multiplication by 2’ map
23:B — B (2.15)

* The definition of the group law o E given in (5.4) below for a particular biextensidhis
valid in the general case.
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on B is canonically split as an extension. This is equivalent to the assertion that
the squareA E? of the extensiom\ E (under Baer addition) is split. An alternating
biextension may now be described in the following manner.

PROPOSITION 2.2. An anti-symmetric biextensio is alternating if and only

if its restriction AE to the diagonal is split as an extension, by a splitting which
is compatible with the splitting ok E2 determined by the anti-symmetry structure
onkE.

Here is the cocyclic translation of this new description of an alternating biex-
tension, when the underlying torsor of the biextendibis trivial. The biextension
structure on such a triviali-torsor is described, as before, by a pair of maps
g(b1, by; b') andh(b; b, b,) (2.3). An anti-symmetry structure dhis determined
by a mapy: B> — A which trivializes the induced biextensian, in other words
a mapy such that the equations

@b+ by, )
@(b1, b') p(b2, b')

@(b, by + b))
@(b, b)) ¢(b, b))

are satisfied. Since the trivialization Bfdefined byy must be compatible with the
symmetry structure o, the mapsy must satisfy the additional condition

= g(b1, b b)) h(D'; b1, by),

= h(b; by, by) g(by, by; b) (2.16)

@b, b") = (', b), (2.17)

for all b, b’ € B. The following assertion is proved by a rather elaborate cocycle
computation, which we omit.

LEMMA 2.3. The map: B> — A defined by
c(b, b)) = A(b, b)) @(b, b)), (2.18)

(whereA(b, b') is given by(2.10))is an A-valued two-cocycle oB.

The commutativity condition for the partial group Iawls and —f- together
with Equation (2.17), imply that the two-cocydes symmetric, so that the triple
(g, h, ) determines a commutative extensiorBofy A, which in fact is one previ-
ously obtained by restricting the anti-symmetric biextendibabove the diagonal
in B x B. Equations (2.4)—(2.5) imply that

o(b+ b, b+b)

b, b)? =
@b, b) (b, b') p(b', b) p(b', D)
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so that the equation

c(b,b’)2= eb+b,b+D")
(b, b) ', b)

is satisfied. This shows that the 1-cochdi@) defined byy (b) = ¢(b, b) trivi-
alizes the two-cocycle (b, b')?> which describesA E2. Taking into account the
significance of a trivialization off compatible with all this structure, we may now
summarize the previous discussion in the following way.

PROPOSITION 2.4. An alternating biextension a8 x B by A, with trivial un-
derlying torsor, is determined by a quadruple

B354 B3 A B2 % A B A (2.19)

The pair (g, /) satisfies Equation&.4)—(2.5) ¢ andu satisfy the condition&2.16)
and(2.17) together with the additional conditions

o ub+b)
b b) = e (2.20)

and
u(b)? = (b, b), (2.21)

wherec is defined, in terms of the triple, 4, ¢), by Equationg2.10)and (2.18)
A trivialization of the alternating biextension defined @y #, ¢, u) is described
by a mapk: B> — A which satisfies Equatior(®.6)and(2.12) and the additional
condition

k(x,y) k(y,x) = ¢(x,y). (2.22)

Remarlk2.5. Here is the connection between this second cocyclic description of
an alternating biextension and the original one in terms of a triglé, (), where
(g, h) again satisfies the biextension cocycle conditions (2.4)—(2.5). axadisfies
Equations (2.9) and (2.11). Starting from such a triglei( u), one defines an
anti-symmetry isomorphism mag B2 — A by

) ub+b)
0. b) = ) A B (2.23)

Itis immediate thap (b, b') also satisfies the symmetry condition (2.17), and Equa-
tions (2.16) are consequences of (2.11). In fact, the tiiplé:, ) describes in
cocyclic terms the anti-symmetric biextension determined by the alternating biex-
tension(g, h, u). Furthermore, by definition @f (b, b’), the cocycle: (b, b’) defined
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by (2.18) satisfies the trivialization condition (2.20). In order to verify that the
quadruple(g, i, ¢, u) associated to the tripleg(k, u) and to the maw (2.23)
satisfies the conditions of Proposition 2.4, it suffices to check condition (2.21), in
other words that the equation

u(2b)

b? = — 2.24
ub) = b b (2.24)
is satisfied. By specialization to the cagse= —b1, b3 = by, (2.11) yields the
equation
u(b)®u(=b) _ g(b, =b; b) h(b; b, —b)
uby (b, b) L(=b, b)

Substituting in this equation the values o¢{—») and for A given by (2.9) and
(2.10) yields the requisite formula (2.24).

3. The Commutator of @ as a Weak Biextension

We are now ready to describe the universal coefficient exact sequence (1.9) in
geometric terms. Le® be agr-category, as defined in Section 1, with invariaBts
and A satisfying Hypothesis 1.2. Suppose that we have chosen forxeach, as

we did above, a representative objégtof ¢ in the isomorphism class af To C

we associate tha-torsor E aboveB x B, which Deligne [15] calls the commutator

of @, whose fibre aboveéx, y) € B? is the set

E,, =Isome (X, X, X Xy) (3.1)

of arrows fromX, X, to X, X,. Composing the elements & ,, on the right with
automorphisms ok, X, viewed as elements of, makesE into a right A-torsor
on B x B. Alternate choices for the representative objectsand X', of x andy
yield anA-torsorE’ on B x B isomorphic toE.

The main result of this section is the following proposition.

PROPOSITION 3.1. The A-torsor E associated to the monoidal catego®yis
endowed with a natural structure of a weak biextensioB of B by A.

Proof. In order to simplify the notation, we will in the following discussion de-
note byX, Y, Z, etc ... the chosen representatives X, X, in C of the elements
x,y,z € B.Letu:YX — XY andv:YX' — X'Y be given elements ift, , and

1
E, . Their partial sumx + v (2.1) is defined to be the section Bf, , determined
as follows. Consider the following composite arrow, in which the unlabelled arrows
are the associativity isomorphisms.

Y(XX) > X)X = XX —> X¥X) > XX'Y)

— (XX)Y. (3.2)
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Reverting temporarily to our standard notation for objects, this is the middle arrow
in the composite map

X\ X — Xy (X X)) — (X X)Xy = X X, (3.3)

whose other arrows are defined by (1.3)wlf Y/X — XY’ is another arrow in

2
C, the partial sumy + w (2.2) is the composite map constructed in a similar way
from the arrow

(YY)X — Y('X) S Y(XY) > (YX)Y = (XY)Y'
— X({YY). (3.4)

Observe that the composite arrows (3.2) and (3.4), which are built out of inter-
twining associativity and commutativity isomorphisms, are the familiar boundary
arrows in the two hexagons occurring as axioms for braided monoidal categor-
ies [21]. It is therefore not surprising that the diagrams describing the required

associativity and compatibility conditions for our composition I&t‘\/ﬁndi are
closely related to some of the higher braiding axioms embodied in the definition
of a braided 2-category [22]. Specifically, for each set of elemenX —
XW,b:WY - YWandc:WZ — ZW of E, ,,, E, ,, andE_ ,,, we must consider

a nonstrict version of the tetrahedral diagram analogous to the diagram of type
(e ® (o ® o ® o)) associated in [22] Section 6 to the objeds X, Y, Z of C

(see also [2]). In order to take into account the associativities, this requires that
we double certain edges of this diagram (in fact precisely those edges which are
thickened in the diagram appearing in [22] Section 6).

XYZW
A

(XY)e
X(Ye)

WXYZ - —— — - - — S XYWZ (3.5)

X(bZ)
(XY)e

XWYZzZ

There are now five edges incident with each vertex. Replacing each of these
vertices by the corresponding commutative pentagoR,imve may now attach

one of the incident edges to each of the five vertices of each pentagon. Taking
into account the labels given to certain arrows, this can be done in a unique
manner, if we require that exactly three edges be incident to each vertex of each
pentagons. In our context, this diagram has the following interpretation. The ax-

ioms onC ensure that every face of the polyhedron is now commutative, except

possibly for the face comprising the two arrows betwd8XY Z and XYZW.

B

=

N
2
=
N

* We do not, however, assume that our monoidal categas/braided.

https://doi.org/10.1023/A:1000928915124 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000928915124

MONOIDAL CATEGORIES AND MULTIEXTENSIONS 311

The latter face is the following square, whose vertical arrows are the associativity
isomorphisms:

WX (¥ 2) S (x(yz)w)

1 1
W((XY)Z) 22 (xv)Z)w).
Since all other faces of diagram (3.5) commute, so does this face. This finishes the
1
proof that the composition law is indeed associative. The associativity of the law

2
+ is obtained in a similar manner, by starting instead from the nonstrict version of
diagram((e ® e ® ) ® e) Of [22] Section 6.

1 2
The compatibility between the composition lawsand+ is proved in a similar
manner, starting instead from a nonstrict versiohdiagram((e ® ¢) ® (e @ e))
of [6] Section 6. This is the diagram

x@w) || (xaw CXIWY _ (Za)Y || Z(a¥)

(3.6)

associated to four given arrowsXW — WX, b:.YW — WY, ¢.:XZ — ZX,
andd:YZ — ZY.Every vertex of diagrani(e®e) R (e ®e)) of [22] Section 6 has
now been replaced by the corresponding associativity pentagon. Tha prilyri

non commutative part of our diagram is the square involving the top two horizontal
arrows betweerXYZW and ZWXY (and appropriate associativity arrows). In
particular, the following commutative triangles which we extract from diagram
(3.6) yield for us the appropriate labels for these horizontal arrows

* | owe to E. Getzler the observation that the nonstrict versions of diagiemse ® e ® ¢)) and
(e ® o) ® (¢ ® o)) appear, respectively, as Figures 4 and 5 of [4].
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1 2 1 2 1 2
Xy zW — D o xy XYW - - AV o xy

~ ”
\ N -
~ -
N i
1 1 2 D 72
(c+d)W\ (a+b)W X(b+d) N , 7 (at+e)Y

ZXYW XZWY

3.7)

The square involving the top two horizontal arrows of (3.6) may therefore be
portrayed, with certain associativity morphisms neglected, as

1 2 1
(a+b)+(c+d)

XYZW ZWXY

3.8)
2 1 2
(a+c)+(b+d)

This commutes, since all the other faces of diagram (3.6) do. This proves that

1 2
the partial group lawst and-+ in E respectively defined by (3.2) and (3.4) are
compatible and therefore finishes the proof of Proposition 3.1.

Remark3.2. The chosen arrows , (1.3) determines a section
diy: X, Xy — Xy = Xy — XX, (3.9)
of the torsor underlying the commutatér(3.1) of ©. The cocycles which express

the partial group Iawsl% andj2L of E in terms of this section may now be made
explicit. Let the sections: and v of E, , and E,,, be the chosen morphisms
d. y andd, . The following commutative diagram, in which the unlabelled ho-
rizontal arrows are all identity maps, expresses the composite map (3.3) in terms
of automorphism o = X,,.

, , a;l = Xody 2,
Xy (XaXa) 227 (X, X)X =25 (X0 X)) X 22 Xg (X Xr) o Xy (X X)) 222 (X X)X,

| | |

Xwaz’ Xszz’ Xzsz’ Xszz’ Xar,Xa:’y Xzz’Xy

| | |

X X X X X X

fyoat Fi oty

(3.10)

1
The cocycleg(x, x’; y) which describes the partial sus may now be read off
from the lower horizontal map of this diagram as the ngap® — A obtained
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from the three-cocycle (x, y, z) by shuffling y throughx, x’, in other words by

the formula

S, x'sy) fly,x, x')
fx,y,x) '

glx,x";y) = (3.11)

2
Starting instead from Definition (3.4) for, one sees that the second cocykle
occurring in the definition of the commutator biextension is obtained by shuffling
x throughy, y’ in the opposite direction, in other words by the rule

SO, xy)
FOy, y) f, Y, x)
That the pair §(x, y; z), h(x; y, z)) satisfies the cocycle conditions for a weak

biextension follows from the previous discussion. It could also have been be proved
directly by repeated use of the three-cocycle conditionffor

h(x; y,y) = (3.12)

4. The Trilinear Map Associated to a Monoidal Category

We now examine the conditions under which the commutator weak biextension
(3.1) is a genuine biextension. In view of Proposition 3.1, it suffices to check
that both partial multiplication laws o are commutative. In contrast to the
associativity and compatibility conditions, the commutativity conditions are not
automatically satisfied. At the cocycle level, it is immediate that each of the two
commutativity axioms leads to the following condition ¢n

foy 2 f@xy) fO 2,0 1
fx,z,y) f(z,y,x) f(y,x,2)

The expressiow(x, y, z) defined by the left-hand side of this equation is simply
the evaluation of the three-cocycfeon the triple Pontrjagin product cycley.z
H3(B) of classes:, y, z € Hy(B). It is well-known thaty is a trilinear alternating
map. This proves the following proposition

PROPOSITION 4.1. For any pair of Abelian groupgt and B, the weak commut-
ator A-biextensiornE on B x B (3.1)associated to a monoidal categagysatisfying
Hypothesisl.2 described by a three-cocycl&(x, y, z) is a genuine biextension of
B x B by A if and only if the alternating map

BABAB -2 A (4.1)
defined by

_ f,y,2) fz,x,9) f(y, 2, %)
fx,z,y) fz,y,x) f(y,x,2)

@e(x, y,2) (4.2)
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is trivial.

This statement may also be understood in geometric terms, without appealing
to the preferred sectiodh (3.9) of E, by considering the following diagram, which
is built by pasting together two diagrams of type (3.2) associated to the partial

sumsu + v andv + u of a pair of arbitrary summable sectionsv of E. We
no longer assume here that the vertical arrows are the specific morphisrasd
d, y, so that the automorphisms &fwhich « andv determine are not necessarily
the identity arrows. The latter are denotgdandg,.

Xy (K X) 5 (X X ) Xop 2220 (X0 X)) Xp 2225 X (X, Xo) 228 X (X, X)) 5 (X X)X,
Xy Xy =25 X0 X, KXo Xy 22 X Xy
o e |
Sy ate lfz e
Xsz’:z—’X X D& sz
| o
X X X
Gu ‘ f;;,z/ I EFS )|<
Xy:sz’ _g'_X‘—’ Xzsz’ Xszm’ XzX:c’y

Xy (Ko Xet) ey (X Xa) Xt i (Xo X)X = Xl Xy Xor) 5 Ko (Ko Xy i (Ko X)X,

11111
a:,y,:r’

(4.3)

All cells in this diagram are commutative, except possibly the large inner one,
composed of automorphisms of the obj&ct= X,,/,. Since the groupt = Aut(X)

is Abelian, all the arrows lying on the boundary of this inner cell may be freely
moved past one another. Furthermore, under Hypothesis 1.2, the elémeatsl

g, in the inner section coincide, so that they cancel each other out, and similar
cancellation occurs betweér, andg,. Keeping track of the orientations of the
arrows, the obstruction to the commutativity of the inner region boils down to the
triviality of the expected elemenie (x, x', y) (4.2) of A.

Remarkd.2. The specific arrows andv chosen in the construction of diagram
(4) played no role in the definition of the majp (4.1), which only depended on
the three-cocycleg, , , determined by the associativity data, , in . Another
set of choices for the vertical maps, X, — X,, will yield a three-cocyclef”
cohomologous tg, and which therefore leaves unchanged the induced map (4.2).
The axioms for@ also ensure that alternate choices for the representative objects
X, of x € B have no effect in this construction.
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5. The Alternating Structure on the Commutator Biextension

There remains yet one additional element of structur& @b be made explicit.
We now assume that the map (4.1) associated to the given monoidal caggory
is trivial, so that by Proposition 4.1 the commutator tor&b(3.1) is a genuine
biextension.

PROPOSITION 5.1. Let ¢ be a monoidal category with invariants the Abelian
groupsmo(C) = B andm1(C, I) = A, satifying Hypothesi4.2 and whose asso-
ciated trilinear map(4.2) s trivial. The associated commutator biextensidghsf

B x B by A is alternating.

Proof. We give here a geometric proof of this assertion, which one was in any
case led to expect by the discussion in Section 1. We begin with a geometric proof
of the following weaker assertion, which can also be deduced from the cocyclic
description (3.11)—(3.12) df.

LEMMA 5.2. The commutator biextensidn of € is anti-symmetric.

Proof. Consider the sectioa of E A s*E aboveB x B (wheres: B x B —
B x B is the map which permutes the factors) defined by the rule which as-
signs to any pair of elements,y € B x B the elemen(x,y) = t A v in
Isom(X,X,, X., Xy) Alsom(X, X,, X,X,) wherev: X, X, — X, X, is the in-
verse of the arrow: X, X, — X,, X,. This section ofE A s*E does not in
fact depend on the choice of a specific max,X, — X,, X,. In order to
check thato trivializes E A s*E as a biextension, it must be verified that it is
multiplicative in each of its two variables. In the first variable, this boils down to
the obvious assertion that for a given pair of sections, X, — X, X, and
t" X, Xy — XX, of E, , andE, , with inversesv andv’, the inverse ir¢ of

1
the composite map (3.2)+ ¢’
Xy Xo Xy = Xo X, Xy —— X, Xo X, (5.1)
2
is the mapv + v' (3.4)

X, Xo X, = X, X, Xy —> X, X, X,. (5.2)

The multiplicativity ofo in the second variable is verified in a similar manner, so
that the lemma is proved.

SinceE is anti-symmetric, its restriction E to the diagonal is a (commutative)
extension ofB by A, for which the group lawx may be described explicitly by
the following rule. Letx andv respectively be sections @&, , andE, ,, in other
words arrows

w: X, X, — X, X, v X, X, — X, X, (5.3)
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in C. The arrowu » v: X, X, — X, X,, is determined by the composite map

XyaXy
X X, X, X, —— (X, X)(X,X,)

Xca X,
M_v) (XxXx)(XyXy) ‘ ? XXX}’XXXY (54)

for some arbitrarily chosen arraw X, X, — X, X,. We know tha{ A E)?, being
the restriction to the diagonal & A s*E, is trivialized by the restrictiod\o of o
to the diagonal. For any € B, it therefore follows thatr (x) is the element A ¢~
in the set IsomiX, X, X, X,) A Isom(X, X,, X, X,), for some arbitrarily chosen
arrows: X, X, — X, X,. Choosing fort the identity self-arrow } x , we may
therefore setr (x) = 1x x, A lx, x,. Consider now the section of AE defined
by settingr (x) = 1x, x,. The equatiorr (x) » t(y) = 7(x + y) follows from the
definitions, so that the sectiansplits AE as an extension. The formuta(x) =
7(x) A T(x) is also immediate. By Proposition 2.2, the sectioof A E therefore
induces an alternating biextension structure on the anti-symmetric biextefision

It is easily verified that a trivialization off compatible with its alternating
biextension structure determines a strict Picard structure on the monoidal category
C. As observed in the introduction, it follows from [14] Section 1.4 that such strict
Picard categories are always trivial, since they are classified up to equivalence by
the (trivial) group Ext(B, A). This may be spelt out as follows.

COROLLARY 5.3. Let ¢ be a monoidal category satisfying the conditions of
Proposition (5.1) whose associated biextensidn is trivial (as an alternating
biextension). Then the monoidal structure®iis trivial.

In more concrete terms, consider a monoidal cate@aitgtermined by a crossed
moduleé: M — N, for which kel§) = A and coke(s) = B, and for which the
B-module structure om is trivial. The fibreE, , of the commutator biextension
Ec above(x, y) € B?isthe seﬁ*l(kx,y), wherek, , € K =im(d) is the image of
(x, y) under the commutator map associated to the central extension

0—-K—>N-—B—0.
A trivialization of E determines in a map
{, iNxN-—>M (5.5)

by associating to a pair of elemenksandY in N with projectionx andy in

B the elemenin € §~%(k,,) C M determined by the trivialization. When the
trivialization of E is compatible with the anti-symmetric biextension structure on
E, the map (5.5) determines a stable crossed module structure [E3MpR> N.
Compatibility of the trivialization ofE with the alternating structure of yields

the additional relatioin, n} = O for alln € N. In the present context, Deligne’s
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result [14] asserts that the given crossed module is then equivalent to the crossed
moduleP — Q determined by a (splittable) exact sequence of Abelian groups

0O>A—-P—-Q0—B—0.

We end this section with a brief discussion in cocyclic terms of Proposition 5.1
and of its corollary. When the cocycle pdj, 7) has been defined in terms of a
three-cocyclef by Equations (3.11) and (3.12), both the map,, b,) (2.10) and
the right-hand terms of Equation (2.16) are trivial. Taking into account (2.18), it
follows that the quadruplég, i, 1, 1) satisfies the conditions of Proposition 2.4 so
that it defines an alternating biextension structure on the biexterigidr). The
underlying triple(g, &, 1) then satisfies the equivalent conditions (2.9) and (2.11),
as asserted in Proposition 5.1. These two conditions on the ¢giple 1) may also
be verified directly without introducing explicitly the full quadruglg, 4, 1, 1).

A discussion in similar terms of Corollary 5.3 goes as follows. Suppose that the
quadruple(g, i, 1, 1) associated to a cocyclgis trivial, so that there exists a map
k(by, by) satisfying conditions (2.6), (2.12) and (2.22). In that case the gai)(
defines an element in the trivial group Es®, A) so that, as observed at the end of
Remark 1.1, there exists atrvalued 2-cochair(by, b,) on B for which

l(b1, b2)
k(b1, b2) 1(bp. b0 (5.6)
and such that the three-cocycfes the coboundary df The latter assertion is the
content of Corollary 5.3. We note in passing that the categodescribed by the
three-cocyclef is braided if and only if there exists a mapvhich trivializes the
pair (g, h) as a biextension (without taking into account the alternating structure),

in other words which satisfies Equations (2.6) but not (2.12).

6. From Monoidal Categories to Monoidal Stacks

The previous analysis of monoidal categoni@sthe universal coefficient theorem
extends to a classification of group-like monoidal stacks in groupoids (also called
gr-stacks) in a general topds, as discussed in [8] Section 7, to which we refer
for the requisite definitions. One is given a pair of Abelian gro#pand A of

T, with A viewed as a trivialB-module. The discussion in Section 1 generalizes
to the assertion that monoidal stao®sof T with invariantszo(C) and 71(C),
respectively, isomorphic t® and A and satisfying Hypothesis 1.2 are classified
by the hypercohomology grouf3(B, A). The difference between this hyperco-
homology group and the ordinary cohomology graiif( B, A) is analyzed by the

first quadrant spectral sequence

E" = HY(X,, A) = H""(B, A) (6.1)

whose initial term is theA-valued cohomology of the degrge componentB”
of the classifying spac&, of B. From the geometric point of view which con-
cerns us here, the distinction between the hypercohomology group and the naive
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cohomology groupH3(B, A) built from cochainsB® — A, and which classify
gr-categories with invariant® and A, is reflected in the two sets of obstructions
whose vanishing is necessary in order to carry out in the stack case the construction
of the three-cocycle associated to the monoidal categomihe first of these arises
when one attempts to choose, for each sectiafi B above some object of T,
an objectX, in the fiber categorys of € aboveS. Suppose that this obstruction
vanishes, so that the requisite objests exist for all sectionsc of B. Just as in
(1.3), one may then attempt to choose, for every pair of sectiopsof B above
a given objectS of T', a morphisnc, ,: X, X, — X, in Cs. If the obstruction
to achieving this also vanishes, then one can construct as in (1.4;vatued
three-cocycle and therefore classify by the naive grai#oB, A) the stack< for
which both sets of obstructions vanish. These obstructions do not however vanish
in general, but the stack axioms, and the definitions of the objec®) in T
ensure nevertheless that they both vanish lotaliye invariants which describe
them are therefore of a conomological nature. We refer to [8] Section 7 for a further
discussion of these invariants, and simply observe here that they live respectively in
the termsEL-? and E2* of the spectral sequence (6.1), while the naive cohomology
groupH3(B, A) is its ES’O term. The comparison between the naive cohomology
group and the associated hypercohomology group (in other words between the
classification ofyr-stacks and that afr-categories) thus boils down to the analysis
of the edge-homomaorphism mﬂf’o — H?®in the spectral sequence (6.1).

Another change occurs when one passes from categories to stacks. While the
homology of the Abelian group of a toposT is given by the same formulas as
for an abstract group, the relation between the homology and the hypercohomology
of B is now more complicated, since the universal coefficient theorem must now
be replaced by the universal coefficient spectral sequence

EYY = Ext’(H,(B), A) = H'*(B, A). (6.2)

In the abstract group situation, this spectral sequence reduces to the ordinary uni-
versal coefficient theorem, since in the category of Abelian groups the groups Ext
vanish whenevep > 1 so that the spectral sequence degenerates. In a topos, no
essential change occurs at the level of degree 2 cohomology, so that the analysis of
central extensions of groups carried out by the exact sequence (0.1), together with
its geometric interpretation, carries over to an arbitrary topos and therefore remains
valid (except for the surjectivity of the right-hand arrow) when central extensions of
topological groups, or of algebraic groups, are considered. The hypercohomology
group H3(B, A), on the other hand, may no longer be described by a short exact
sequence (1.9), since there now exists a new nontrivial initial term in the spectral
sequence (6.2), provided by the group %8t A). The latter group was given a
geometric interpretation in [14] as the group of equivalence classes of strict Picard
stacks. While this group vanishes in the category case, as we observed in Section
1, this is no longer true in the general stack context.

* In other words after base change.
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The alternating biextension point of view for analyzipg-categories carries
over very satisfactorily to ther-stack context. As we have already observed, the
objectsX,, and arrows (1.3) on which the definition of the three-cocyle, v, z)
depends no longer exist, but they do exist locally, so that the three-cocycle
f(x,y,z)is locally defined. Alternate choices for these objects and arrows yield
cohomologous cocycles. Since the induced pag4.1) depends only on the co-
homology class off, its local representatives glue together to a globally defined
arrow form A®B to A. Similarly, the weak biextensioB associated to gr-stack
C may be locally defined just as in (3.1), once representative objectd C have
been chosen, and the local biextensions obtained in this manner glue to a weak
biextensionE defined on all ofB x B. Its underlying torsor, however, is in general
no longer endowed with a globally defined sectib(8.9), so that the biextension
E may no longer be readily described in terms of cocycles. Propositions 4.1 and 5.1
remain valid in the stack context, and assert that the weak biexteAs®a genu-
ine (alternating) biextension @ x B by A whenever the invarianpe vanishes.

This biextension may be analyzed by the methods of [6]. As observed earlier, this
yields a family of induced quadratic mags:,B — A whose vanishing implies

by the universal coefficient exact sequence (3.19) of [6] that the biextersion
descends to an ordinary extensionAFtB by A.

Suppose now that the alternating biextensiois trivial. We may then choose
in a compatible manner, for each pair of sectiens of B, an arrow

s, ) X, Xy = X X, (6.3)

in C. This actually determines, for an arbitrary pair of obje&tsy of ¢ (with
associated sections y in B x B), a symmetry arrow by the rule

—1 -1
eyex s(x,y) citey

YX X, X, X, X, —> XY, (6.4)

This is independent of the (local) choice of arrawsX — X, andc,:Y — X,

in €. The compatibility of the sectiom of E with the partial multiplication laws

(2.1) and (2.2) implies, as we have already observed, that the symmetry arrows
(6.3) (and therefore more generally the corresponding symmetry arrows (6.4)) sat-
isfy both hexagon conditions, so thatis a braided stack. Finally, compatibility of

s with the sectiort (Definition 2.1) of E asserts that fokK = Y the composite map

(6.4) is simply the identity map. This forces the braided categviy be Picard

strict, and so provides a direct geometric interpretation of the degree 3 portion of

the universal coefficient spectral sequence (6.2). We have therefore obtained in the
stack context the following analog of Corollary 5.3.

COROLLARY 6.1. Let C be agr-stack of T satisfying the conditions of Pro-

position 5.1, and whose associated biextensi@nis trivial (as an alternating
biextension). Thee® is the underlyinggr-stack of a strict Picard stack.
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Vanishing theorems for certain groups 8@, A) are proved in [5]. When this
vanishing takes place, the corresponding strict Picard stack are trivial, so that the
Corollary 6.1 takes on the form of a vanishing theorem gorstacks, along the
same lines as in Corollary 5.3.

7. Higher Multiextensions

The cohomology group&”*+%(B, A) with n > 2 are thek-invariants of two-stage
Postnikov systems with homotopy groupsand A concentrated in degrees 1 and

n. From a categorical point of view, such a cohomology class may therefore be
represented by é&u — 1)-category (or rathe(n — 1)-groupoid) ¢, endowed with

a multiplication@ x ¢ — € satisfying the requisite higher associativity axiom.

It is required that the group of isomorphism classes of objec loé isomorphic

to B and that the intermediate homotopy groupsC) vanish (O< i < n — 1).

The groupr,_1(C), which is simply the group of selfs — 1)-maps of the identity

(n —2)-arrow, is required to be isomorphic #a Finally, the requirement that is a
trivial B-module can be translated into a weak commutativity condition, analogous
to Hypothesis 1.2.

In the following discussion we will mainly be concerned with the case 3,
where the definition of a monoidal 2-groupoid does not offer any difficulty. We
note in passing that the analog in this 2-categorical context of a crossed module,
which occurs when the associativity isomorphisnCins strict, has been worked
out by D. Conduché in [13] Definition 2.2 under the name of 2-crossed modules.
The requisite conditions on the homotopy groups now translates to the requirement
that such a 2-crossed module—~ M — N lives in an exact sequence of groups

OA—-L—->M-—-N-—=B-—->0.

A direct proof of the classification of such length 3 extensions by elements of
the groupH*(B, A) is given in [13] Theorem 4.7. Such a discussion can also be
carried out from a categorical point of view by extending by one more step to
a representation of pentagonal 2-arrows the geometric construction of the three-
cocycle discussed in Section 1.

Let us now now examine the effect on cohomology of the filtration on the
chains onK (B, 1) by powers of the augmentation ideal mentioned in the intro-
duction. Recall that the terms which occur in the analysigf6fi(B, A) are the
groups EXX(LAYB, A), with p + g = n + 1. In particular, the filtration on the
group H4(B, A) (which classifies 2-categories of the type envisaged above) yields
successive geometric objects which respectively live in the groups(Abm A),
Ext}(LASB, A), ExX?(LA?B, A) and ExE(B, A). A prerequisite to a geometric
discussion of this filtration of7* is the interpretation in geometric terms of the

L
groups Ext(®‘B, A) for varying integergp andq. We will call the objects whose
isomorphism classes are classified by these grdppg)-extensions (ol p, g)-
multi-extensions) oB by A. A (p, 1)-extension is simply g@-fold extension byA
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of the abelian groug, and is therefore geometrically described by classes of strict
Picard (p — 1)-categories with invariant® and A. Similarly, a(1, 2)-extension is

an (ordinary) biextension ad® x B by A and more generally €L, ¢)-extension is,

in the terminology of [19] VII 2.10.2, @-extension of the; groupsBy, ..., B,

by A, with By = --- = B, = B. These interpretations afp, 1) and (1, g)-
extensions may be combined as follows. Choosing in the manner explained in [19]
VIl as representative for the objettr? B of the derived category thefold tensor
product of a canonical free resolution Bf it is apparent that &p, g)-extension

for a general pair of integers andg may be thought of as an abeligp — 1)-

gerbeC on B? [8], together with a family ofy partial group Iaws41-, cee j— on

C living above theg composition laws orB? determined by the group laws on
each of thep factors. Each of these partial group laws is required to satisfy the
requisite higher associativity and commutativity conditions, together with higher
compatibily conditions between them. These higher conditions may be worked out
by considering the cells and their boundaries in the chosen representativé Bf

We simply spell this out in the case of, @-extensions, the only essentially new
case required for an understandingft(B, A). As we have just asserted, this is

1
an AbelianA-gerbeC aboveB x B, together with a pair of partial group laws
2
and+. The partial commutativity and associativity conditions assert that, for each

sectionx: S — B of B, the groups Iaws2L andqlL respectively endow the pullbacks
(xx1)*C and(1xx)*C of C above theS-groupssS x B andB x S with the structure

of a strict Picard stacks [8]. The compatibility conditions between the two group
laws are described as follows. We may choose functorial isomorphisms

1 2 1 2 1 2
Coainars: X+Y)V+(Z+W)— (X+2)+ X + W), (7.1)

where the projections of the four objectsX, Y, Z, W to the group of isomorphism
classes of objects satisfy

7(X) = (x1,x3), 7w(Y)=(x2,x3), 7(Z)=(x1,x4), 7w(W)=(x2,x4)

for sectionsx; of B, so that the source and target of (7.1) are well defined. These
isomorphisms: are required to be compatible with the associativity and commut-

1 2
ativity isomorphisms for and+. The compatibility ofc with the commutativity
isomorphisms asserts that the following diagram, in which the horizontal arrows

2
are determined by the commutativity axiom fer, commutes for all allowable
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1 2
object. So must the corresponding one in which the role-@&nd + have been
exchanged.

12 1 1 2 1
X++Z+W) — Z+W)+X+7Y)
d |- (7.2)
2 1 2 2 1 2
X+2DH)+X+W)— (Z+X)+W+Y)

Similarly, the compatibility of the maps (7.1) with the associativity isomorphisms
for the two partial group laws is described by the commutativity of the following
diagram in which the vertical arrows are maps (7.1) and the horizontal diagrams

2
are associativity isomorphisms far, and by the corresponding one in which the
2 1
role of + and+ is interchanged.

12 1 2 1 12 1 2 1
X+N+(Z+W)+S+T) — (X+N+EZ+W)+(S+T)

! !

12 2 1 2 2 1 2 2 1
X+N+UZ+9H+W+T)) (X+2D)+ ¥ +W)+ S +T1)
l l (7.3)
2 2 12 2 2 2 1 2 2
X+Z+MN+T+W+T) — (X+2DH+ )+ +W)+T).

When associativity and compatibility constraints are given for the LéV%mCHZ-

but no commutativity constraint, (ardortiori no commutative diagram (7.2) is in-
troduced), we will say tha® is a weak (2,2)-extension &x B by A. Observe that,
despite their somewhat abstract aspect, (2,2)-extensions are not hard to classify.

Indeed, the group ExtB QL@ B, A) of isomorphism classes of such (2,2)-extensions
may be analyzedia the adjunction spectral sequence, whose low-degree terms are
described in [19] VIII (1.1.4). In that context, whehis an Abelian variety over
an algebraically closed field, amtlis the multiplicative grougs,,, the vanishing
of both Hom(B, A) and Ex¢(B, A) (see [5]) ensures that such (2,2)-extensions are
classified up to equivalence by the group Rt B’) of extensions ofB by the
dual Abelian varietyB’.

In order to describe alternating (2,2)-extensions, we first introduce the concept
of an anti-symmetric (2,2)-extension. In the situation just examined, these have a
very concrete interpretation, since they are described by extensions

0O—-B -E—-B—0 (7.4)

of B by B' which are opposite (for the Baer sum) to the extension

0—-B -FE'->B—>0
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obtained by applying the contravariant duality functor)’ to the exact sequence

of Abelian varieties (7.4). Returning to the general situation, these anti-symmetric
(2,2)-extensions may be described as follows. £ @nce more denote the map
which permutes the factors &@.

DEFINITION 7.1. A (2, 2)-extension is anti-symmetric if it is endowed with a
morphism of(2, 2)-extensions

et — e (7.5)

analogous to isomorphism (2.14), whose source is tgerbe ¢! =
Hom, (G, Tors A) of morphisms of A-gerbes fromC to the trivial A-gerbe.
We further require that the composite morphism

S Teome-1:C~ (CH T — el — e~ e (7.6)

be equivalent to the identity functor, by an equivalence which is unchanged when
the factors ofB? are permuted.

For any stacke, let us denote by the opposite stack a®, whose fibers are
the categories opposite to the fiberstoflf € is a gerbe, then it is immediate that
e also is one. Suppose further ti@is an A-gerbe for some groug, so that we
are given, for objectX of ¢, a family of isomorphisnmiy: A — Aute(X). Then
these maps may also be viewed as isomorphisig A° — Auteo(X) between
the opposite groups, so that they define@ha naturalA°-gerbe structure. We
believe that the following description of the inver€e?! of an AbelianA-gerbe
C may be of independent interest. It is a local statement, and may therefore be
verified by supposing that is the trivial A-gerbe, in which case it is immediate.

LEMMA 7.2. Let A be an Abelian group of’, and C an AbelianA-gerbe. The
Yoneda morphism

C% — Homy(C, TorsA)
X +— h¥

is an isomorphism ofi-gerbes

The morphism (7.5) which defines an anti-symmetry structure on2h®)-
extension® may therefore be described by a morphismiegerbes

e CO —> s*C. (7.7)

* A morphism®: ¢ —> D of A-gerbes is a morphism of gerbes for which the induced maps
Aut(X) — Aut(®X) are identified with the identity by thé-gerbe structure on the source and target
gerbe. In particular, such a morphisbninduces (in the terminology of Giraud [18]) the identity map
on liens.
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In other words, by a ‘contravariant morphism &fgerbes’ frome to its pullback

s*C which is compatible, in the obvious sense, with each of the two given partial
group laws onC. We further require that the additional anti-symmetry conditions
on e analogous to those of Definition 7.1 be satisfied. The pullbackof ¢

along the diagonal is then canonically endowed with the structure of a strict Picard
category with invariant® an A, and in fact one whose pullback by the ‘multiplic-
ation by 2" map (2.15) is a trivial strict Picard category. The full definition of an
alternating(2, 2)-extension may now be given.

DEFINITION 7.3. A (2, 2)-extensionC of B x B by A is alternating if it anti-
symmetric, and if the induced strict Picard categan@ is trivial, by a trivializa-
tion whose pullback by the ‘multiplication by 2’ map (2.15) is the canonical one
determined by the anti-symmetry structure

The other higher element of structure whose definition will be required is the
concept of an alternating (1,3)-extension, an object classified up to equivalence by
elements of the group EXtL A®B, A). We begin with an ordinary (1,3)-extension
(in other words a triextension) d@f® by A. Recall that this is ad-torsor E on B2,
together with three partial multiplication laws

1
+: Ex,y,z Ex’,y,z - Ex+x’,y,z’

ﬂj'\’

Eiy:Exy: = Eiyry

T|_—w

Eyy:Exyz = Exyziz,

each of which is commutative and associative, and any two of which are compatible
with each other. Just as alternating biextensions could be understood by considering
the complex (2.7), information concerning an alternating structur& anay be
inferred from the complex

0—>T3B—>T2B®B—> BRA*B—> A’B—>0 (7.8)

which is simply a Koszul complex [20] Chapter 1 (4.3.1.3). By examining the right-
hand arrow in this complex, we see that an alternating triexterSiasith general
fibre E, , ., when viewed for a fixed € B as a biextension iy, z of B? by A,
must be alternating in the variablesz. Its restrictionE, . . above the diagonal
A3 is therefore provided with a sectiop. € E, . .. Itis required that this section
be compatible, as in Definition 2.1, with the symmetry and cube structutesrnin
E. .. determined by the second and third group lawsForT his sectionr)iZ must
also be linear inx, in the sense that the equation

1
2.+t =12 (7.9)

x+x',z

* |t is equivalent to require that the square of the trivialization is tha®8rdetermined by the
anti-symmetry structure.
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must be satisfied iE, ., .. The middle map in the sequence (7.8) may be inter-
preted as determining a constraint on the triextendiowhich is to be quadratic
in x and linear inz. Such a constraint is given for a fixedby an alternating
structure ork, , ., viewed as a biextension in the variables, in other words by
asectior! . € E, . . compatible with the-structure inx and satisfying a relation
analogous to (7.9) in the variahte

We must now express the compatibility conditions between these sections
and? which follow from the left-hand arrow in (7.8). Since the grolipB has
two separate sorts of generators, those of the feyth) and those of type,(b) b’
for elementa, b’ € B, two distinct sorts of compatibilities will have to be verified
between these sections. These compatibilities will however be related to each other
by the conditions corresponding to the identities

3y3(b) = y2(b)b,
y3(b +b") — y3(b) — y3(b') = y2(b) b' + y2(b") b

in the groupI'sB. The first of these compatibilities, which is cubical dnand
therefore corresponds to the generaiai®) of '3 B, asserts that for at € B the

equation
. =12, (7.10)

is satisfied inE, , .. In order to state the second compatibility condition between
11 ands? as pleasantly as possible, we need the following lemma.

LEMMA 7.4. LetE, , . be a triextension oB3 by A, endowed as above with
an alternating structure inx linear in z defined by a sectior]}’Z € E,,.,and
with an alternating structure iy linear in x defined by a sectiorf,Z € E;...
The restrictionE, , , of E above the diagonal i3 is canonically endowed with an
alternating structurer3 € E, y, inx, which s linear iny.

Proof. Since E |s alternating with respect toc, it is a fortiori anti-
symmetric. This amounts to the assertion that the secfign (¢}.)™* (1;.) ™" €

Exiyrty: Ex2 defines,via a canonical isomorphism determlned by the

X,X,2 yyz

biextension structure of, a trivialization s’ v.y.. Of the symmetric biextension

Fl = =E.y.Ey ;. Sincer! defines a=-structure inx on E, ., and is therefore

X,y,2
quadratic in the variable, the equationj, . = (i;)* s satisfied up to canonical
isomorphism, from which the equation

St =07 (7.11)

in E, . . follows immediately. The equation

2,y =2 )% (7.12)
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(wheres? =12 (t2 )~ (:2.)"")is proved in the same way, as a consequence
of the quadraticity ir; of 7Z_. Let us now set

3 _ A 2 -1

Loy = Suya(ty0 (7.13)

This is, as required, an element(@, , ; Ey . ) (Ey )"t =~ E, . Itis readily
verified that the sectlorf of E, , . defined in this manner satisfies the requisite
guadraticity condition irnx and linearity condition iry, so that the lemma is proved.

Another sections? | of E, . with the same properties a§, could have
been defined in terms of the alternating structzg}reand the antisymmetry section
5T } .€E., . E, ., determined by? , by setting

NN G (7.14)
The second compatibility which the sectiarisand#? must satisfy is the require-
ment that

B2, =13, (7.15)
This may, of course, also be written as the condition

e s2

> = )1 2 (7.16)
tx;y Sy X,y

Our definition of an alternating triextension is now complete. It can be summar-
ized as follows, with the corresponding notion of a trivialization spelled out.

DEFINITION 7.5. A triextensionE of B2 by A is alternating if it is endowed
with sectiongxlsz e E, . andtfsZ € E, .. such that! defines a partial alternating
structure onE with respect tox linear in z and % defines a partial alternating
structure onE with respect ta linear inx. The sections! ands? must also satisfy
the compatibility conditions (7.10) and (7.16) withands? defined as in the proof
of Lemma 7.4. A trivialization ofE as an alternating triextension is determined
by a sectioro, , . of E, , . which trivializesE as a triextension (in other words
compatibly with each of the three partial group laws), and suchathat = 71

X,z
Ry
ax,Z,Z - tx,z'

The sectiorvf,y of such an alternating triextension defined by formula (7.13)

determines as above a partial antisymmetry struci;j’r}y)az € Ec,.E.y. by
setting, up to a canonical isomorphism

13,
3 X7y
Sxyz = 3 3 (7.17)
x,y°z,y
The formula
1 1
S S
3 Tyt yx
Sx,y,z - §2 (718)
¥,X,2
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now follows from (7.14) and the definition @f,y_z. The equations

1 _ .3 2 -1 2 _ .3 1 \-1
tx,z_sx,x,z(tz,x) ’ tx,z_sx,z,z(tz,x) (719)

are consequences of (7.11), (7.12) and (7.16). The first of these equations shows
that this new method for constructing§out of 2 and the anti-symmetry condition

52 derived fromz? yields the same result as the method (7.14) for construeting

out of 2 and the anti-symmetry conditias? derived fromz2. Similarly the second
formula shows that the new method (7.19) for constructfaut of 11 and the anti-
symmetry condition derived from?® yields the same result as the method (7.13)

for constructing it out of® and the anti-symmetry conditiast derived froms?.
Allowing ourselves a certain amount of redundancy, we may therefore give another
description of alternating triextension which is entirely symmetric in the variables

x, v, z, as befits an object associatedAdB.

PROPOSITION 7.6.A triextensionE of B2 by A is alternating if and only if it

is endowed with sectiong . € E, .., . € E,..ands}, € E,, . each of
which defines a partial alternatlng structure with respect to the repeated variable
which is linear with respect to the other variable and which satisfy the following
compatibility conditions

(1) For eachi, the two possible methods described above for constructing a sec-
tion ¢ in terms of the two other sectiomsand* yield the same result
(2) For everyx € B, the equation} | = 12, = 13 is satisfied in&, ..

Remark?.7. This description of alternating triextensions may be obtained in a
somewhat more symmetric manner by making use of the derived version of the
sequence

0—>TI3B—> (MBRB)®(BRIB)—> B® > A°B—>0

of [1], instead of the Koszul sequence (7.8). This sequence also makes it immedi-
ately clear that an alternating triextension whose underlying triextension is trivial,
may be described in terms of pairs of compatible mAps B x B — A, with f
guadratic in the first variable and linear in the second one (gekpear in the first
variable and quadratic in the second one). Note that in an algebro-geometric setting,
this often implies that such alternating triextensions are trivial. For example, when
B is an Abelian variety over an algebraically closed field, it is easily verified (see
[19], VII 2.10.2) that any triextension & by the multiplicative grougs,, is trivial.

The assertion is now immediate, since the only maps fBow B to G,, are the
constant ones.

8. Picard Structures on Monoidal 2-Categories

Let € be a monoidal group-like 2-stack in groupoids, as defined under the name of
2-gr-stack in [8] Definition 8.4. The first invariant @f is the sheaf of groupsy(C)
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associated to the presheaf of isomorphism classes of obje€tsinfthe category
case which we will mostly consider, we will say th@tis a monoidal group-like
2-groupoid. The groupo(C) is then simply the group of isomorphism classes of
objects ofC. Our first assumption will be, as in the monoidal 1-category case, that
this group is Abelian. Since the monoidal category Aud) of self-arrows of the
unit object/ of € is automatically braided, the two other homotopy group€ pf
which may be defined by

7;(C) = mi—1(Aute (1)) (8.1)

for i = 1, 2, are both Abelian groups. It was explained in [8] that such monoidal
2-groupoids withro(€) >~ B and Aut (/) equivalent to a given braided category
A are classified by an appropriately defined conomology grdpB, 4). The
group B acts by conjugation on the categaty and we will assume that this action

is equivalent to the trivial orfe Finally, we will assume in the sequel for simplicity
that the Abelian groupr,(C) is trivial, so that+ is the category with a unique
object whose arrows form an Abelian grodp The cohomology group/3(B, )

then reduces to the standard cohomology grEdpB, A) with values in the trivial
B-moduleA. As we have said, the class 6fmay be viewed as thieinvariant of

the two stage Postnikov system

K(A, 3 X

K(B,1)

defined by the the classifying spa&eof the nerve of the monoidal 2-categogy
In more explicit terms, one associates®tthe A-valued four-cocyclef (x, y, z, w)
obtained as follows. Choose, as in the case of monoidal categories, representative
objects X, and arrowsc, ,: X, X, — X,, in C. Since it is assumed here that
m1(C) = 0, we may also choose for everyy, z € B a 2-arrown, , .. 1y, .. =
f(x,y,z) between the identity 1-arrow, and the 1-arrow defined as in 1.4. The
pentagon two-arrow associated to the four objécts X, X., X,, then determ-
ines an elemeny (x, y, z, w) in Aute(Xyyw), 1.€. @ four-cochainf: B* — A.
Stasheff’sKs relation [28] implies thatf is a four-cocycle. Other choices of objects
X,, l-arrowse, , and 2-arrows), , . determine cohomologous cocycles so that the
class of f in H*4(B, A) only depends on the equivalence clas€of

As in our study of monoidal categories, we may analyze the monoidal two-
categoryC by introducing, for each pair of elementsy € B, the commutator
category

Evy = Isome(X, X, X, X)) (8.2)

* In other words that the tensor functprB — Aute (1) with source the discrete category defined
by B is equivalent to the trivial functor.
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This is a groupoid, on which thgr-category of self-arrows ok, X, acts on the

right fully and faithfully by composition of arrows. This category is equivalent
to 4, and therefore, since;(C) = 0, to the groupoidA[1] with a single object
defined by the Abelian groug. The categorie€, , assemble, for varying, y,

to form an AbelianA-gerbe& on B x B which is a first element of structure
associated to the monoidal 2-sta€k In fact this gerbe is trivial, since one can
choose a compatible family of sectioméy, y) € &, ,, for example as in (3.9)
those obtained by composing the chosen méps, — X, with an inverse of

the mapsX, X, — X,,. There remains, however, some interesting structure on
€ to be explored. Indeed, the constructions (3.2) and (3.4) now define partial group

1 2
laws+ and+ on the AbelianA-gerbe& on B x B. Once more, no commutativity

property for the partial Iawslr anszr is asserted, so that is in general a weak,
rather than a genuine (2,2)-extension.

This analysis ofG, and of its associated commutatér carries over from
monoidal 2-categories to monoidal 2-stacks, the only significant difference being
that in that case the underlying-gerbe of€ is no longer trivial. The following
higher analog of Proposition 3.1 is therefore true.

PROPOSITION 8.1. Let ¢ be a monoidaR-stack with invariantsB and A, sat-
isfying the previous hypotheseB.is classified up to equivalence by an element
of the (hyper)-cohomology groui*(B, A) (for A a trivial B-module). The con-
structions(3.2) and (3.4) define on the abeliad-gerbeé& (8.2)on B x B a weak

(2, 2)-extension structure

In order to prove that each of the two group laws®is coherently associat-
ive, one could simply examine the next higher versions of diagram (3.5), in other
words the weak versions of the pair of 2-categorical diagrams which would, in the
terminology of [22], be denoted g R (e Qe R eRe)) anNd((e R e R e R e) R o).
The next higher version of the compatibility diagram (3.6) would then show that
the two group laws are compatible with each other, in the sense made explicit for
the map (7.1) by the two diagrams (7.3). Such an argument would certainly be
sufficient in order to prove the proposition. However, if one wanted to fill in the
details of a proof along these lines, one would be led to the consideration of a
family of commuting 2-categorical diagrams, which cannot be represented here in
an enlightening manner. We therefore prefer to give a proof of the proposition in
cocyclic, rather than diagrammatic terms, even though this method of ppradri
only applies in the monoidal 2-category case, rather than the full monoidal 2-stack
situation. The method of proof which we now propose will thus be analogous to
the discussion in Remark 3.2, but at the next higher level.

Starting from am-valued four-cocyclef (x1, x2, x3, x4), we have seen that for a

1
fixedx € B the group law4- is obtained by inserting 2-arrows derived frgfrinto
the pentagons by which the vertices of diagram (3.5) were replaced when we passed
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from this diagram to its nonstrict version. The three-cochiain B2 — A which
describes as in (1.4) the associativity morphism in the monoidal cat&gqryon

1
B for the group law+- is therefore defined by composition of these two-arrows, in
other words (once the sign has been taken into account) by the formula

Vo x) = [[  FGow XYo@ %@ Xow) (8.3)
o(1)<o(2)<o(3)

in which €(o) denotes the sign of the permutatien This is just the product of
the signed permutations gf(x, y, z, w) when the variablev is shuffled through

2
(x, y,2). The group law4- on &,  is similarly described by

P, (X2, X3, X4) = [ f@ow Yoo Xo@: Xo@) (8.4)
0(2)<0(3)<o(4)

i.e. by the product of the signed shufflesfirof x; through(x,, x3, x4). That each

of the two group laws satisfies the pentagon condition is equivalent to the assertion
that the corresponding three-cochain (8.3),(8.4) is a three-cocycle, and this follows
readily from the four-cocycle condition ofi. In fact, it is unnecessary to per-
form this computation explicitly, in view of the following observation. Consider
Eilenberg—Mac Lane’s iterated bar-construction modéB, 2) [17] Section 14

for the complex of chains on the Eilenberg—Mac Lane sp&c8, 2). Since this

is a chain complex, the squase- § of the differentials is trivial when applied

to any cellc. Applying this respectively to the cellscy |2 x2, x3, x4, xs] and

[x1, x2, x3, x4 |2 xs], and passing from chains té-valued cochains oK (B, 2)

yields the sought-after assertion. With this in mind, we relabel the two previous
associativity maps by setting

@ (x1, X2, x3 [2 X4) = VY, (x1, X2, X3),
O (x1 |2 X2, X3, Xa) = ¢y (X2, X3, X4),

even though the first of these definitions is only consistent with [17] up to a sign.
Similarly, the compatibility isomorphism (7.1) between the two group lawé @n
described by the cochain

¢ (x1, X2 |2 X3, Xa) = l_[ F o1y Xo2)> Xo @)s Xo (@) <
o0(1)<o(2); 0(3)<o(4)

obtained by shufflingxy, x») through(xs, x4). The vanishing of the image under
8 o 8 of the cells[xy, xo, x3 |2 x4, x5] @nd[x1, x2 |2 x3, x4, x5] (Or a direct computa-
tion) imply that the higher compatibility conditions (7.3) are satisfie& iso that
Proposition 8.1 is proved.

In order to understand under which conditions the weak monoidal commutator
(2,2)-extension obtained from Proposition 8.1 is a genuine (2,2)-extension (in other
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words one whose partial group laws are strictly commutative), we need only apply
to the monoidal categorie® ,,) andé§,,  the theory developed in Sections 310 5.
By (3.11)—(3.12), the weak biextension associated to the monoidal cateéggry

is described, for a fixed, € B, by the cochains

g(x1, x2; X3 [2 x4) = 1_[ ¢ (X0 (1), X0 2)> Xo @) |2 X2) (8.5)
o(D)<o(2)

= [ fGow %@ %@ Xow@) ™
o(D)<o(2)
and

hixz,xslaxa) = [ ¢Gows XYo@ %o@ |2 %)™ (8.6)
0(2)<o(3)

= 1_[ S Xo), X62)s Xo(3) Xo(4))6(0)‘
0(2)<o(3)

Similarly, the weak biextension associated to the monoidal categQry is de-
scribed, for a fixed; € B, by the pair

y(alaxz.xsixa) = [| #6112 %@: XYo@, Xo@)
o(2)<o(3)
n(x1 [2 x2; X3, X4) = 1_[ G (X1 12 X025 X0 (3) Ko@),
o(3)<o(4)
so that

Y (x1 |2 X2, x3; x4) = h(x1; X2, X3 |2 X4)
and

ﬂ(xl |2 X25 X3, x4) = 1_[ f(xg(l), xo‘(Z)a x0(3)’ xa(4))7€(‘7).
o(3)<o(4)
(8.7)

There is a unique condition under which the two pairs of partial group laws defining
these two weak biextensions are commutative, thereby ensuring thatdadth
and(y, n) define genuine biextensions. This condition is given by the vanishing of
the alternating map

1(x1, %2, 3, %8) = [ | fXo@), Xo@)» X0 @ Ko@)

oEX,

determined by evaluating the four-cocyglen the Pontryagin produgt - x;-x3-x4
of the four classes; € H;(B) = B. By Proposition 5.1, both biextensioqg, /)
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and (y, n) are then alternating. As explained in the discussion following Corol-
lary 5.3, they may therefore be described in cocyclic terms by the triglgs 1)
and(y, n, 1) (in which the term 1, which describes the alternating structure, is the
trivial map 1:B — A sending every element &fto the identity element od). The
compatibility condition (7.10) between the first and second alternating structure
is automatically satisfied here. Since the secﬂqhs ands . satisfying the
corresponding relations (2.16) are described by tr|V|aI maps thls is also the case
for the compatibility condition (7.16).

We summarize the previous discussion by the following

PROPOSITION 8.2Let ¢ be a monoidal category defined by a four-cocycle
f(x1, x2, x3, x4), and for which the condition

1_[ (f (Ko )» Xo (@) Xo(3) Xo@))" ) =1
o€Xy

is satisfied. The pair of triplesg(x1, x2; x3 |2 x4), h(x1;x2,x3 |2 w), 1) and
(¥ (x1 |2 x2, x3; x2),n(x1 |2 X2 X3, x4), 1) defined by setting

g(x1, x2; X3 2 X4) = 1_[ f Ko ()s Xo @) Xo3)> Xo @) <7, (8.8)
o(D)<o(2)

h(x1; x2, X3 |2 X4) = 1_[ f (X (1), X0 2)» Xo 3)> Xo (@),
0(2)<o(3)

y(x1l2 x2, x3; x4) = h(x1; x2, X3 |2 X4),

n(x1 2 x2; X3, x4) = 1_[ F (Xo 1) X02)» X0 3)» Xo () <
o(3)<o(d)

respectively, determine, for every fixede B and every fixed; € B, a biexten-
sion structure. Together they define an alternating triextensioB ef B x B by
A.

Suppose now that this alternating triextension is trivial. The trivializing section
oyr.y.. Of E, , . (Definition 7.5) is then described by a mapB® — A such that
the equations

60 (x1 + x2, X3, X4)
6(x1, x3, X4) 0(x2, X3, X4)

8(x1, x2; x3 [2 x4) =

0(x1, X2 + X3, X4)
0(x1, X2, X4) 0(x1, X3, Xg)

h(x1; X2, x3 |2 X4) =

0(x1, x2, X3 + Xa)
0 (x1, x2, x3) 0(x1, X2, X4)

Q(Xax’z)=la Q(X,Z,Z)=l

n(x1 |2 x2; X3, x4) =
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are satisfied. In that case the weak (2,2)-extension (8.2) determined by Propos-
ition 8 is a genuine (2,2)-extension. We may now introduce additional cochains
0(x1, X2 |2 x3) and@(xl [2 X2, X3) defined by

0(x1, x2 2 x3) = 0(x1, X2, X3), 0(x1 |2 x2, x3) = 60(x1, X2, X3).

These respectively describe the commutativity isomorphisms in the strict Picard
categoriest .,y and &, ), so that the pail¢ (x1, x2, x3 |2 x4), 0(x1, x2 |2 x4))
for x4 fixed and the pai¢(x1 |2 x2, x3, x4), 0(x1 |2 x2, x4)) for x; fixed each
satisfy the cocycle conditions (1.5)—(1.6). This (2,2)-extension is automatically
alternating, as may be verified by a discussion parallel to that of Section 5, or
by a cocyclic argument.

While we could pursue this analysis in cocyclic terms of the (2,2)-exter&jon
it is more expedient to return to a 2-categorical framework. A trivializatiol of
consists of a trivialization, for each(resp. eachw) in B of the Picard staclg,,
(resp.&(.)), together with a compatibility condition between these trivializations.
Returning to the definition (8.2) of, we see that such a trivialization &,
(compatible with the Picard structure) consists, once a family of choices of one-
arrows

R.y: X, X, — X, X, (8.9)
have been madein a ‘hexagon’ 2-arrow
H[X|2)’-,Z]: RX,)‘ ] Rx,y’ - Rx,yy/

in . The compatibility of this trivialization with the associativity isomorphism in
&,y implies that this hexagon 2-arrow satisfies the axiom den@igde @ e o))
in [22], which we already encountered in a somewhat different context. A trivializ-
ation of& ,,, similarly defines the ‘hexagon’ 2-arrow between the 1-map defined as
in (3.2) (forY = X,,) from the 1-arrow obtained by composi®y ,, andR, ,, and
the 1-arrowR,, ,,, and this then satisfies the corresponding axiGh®eRe)e)).
The compatibilities of these 2-arrows with the commutativity isomorphisms de-
termined by the strict Picard structure yields the axiqies? o) ® (e ® o)) on the
2-categoryC. Finally, the compatibility of this pair of hexagon 2-arrows with each
other implies that the 2-catego6yis endowed with a slight variant of Kapranov—
Voevodsky’s two-braiding axioms, which we called a Z-braiding in [8], Ch. 8 (see
also [2] for a discussion of this supplementary axiom).

If we now require that the chosen trivalization (8.9) of the (2,2)-extengitm
be compatible with its anti-symmetry structure, defined as in Lemma 5.2, we must
further require that there exists for all y € B a two-arrow

Se.y
lX_va '—)) Ry,x o Rx,y (810)

* After a preliminary choice of a representative obj&gt of the fixed objectr, and a family of
representativeX, of the varyingy € Y.
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with source the identity one-arrow o, X . This 2-arrow automatically satisfies
the two conditions which define o@ the structure of a strongly braided two-
category [8] (in other words what J. Baez calls a strongly involutory monoidal
category [3]). Finally the compatibility of the trivialization &fwith its alternating
(rather than simply anti-symmetric) structure manifests itself in a trivialization
of the Picard stackA& obtained, as required in Definition 7.3, by restrictiig
above the diagonal. Since the alternating structuré endetermined by the iden-
tity arrow 1y x, € (A€),, this compatibility may be interpreted as a 2-arrow

1y x, N R, .. By compatibility of this 2-arrow with the group law onég,

S, is additive inx. Furthermore, the required compatibility of its square with
the trivialization of &2 determined by the anti-symmetry structure &nis the
assertion that the composite 2-arrow in diagram (8.4.8) of [8] coincides with our
2-arrows, . (8.10). Observe also that the compatibility condition mentioned in [8]
(8.4.6) is in fact a consequence of the required additivity of S,, and therefore
must not be imposed here as a supplementary condition. A trivialization of the
alternating(2, 2)-extensioné thus determines 0@ what we have called a strictly
symmetric monoidal two-category structure. These strictly symmetric structures
on monoidal two-categories with associated groBpand A are classified by the
group Ex8(B, A). In the 2-stack case, this is a genuine invariant, which classifies
these structures up to equivalence. On the other hand, in the 2-category case, the
vanishing of this group is automatic, since it is a higher Ext group in the category
of Abelian groups. The 2-categofy is therefore equivalent to the trivial one with
invariant groupsB and A. In particular, forgetting all the symmetry stucture, this
implies that the underlying monoidal 2-categdtyis equivalent to the trivial one,
and the original four-cocyclé¢ (x, y, z, w) which defined® is then cohomologous

to zero.
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