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Abstract. We associate to a group-like monoidal groupoidC a principal bundleE satisfying most
of the axioms defining a biextension. The obstruction to the existence of a genuine biextension
structure onE is exhibited. When this obstruction vanishes, the biextensionE is alternating and
a trivialization ofE induces a trivialization ofC. The analogous theory for monoidaln-categories is
also examined, as well as the appropriate generalization of these constructions in a sheaf-theoretic
context. In then-categorical situation, this produces a higher commutator calculus, in which some
interesting generalizations of the notion of an alternating biextension occur. Forn = 2, the corres-
ponding cocycles are constructed explicitly, by a partial symmetrization process, from the cocycle
describing then-category.

Mathematics Subject Classifications (1991):18D10, 19D23.

Key words: monoidal category, biextension.

0. Introduction

LetA andB be a pair of Abelian groups. Central extensions

0→ A→ E→ B → 0

of B by A are classified up to equivalence by theA-valued cohomology group
H 2(B,A) (whereA is viewed as a trivialB-module). To such an extension is
associated the commutator map

λ : B × B → A

(b1, b2) 7→ [s(b1), s(b2)]
determined by the choice of an arbitrary set-theoretic sections of the projection
from E to B. It is easily verified that this commutator map is independent of the
choice of the sections, and that it is a bilinear alternating map fromB × B to A.
By construction, the mapλ measures the lack of commutativity of the group law
of E. In particular, the central extensionE is actually commutative whenever the
mapλ vanishes, so that it then determines an element of the group Ext1(B,A).

These facts, which are well known, may be interpreted as follows in cohomolo-
gical terms. Since the groupB is Abelian, its first integral homology groupH1(B)
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is isomorphic to the groupB itself. Furthermore, the Pontryagin product map
H1(B) × H1(B) → H2(B) is bilinear, alternating, and therefore induces a map
32B → H2(B) which is an isomorphism. The previous discussion now follows
directly by considering the exact sequence

0→ Ext1(B,A)→ H 2(B,A)→ Hom(32B,A) (0.1)

provided by the universal coefficient theorem. The functor32 here denotes the
second exterior power32

Z, applied to the groupB viewed as aZ-module. Unless
explicitly stated the corresponding higher exterior power functors3

j

Z will in the
sequel simply be denoted by3j .

Our aim in the present paper is to analyze in a similar manner some of the
higher cohomology groupsHn(B,A). These have various geometric interpreta-
tions, analogous to the description ofH 2(B,A) in terms of central extensions,
most of which are mentioned in [23]. The most general one of these interpretations
of degreen cohomology groups provides a classification ofn-monoidal categories.
In the first case of interest, that in whichn = 3, this was first worked out (for
symmetric monoidal categories) in the barely accessible [27], whereH 3(B,A)was
interpreted as the group of equivalence classes of group-like monoidal groupoids
C, whose groupπ0(C) of isomorphism classes of objects is isomorphic toB, and
whose group AutC(I ) of self-arrows of the identity objectI of C is isomorphic to
theB-moduleA.

Our approach to the study of such monoidal category derives from the observa-
tion that there exists a natural filtration, determined by powers of the augmentation
ideal, on the chains on a free Abelian simplicial resolution ofK(B,1). We intend
to study this in some detail in [9], where we will examine the effect of this filtration
on the integral homology of the Abelian groupB. Let us merely observe here that
such a filtration on the chains ofB determines a corresponding one onA-valued
cochains, and therefore induces a filtration on the cohomology groupsHn(B,A).
Theith associated graded piece of this filtration is the group Exti (L3jB,A), where
i + j = n. HereL3jB is the object in the derived category of Abelian groups
obtained by applying the exterior power functor3j to a free Abelian simplicial
resolution ofB placed in degree zero, so that a more traditional notation for this
derived object would beL3j(B,0).

Let us begin by considering the casen = 3. The filtration onH 3(B,A) determ-
ines threea priori nontrivial terms in the associated graded group. The first of these
is the group Hom(L33B,A). Since this group is isomorphic to Hom(33B,A), a
monoidal categoryC of the type described above determines a trilinear alternating
mapϕ ∈ Hom(33B,A). When this mapϕ vanishes, an element of the group
Ext1(L32B,A) can be associated to the categoryC. It was shown in [6] that this
group classifies, up to equivalence, the set of alternating biextensionE of B×B by
A. This may be understood in the present context by considering the commutator of
C. This is a principalA-bundleEC onB×B, first introduced by P. Deligne in [15],
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whose fibre over an element(x, y) ∈ B×B is the setEx,y of all arrows? YX→ XY

in C (X andY being chosen representative objects inC for the isomorphism classes
x andy). Such a bundle may be endowed with a pair of partial composition laws
determined by the multiplication law inC, which are both associative, and compat-
ible with each other. The obstruction to the commutativity of both of these partial
group laws is described by the alternating mapϕ:33B → A mentioned above.
Whenϕ is trivial, the commutatorA-bundleEC is therefore a genuine biextension
of B × B by A, and in fact it is automatically an alternating one. Passing from
the bundleEC to its isomorphism class, we obtain in this manner the sought-after
element of the group Ext1(L32B,A). When this element vanishes, the category
C determines an element in the last component of the graded group associated to
H 3(B,A), in other words in the group Ext2(B,A). In geometric terms, this may be
interpreted as the assertion that a trivialization ofEC as an alternating biextension
determines onC a strictly symmetric monoidal structure. By [14], we know that
such strictly symmetric group-like monoidal groupoids are indeed classified by the
sought-after group Ext2(B,A). However, this group of extensions always vanishes
in the category of Abelian groups, so that it does not provide a genuine invari-
ant attached toC. In geometric term, this is reflected in the assertion that such a
strictly symmetric group-like monoidal groupoid is always equivalent to the trivial
symmetric monoidal category associated to the pair of groupsB andA.

It is instructive to carry out the previous discussion purely in terms of a given
A-valued three-cocyclef (x, y, z) on B. The alternating mapϕ which one then
encounters is a very familiar one, being simply the map obtained by evaluating
f on the decomposable elements ofH3(B). In order to interpret the commutator
biextensionEC directly in terms off (x, y, z), we have found it necessary to insert
in our text a description of alternating biextensions in purely cocyclic terms. We be-
lieve that such a description, which was not carried out in [6], can be of independent
interest. It turns out that the pair of cocycles (g(x, y; z), h(x; y, z)) which describe
the commutator biextensionE of C are obtained from the given three-cocycle
f (x, y, z) by a partial symmetrization process which already occurs (without the
assumption thatB is Abelian) in a computation by R. Dijkgraaf and E. Witten of
the two-cocycle associated by Chern–Simons theory to a given three-cocycle [6]
Section 6.6.

The rest of this text is devoted to various generalizations of the previous discus-
sion. The first of these extends the theory from the study of monoidal categories
to that of monoidal stacks. This level of generalization is analogous to that which
occurs when one passes from the classification of central extensions of Abelian
groups to that of topological Abelian groups [25] or of algebraic groups ([26],
Chapter VII). The choice of objects or arrows inC required for a cocyclic descrip-
tion of the monoidal stackC can in general only be made locally. The cohomolo-
gical obstruction to a global choice of objects is determined, as explained in [8],

? We will generally denote byXY , rather than by the more customaryX ⊗ Y , the product of two
objectsX andY in a monoidal categoryC.
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by the underlying gerbe ofC. The obstruction to a corresponding global choice of
arrows is reflected in the fact that the commutator biextensionEC of C no longer
has, as in the category case, a global section above its baseB × B. EC is now a
genuine biextension ofB×B byA in the sense of [19], rather than one which may
be described, as in the category case, by a pair of cocycles(g, h).

Our next generalization consists in passing from the cohomology group
H 3(B,A) to the groupH 4(B,A). The latter classifies the monoidal two-groupoids
C which satisfy the conditionsπ0(C) = B,π1(C) = 0 andπ2(C) = A. The natural
action ofB onA is once more assumed to be trivial. A geometrical discussion of
the associated graded pieces for the filtration onH 4(B,A) requires a geometrical
understanding of the corresponding groups Exti(L3jB,A) for i+j = 4. We inter-
pret these groups as the groups of equivalence classes of certain geometric objects
which we call the(i, j)-extensions ofB byA. Wheni = 1, these are simply, for an
arbitraryj , thej -fold extensions ofB byA introduced by A. Grothendieck in [19].
We will therefore use this concept here forj = 3, and we will call such objects
triextensions ofB byA. The next term in the filtration requires that we understand
the notion of a(2,2)-extension ofB by A. This is an interesting new concept,
consisting in a category (or more generally a stack)E for which π0(E) = B × B
andπ1(E) = A, and which is endowed with a pair of coherently associative and
appropriately compatible partial group laws, which define on the restrictions ofE
to all subsetsx × B andB × y the structure of a group-like symmetric monoidal
category.

While these definitions of a triextension and of a (2,2)-extension present no
great difficulty, there remains the question of imposing on each of these objects
an alternating structure. In order to achieve this, we make use of Koszul complex
techniques, and interpret the requisite groups Exti (L3jB,A) in geometric terms.
Once the appropriate definitions have been obtained, we can describe the geomet-
ric objects which our higher commutator calculus associates to a given monoidal
2-category. Part of this discussion is carried out in cocyclic terms, an efficient
substitute in the present context for pasting diagrams in 2-categories. A pleasant
feature of this discussion is the occurrence of a systematic partial symmetrization
process, analogous to the one mentioned above in three-cocycle situation, and
which points quite clearly to a general statement for the corresponding filtration on
the cohomology groups of arbitrary degree. Certain of these symmetrized higher
cocycles occur, for a non-Abelian groupB, as the images of higher transgressions
in recent work of J.-L. Brylinski and D. A. McLaughlin [11].

We have assumed throughout this text that the groupB was Abelian, but the
constructions carried out here remain for the most part valid without that hypo-
thesis. Indeed, in Deligne’s original construction [15] of the commutatorEC of a
monoidal categoryC, no such commutativity assumption on the group law ofB

was made, nor was it required in the previously mentioned texts [16] and [11].
Without such a commutativity hypothesis, the torsorEC is only defined above that
part ofB×B which consists of pairs of commuting elementsx, y of B. The partial
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group laws which are introduced here no longer yield in that case a biextension, but
a weaker structure which deserves to be formalized. While we have not carried out
this formalization here in order not to overburden this text, we intend to return
to this question in the future. Let us simply observe for the present that those
central extensions whose associated commutator maps are the most interesting are
central extensions for which the quotient groupB is not abelian. It is therefore to be
expected that the same will be true for the higher constructions which we examine
here.

While we have emphasized in this introduction the cohomological interpretation
of our constructions, in terms of the derived functors of the exterior algebra functor,
this will not be the case in the sequel. Indeed, the emphasis will henceforth be on
the determination of the new higher alternating structures, rather than on the quest
for an interpretation in geometric terms of the universal coefficient theorem. This
text is therefore independent of the forthcoming [9]. Both approaches are, how-
ever, fully compatible, and shed light upon each other. In the present context, this
is illustrated in [6], where alternating biextensions are analyzedvia the universal
coefficient theorem.

1. Cohomology and Categories

The most general interpretation of the cohomology groupH 3(B,A) is the one
due to A. Grothendieck. It expresses degree three cohomology classes in terms
of monoidal categories (see [27], [12] Section 2.1 and also, in a sheaf-theoretic
context in which the three-cocycles do not appear explicitly, [14]). We begin by
recalling this interpretation ofH 3(B,A), and refer to [10], IV Section 5, and to [23]
and references therein for related descriptions of this cohomology group. Observe
first of all that if (C,⊗, a) is a monoidal group-like groupoid? with unit object
I , then the monoidal structure onC determines, for each objectX ∈ C, a right
multiplication isomorphism

A = Aut(I )
⊗X−→ Aut(X) (1.1)

through which any group of automorphisms inC will henceforth be identified with
A. The image in Aut(X) by the left multiplication isomorphism

A = Aut(I )
X⊗−→ Aut(X) (1.2)

of an elementa ∈ A may be identified by (1.1) with an elementXa ∈ A which
actually only depends on the isomorphism classx ofX in the groupB of isomorph-
ism classes of objects ofC, and which will therefore be denotedxa. It is readily
verified that this action ofB onA endowsA with aB-module structure.
? Also referred to as agr-category [27] or a categorical group [21].
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We now choose, for eachx ∈ B, an objectXx ∈ C whose isomorphism class
is x. For each pair of elementsx, y ∈ B, the objectsXxXy andXxy both live in
the component ofC described by the elementxy ∈ B, so that there exist arrows
between them. Choose such an arrow

cx,y:XxXy −→ Xxy (1.3)

for eachx, y ∈ B. For everyx, y, z ∈ B, the associativity isomorphism

ax,y,z:Xx(XyXz) −→ (XxXy)Xz

determines an elementf (x, y, z) ∈ Aut(Xxyz) = A such that the diagram

Xx(XyXz)
ax,y,z- (XxXy)Xz

XxXyz

Xxcy,z
?

XxyXz

?
cx,yXz

Xxyz

cx,yz
?

f (x,y,z)
- Xxyz

?
cxy,z

(1.4)

commutes. The pentagon axiom inC then implies thatf (x, y, z) is a three-cocycle.
We may even assume, by choosing the objectsXx and the arrows (1.3) carefully,
that the three-cocyclef is normalized (as will be all those occurring from now on,
unless explicitly stated). Other choices for these objects and arrows ofC yield a
cohomologous three-cocycle, so that the class ofC in H 3(B,A), for theB-module
structure onA determined by (1.1)–(1.2), is well-defined.

Remark1.1. (i) The previous construction may be interpreted as follows in
topological terms. The nerveG = NC of C is a two-stage Postnikov system with
homotopy groupsπ0(G) = B andπ1(G, I ) = A. The monoidal structure onC
determines anA∞ H -space structure onG, so thatG deloops to a connected space
X = BG whose homotopy groupsB andA live respectively in degrees one and
two. Thek-invariantk ∈ H 3(B,A) of the two-stage systemX is the sought-for
cohomology class associated to the monoidal categoryC. Conversely, one can start
from such 2-stage Posnikov systemX. The spaceY = �X of loops onX is
essentially the nerve of a groupoidC, and theH -space structure onY corresponds
to the monoidal structure onC.

(ii) When the group law inC is strict, the monoidal categoryC may be repres-
ented by a crossed moduleN −→ E with E (resp.N) the group of objects (resp.
the group of arrows sourced at the identity object) ofC. A comparison between
the terms in the formula [10], IV (5.7) and the arrows in diagram (1.4) implies that
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the standard method [10] IV Section 5 for associating a three-cocycle to a crossed
module is consistent with the one given above.

(iii) Suppose that the monoidal categoryC is endowed with a commutativ-
ity isomorphismssx,y : XyXx −→ XxXy. This determines, via the commutative
diagram

XyXx
sx,y- XxXy

Xxy

cy,x

?

g(x,y)
- Xxy

?
cx,y

a mapg:B × B → A for which the braiding axioms [21] imply that the cocycle
conditions

f (x, y, z) − f (x, z, y) + f (z, x, y)
= g(x + y, z)− g(x, z)− g(y, z), (1.5)

−f (x, y, z) + f (y, x, z) − f (y, z, x)
= g(x, y + z)− g(x, y) − g(x, z)

are satisfied. Alternate choices yield a well-defined class inH 4(K(B,2), A) [21],
Proposition 3.1, [8] Section 7.8. The braiding axioms allow a double delooping of
the nerveG of C to a two-stage spaceY, whosek-invariant is this cohomology
class. WhenC is symmetric monoidal, the additional conditiong(x, y) = g(y, x)
is satisfied. The two conditions (1.5) then coalesce and a class in the stable co-
homology groupH 5(K(B,3), A), corresponding to thek-invariant of a further
delooping ofG, is defined. It follows thatG is in that case an infinite loop space.
Finally, when the stronger condition

g(x, x) = 0 (1.6)

is satisfied, the monoidal categoryC is strict Picard?. Prolonging by one step the
canonical resolution [19] VII (3.5.1) of the Abelian groupB, it is apparent that
the pair(f, g) now describes a class in the group Ext2(B,A). The nerve ofG is
now equivalent to a simplicial Abelian group, and the appropriate trunctation of its
associated Moore complex determines the class in question. We observed earlier
that such a group Ext2 is always trivial in the category of Abelian groups. All such
strict Picard categories are therefore equivalent to trivial ones. The cocycle(f, g)

which describes such a strict Picard categoryC is therefore a coboundary, so that
there exists a maph:B2 −→ A satisfying the following conditions:

f (x, y, z) = h(y, z)− h(x + y, z)+ h(x, y + z)− h(x, y), (1.7)

g(x, y) = h(x, y) − h(y, x). (1.8)
? In other words a strictly symmetric group-like monoidal groupoid.
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In particular, the underlying monoidal category ofC is trivial, as reflected by the
fact thath is a group cohomology coboundary forf .

We now investigate the conditions under which the given group law in the
monoidal categoryC satisfies some form of commutativity. One possible approach
would consist in expressing in geometric terms the obstructions to the surjectivity
of the successive suspension maps

H 5(K(B,3), A)→ H 4(K(B,2), A)→ H 3(B,A)

which control the level of commutativity of the group law onC. We will instead
examine here, without passing through these intermediate steps, the conditions
under which the monoidal categoryC can be endowed with a fully symmetric
monoidal structure. Let us begin by making the following additional assumption.

HYPOTHESIS 1.2. The groupB is Abelian, and theB-module structure onA is
trivial.

Note that this is a very weak commutativity condition. Indeed, the requirement
that there exists, for each pair of objectsX,Y in C, an isomorphism betweenYX
andXY implies that the groupB of isomorphism classes of objects ofC is Abelian.
If we also ask that this family of isomorphisms be natural in the objectsX andY ,
and compatible in the obvious sense with the identity object, then theB-module
structure onA is trivial, the triviality being expressed by the commutativity of the
following diagram

X

+��
��
� QQQQQs

XI - IX

XI

Xf

?
- IX

fX

?

QQQQQs +��
��
�

X

In particular, Hypothesis 1.2 is automatically satisfied whenever the categoryC is
braided.

Hypothesis 1.2 allows us to apply the universal coefficient theorem to the com-
putation ofH 3(B,A), and therefore to obtain an analog forH 3 of the exact se-
quence (0.1). Let us begin with the naive approach to this question. The terms of
the universal coefficient exact sequence

0→ Ext1(H2(B),A)→ H 3(B,A)→ Hom(H3(B),A)→ 0 (1.9)
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can be made explicit since the appropriate homology groups are known (see [9]).
To the given class inH 3(B,A) of a monoidal group-like groupoidC satisfying Hy-
pothesis 1.2 is associated a trilinear alternating mapϕC :33B → A. If ϕ vanishes,
then a second mapψC :�2B → Amay be associated toC. The source�2B of this
arrow is a group�B first defined by Eilenberg–Mac Lane [17], and which can be
interpreted as the first (nonadditive) left derived functorL13

2(B,0) of the Abelian
groupB set in degree zero. A specific presentation of�2B expresses the mapψC

in terms of a family of quadratic mapsψn: nB → A for varying positive integers
n, related to each other in an appropriate manner. Finally, ifψC is trivial, the class
of C is determined by an elementχC in the extension group Ext1(32B,A).

While this is a complete discussion, there remains the question of interpreting it
in geometric terms. The fact that the functor�2B is the first derived functor of the
exterior algebra functor32B suggests that the real object of interest, encompassing
both ψC and χC , lives in the group Ext1(L32B,A). Indeed it is shown in [6]
Remark 3.6 that an element in this group determines by dévissage appropriate ele-
mentsψC andχC . The next three sections will provide a construction of the object
EC whose class determines the sought-after element in the group Ext1(L32B,A).

2. Alternating Biextensions

The group Ext1(L32B,A) was given a geometrical interpretation in [6], as the
group of equivalence classes of alternating biextensions ofB byA. Let us begin by
reviewing the definition of an alternating biextension. LetE be anA-torsor above
B × B. Its fiber above a point(x, y) ∈ B × B will be denotedEx,y . Recall first
of all that an (ordinary) biextension ofB × B by A is such anA-torsorE above
B × B, endowed with a pair of partial composition laws whose restrictions to the
appropriate fibers may be depicted as morphisms ofA-torsors

1+: Ex,y ∧ Ex ′,y −→ Exx ′,y, (2.1)

2+: Ex,y ∧ Ex,y ′ −→ Ex,yy ′, (2.2)

where∧ = ∧A denotes the contracted product of the correspondingA-torsors.
These two composition laws are required to be associative, commutative and com-
patible with each other [24], [19] exposé VII Section 2. A torsor endowed with
a pair of partial multiplication laws which are merely associative and compatible
will be called a weak biextension? .

For the reader’s convenience, we review the manner in which the structure on a
biextensionE whose underlying torsor is trivialized may be described in terms
of cocycles. The triviality hypothesis asserts that the underlying torsorE may
simply be defined byE = A × B × B. The first and second partial group laws

? In that case, a better notation for the two partial group laws would be
1× and

2×.
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are respectively determined by mapsg(b1, b2; b′) andh(b; b′1, b′2) from B3 to A
such that

(a, b1, b
′)

1+ (a, b2, b
′) = (a + g(b1, b2; b′), b1 + b2, b

′),

(a, b, b′1)
2+ (a, b, b′2) = (a + h(b; b′1, b′2), b, b′1+ b′2)

(2.3)

onE. The associativity conditions for these laws translate to the following cocycle
conditions∗ ong andh [24].

g(b2, b3 ; b′) g(b1, b2+ b3 ; b′)
g(b1+ b2, b3 ; b′) g(b1, b2 ; b′) = 1,

h(b ; b′2, b′3) h(b ; b′1, b′2+ b′3)
h(b ; b′1 + b′2, b′3) h(b ; b′1, b′2)

= 1, (2.4)

in other words to the standard two-cocycle condition for the mapsg(−,−; b′) and
h(b ; − , −) from B2 to A, for all fixed b, b′ ∈ B. Similarly, the commutativity
conditions, when they are satisfied, translate to the standard symmetry cocycles
with the last (resp. the first) variable fixed

g(b1, b2 ; b′) = g(b2, b1 ; b′), h(b ; b′1, b′2) = h(b ; b′2, b′1).
Finally, the compatibility condition now becomes the rule

h(b1+ b2 ; b′1, b′2)
h(b1 ; b′1, b′2) h(b2 ; b′1, b′2)

= g(b1, b2 ; b′1 + b′2)
g(b1, b2 ; b′1) g(b1, b2 ; b′2)

. (2.5)

A cocycle pair(g, h) is cohomologous to zero and, therefore, defines a trivial
biextension structure, whenever there exists a mapk:B × B → A such that

g(b1, b2 ; b′) = k(b1+ b2, b
′)

k(b1, b′) k(b2, b′)
,

h(b ; b′1, b′2) =
k(b, b′1 + b′2)
k(b, b′1) k(b, b

′
2)
.

(2.6)

Let us now pass from ordinary to alternating biextensions. Their description in
[6] was modelled on the exact triangle derived from the Koszul sequence

0→ 02B → B ⊗ B → 32B → 0. (2.7)

One begins by considering an (ordinary) biextensionE of B × B by A. The re-
striction1E of E to the diagonal inB ×B is anA-torsor onB with the following
additional properties.
∗ The group law ofB will henceforth be written additively, and that ofA multiplicatively.
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(1) The torsor1E is symmetric, in other words there exist, for varyingx ∈ B, a
family of symmetry isomorphisms

σx : 1E−x → 1Ex. (2.8)

(2) 1E is endowed with a cube structure which is compatible, in a strong sense,
with the symmetry isomorphism.

The precise sense in which the cube structure on theA-torsorL = 1E on B
is compatible with the symmetry isomorphismσ : i∗L −→ L (2.8) is best ex-
plained as follows. It is essentially shown in [7] Section 5, though not made explicit
there, that for anyA-torsorL on B endowed with a cube structure theA-torsor
L ∧ i∗L−1 onB is canonically endowed with a composition law, which makes it
into a (commutative) extension ofB by A. The compatibility between cube struc-
ture and symmetry onL may be expressed as the requirement that the symmetry
isomorphismσ , viewed as a section ofL ∧ i∗L−1 on B, splits it as a group ex-
tension. When this condition is satisfied, one says that theA-torsorL is endowed
with a 6-structure. An alternating structure on a biextensionE is then defined
as follows.

DEFINITION 2.1. An alternating biextension ofB × B by A is a biextensionE
of B × B byA, together with a trivializationt :B → E of the restriction1E of E
to the diagonal compatible with the6-structure of1E.

When the underlying torsor ofE has a global section, this definition of an
alternating biextension can be made explicit in terms of the pair of cocycles(g, h)

attached toE. A trivialization t of1E compatible with the symmetry isomorphism
(2.8) is expressed by a mapu: B −→ A (for which we may assume thatu(0) = 1)
such that

u(−b)
u(b)

= g(b,−b ; b)
h(−b ; b,−b) , (2.9)

for all b ∈ B. We now introduce a mapλ:B2→ A which may, in view of (2.5), be
defined by either of the two following equations

λ(b1, b2) = g(b1, b2 ; b1 + b2) h(b1 ; b1, b2) h(b2 ; b1, b2)

= h(b1+ b2 ; b1, b2) g(b1, b2 ; b1) g(b1, b2 ; b2). (2.10)

The requisite compatibility between the trivializationu of 1E and the cube struc-
ture on1E may now be expressed as the condition

2(u)(b1, b2, b3) = λ(b1+ b2, b3)

λ(b1, b3)λ(b2, b3)
g(b1, b2 ; b3) h(b3 ; b1, b2), (2.11)
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where2(u) is the second difference of the mapu, defined by

2(u)(b1, b2, b3) = u(b1+ b2 + b3) u(b1) u(b2) u(b3)

u(b1+ b2) u(b1 + b3) u(b2 + b3)
.

Finally, an alternating biextension(g, h, u) is trivialized by a mapk:B × B → A

satisfying the trivialization conditions (2.6), together with the additional condition

k(x, x) = u(x). (2.12)

A somewhat more intuitive description of an alternating biextension is obtained
by introducing first the simpler concept of an anti-symmetric biextension. Consider
the functor As2B of anti-symmetric tensors onB, which fits into the following
commutative diagram whose horizontal lines are exact whenB is free.

0 - Sym2B - ⊗2B - As2B - 0

0 - 02B
?

- ⊗2B

?
- 32B

?
- 0

By the snake lemma, this determines for every free Abelian groupB a short exact
sequence

0→ B/2B → As2B → 32B → 0. (2.13)

Anti-symmetric biextensions are to be thought of as those biextensionsE of B×B
by A which are classified up to isomorphism by the group Ext1(LAs2B,A). De-
noting bys the map fromB2 to itself which permutes the factors, this means that
they are the biextensionsE for which we are given a trivializationπ of the induced
biextensionF = E∧s∗E compatibly with the natural symmetric biextension struc-
ture onF . Such a trivializationπ may also be described by the induced biextension
isomorphism

πx,y:E
−1
x,y → Ey,x (2.14)

betweenE−1 and the pullbacks∗E of E. The symmetry condition onπ then be-
comes the requirement that for each(x, y) ∈ B × B, the maptπx,y:E−1

y,x → Ex,y
induced byπ coincides withπy,x. It is readily verified that any alternating biexten-
sion is anti-symmetric ([6] Proposition 1.4). The distinguished triangle associated
to (2.13) gives us a new description of an alternating biextensionE in terms of
the underlying anti-symmetric one. Observe first of all that for any anti-symmetric
biextensionE of B×B byA, the pullback1E of E along the diagonal is actually
a commutative extension? of B by A. Furthermore, the pullback of this extension
by the ‘multiplication by 2’ map

2B :B → B (2.15)
? The definition of the group law on1E given in (5.4) below for a particular biextensionE is

valid in the general case.
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on B is canonically split as an extension. This is equivalent to the assertion that
the square1E2 of the extension1E (under Baer addition) is split. An alternating
biextension may now be described in the following manner.

PROPOSITION 2.2. An anti-symmetric biextensionE is alternating if and only
if its restriction1E to the diagonal is split as an extension, by a splitting which
is compatible with the splitting of1E2 determined by the anti-symmetry structure
onE.

Here is the cocyclic translation of this new description of an alternating biex-
tension, when the underlying torsor of the biextensionE is trivial. The biextension
structure on such a trivialA-torsor is described, as before, by a pair of maps
g(b1, b2 ; b′) andh(b ; b′1, b′2) (2.3). An anti-symmetry structure onE is determined
by a mapϕ:B2 → A which trivializes the induced biextensionF , in other words
a mapϕ such that the equations

ϕ(b1+ b2, b
′)

ϕ(b1, b′) ϕ(b2, b′)
= g(b1, b2; b′) h(b′; b1, b2),

ϕ(b, b′1 + b′2)
ϕ(b, b′1) ϕ(b, b

′
2)
= h(b; b′1, b′2) g(b′1, b′2; b) (2.16)

are satisfied. Since the trivialization ofF defined byϕ must be compatible with the
symmetry structure onF , the mapsϕ must satisfy the additional condition

ϕ(b, b′) = ϕ(b′, b), (2.17)

for all b, b′ ∈ B. The following assertion is proved by a rather elaborate cocycle
computation, which we omit.

LEMMA 2.3. The mapc:B2→ A defined by

c(b, b′) = λ(b, b′) ϕ(b, b′), (2.18)

(whereλ(b, b′) is given by(2.10)) is anA-valued two-cocycle onB.

The commutativity condition for the partial group laws
1+ and

2+, together
with Equation (2.17), imply that the two-cocyclec is symmetric, so that the triple
(g, h, ϕ) determines a commutative extension ofB byA, which in fact is one previ-
ously obtained by restricting the anti-symmetric biextensionE above the diagonal
in B × B. Equations (2.4)–(2.5) imply that

λ(b, b′)2 = ϕ(b + b′, b + b′)
ϕ(b, b) ϕ(b, b′) ϕ(b′, b) ϕ(b′, b′)

163871.tex; 16/06/1999; 11:35; p.13

https://doi.org/10.1023/A:1000928915124 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000928915124


308 LAWRENCE BREEN

so that the equation

c(b, b′)2 = ϕ(b + b′, b + b′)
ϕ(b, b) ϕ(b′, b′)

is satisfied. This shows that the 1-cochainψ(b) defined byψ(b) = ϕ(b, b) trivi-
alizes the two-cocyclec(b, b′)2 which describes1E2. Taking into account the
significance of a trivialization ofE compatible with all this structure, we may now
summarize the previous discussion in the following way.

PROPOSITION 2.4. An alternating biextension ofB × B byA, with trivial un-
derlying torsor, is determined by a quadruple

B3 g−→ A B3 h−→ A B2 ϕ−→ A B
u−→ A. (2.19)

The pair (g, h) satisfies Equations(2.4)–(2.5), ϕ andu satisfy the conditions(2.16)
and(2.17), together with the additional conditions

c(b, b′) = u(b + b′)
u(b) u(b′)

(2.20)

and

u(b)2 = ϕ(b, b), (2.21)

wherec is defined, in terms of the triple(g, h, ϕ), by Equations(2.10)and (2.18).
A trivialization of the alternating biextension defined by(g, h, ϕ, u) is described
by a mapk:B2→ A which satisfies Equations(2.6)and(2.12), and the additional
condition

k(x, y) k(y, x) = ϕ(x, y). (2.22)

Remark2.5. Here is the connection between this second cocyclic description of
an alternating biextension and the original one in terms of a triple (g, h, u), where
(g, h) again satisfies the biextension cocycle conditions (2.4)–(2.5) andu satisfies
Equations (2.9) and (2.11). Starting from such a triple (g, h, u), one defines an
anti-symmetry isomorphism mapϕ:B2→ A by

ϕ(b, b′) = u(b + b′)
u(b) u(b′) λ(b, b′)

. (2.23)

It is immediate thatϕ(b, b′) also satisfies the symmetry condition (2.17), and Equa-
tions (2.16) are consequences of (2.11). In fact, the triple(g, h, ϕ) describes in
cocyclic terms the anti-symmetric biextension determined by the alternating biex-
tension(g, h, u). Furthermore, by definition ofϕ(b, b′), the cocyclec(b, b′) defined
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by (2.18) satisfies the trivialization condition (2.20). In order to verify that the
quadruple(g, h, ϕ, u) associated to the triple (g, h, u) and to the mapϕ (2.23)
satisfies the conditions of Proposition 2.4, it suffices to check condition (2.21), in
other words that the equation

u(b)2 = u(2b)

u(b)2 λ(b, b)
(2.24)

is satisfied. By specialization to the caseb2 = −b1, b3 = b1, (2.11) yields the
equation

u(b)3u(−b)
u(2b)

= g(b,−b; b) h(b; b,−b)
λ(b, b) λ(−b, b) .

Substituting in this equation the values foru(−b) and forλ given by (2.9) and
(2.10) yields the requisite formula (2.24).

3. The Commutator of C as a Weak Biextension

We are now ready to describe the universal coefficient exact sequence (1.9) in
geometric terms. LetC be agr-category, as defined in Section 1, with invariantsB

andA satisfying Hypothesis 1.2. Suppose that we have chosen for eachx ∈ B, as
we did above, a representative objectXx of C in the isomorphism class ofx. To C
we associate theA-torsorE aboveB×B, which Deligne [15] calls the commutator
of C, whose fibre above(x, y) ∈ B2 is the set

Ex,y = IsomC(XyXx,XxXy) (3.1)

of arrows fromXyXx toXxXy . Composing the elements ofEx,y on the right with
automorphisms ofXyXx, viewed as elements ofA, makesE into a rightA-torsor
onB × B. Alternate choices for the representative objectsX′x andX′y of x andy
yield anA-torsorE′ onB × B isomorphic toE.

The main result of this section is the following proposition.

PROPOSITION 3.1. TheA-torsor E associated to the monoidal categoryC is
endowed with a natural structure of a weak biextension ofB × B byA.

Proof. In order to simplify the notation, we will in the following discussion de-
note byX,Y,Z, etc ... the chosen representativesXx,Xy,Xz in C of the elements
x, y, z ∈ B. Let u:YX → XY andv:YX′ → X′Y be given elements inEx,y and

Ex ′,y. Their partial sumu
1+ v (2.1) is defined to be the section ofExx ′,y determined

as follows. Consider the following composite arrow, in which the unlabelled arrows
are the associativity isomorphisms.

Y (XX′) → (YX)X′ u→ (XY )X′ → X(YX′) v→ X(X′Y )

→ (XX′)Y. (3.2)
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Reverting temporarily to our standard notation for objects, this is the middle arrow
in the composite map

XyXxx ′ → Xy(XxXx ′)→ (XxXx ′)Xy → Xxx ′Xy (3.3)

whose other arrows are defined by (1.3). Ifw: Y ′X → XY ′ is another arrow in

C, the partial sumu
2+ w (2.2) is the composite map constructed in a similar way

from the arrow

(YY ′)X → Y (Y ′X) w→ Y (XY ′)→ (YX)Y ′ u→ (XY )Y ′

→ X(YY ′). (3.4)

Observe that the composite arrows (3.2) and (3.4), which are built out of inter-
twining associativity and commutativity isomorphisms, are the familiar boundary
arrows in the two hexagons occurring as axioms for braided monoidal categor-
ies? [21]. It is therefore not surprising that the diagrams describing the required

associativity and compatibility conditions for our composition laws
1+ and

2+ are
closely related to some of the higher braiding axioms embodied in the definition
of a braided 2-category [22]. Specifically, for each set of elementsa:WX →
XW, b:WY → YW andc:WZ→ ZW of Ex,w,Ey,w andEz,w, we must consider
a nonstrict version of the tetrahedral diagram analogous to the diagram of type
(• ⊗ (• ⊗ • ⊗ •)) associated in [22] Section 6 to the objectsW,X, Y,Z of C
(see also [2]). In order to take into account the associativities, this requires that
we double certain edges of this diagram (in fact precisely those edges which are
thickened in the diagram appearing in [22] Section 6).

XYZW

��
��
�3

��
��
�3 kQQQQQX(Yc)

kQQQQQ
(XY)c

WXYZ −− → XYWZ
QQQQQ

a(YZ)

s

QQQQQ(aY )Z s ��
��
�

X(bZ)
3

��
��
�

(XY)c

3

XWYZ

−−−

6

−−− (3.5)

There are now five edges incident with each vertex. Replacing each of these
vertices by the corresponding commutative pentagon inC, we may now attach
one of the incident edges to each of the five vertices of each pentagon. Taking
into account the labels given to certain arrows, this can be done in a unique
manner, if we require that exactly three edges be incident to each vertex of each
pentagons. In our context, this diagram has the following interpretation. The ax-
ioms onC ensure that every face of the polyhedron is now commutative, except
possibly for the face comprising the two arrows betweenWXYZ andXYZW .

? We do not, however, assume that our monoidal categoryC is braided.
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The latter face is the following square, whose vertical arrows are the associativity
isomorphisms:

W(X(YZ))
a

1+(b 1+c)- (X((YZ))W)

W((XY )Z)
?

(a
1+b) 1+c- ((XY )Z)W).

?

Since all other faces of diagram (3.5) commute, so does this face. This finishes the

proof that the composition law
1+ is indeed associative. The associativity of the law

2+ is obtained in a similar manner, by starting instead from the nonstrict version of
diagram((• ⊗ • ⊗ •)⊗ •) of [22] Section 6.

The compatibility between the composition laws
1+ and

2+ is proved in a similar
manner, starting instead from a nonstrict version? of diagram((• ⊗ •) ⊗ (• ⊗ •))
of [6] Section 6. This is the diagram

(3.6)

associated to four given arrowsa:XW → WX, b:YW → WY, c:XZ → ZX,

andd:YZ→ ZY . Every vertex of diagram((•⊗•)⊗(•⊗•)) of [22] Section 6 has
now been replaced by the corresponding associativity pentagon. The onlya priori
non commutative part of our diagram is the square involving the top two horizontal
arrows betweenXYZW andZWXY (and appropriate associativity arrows). In
particular, the following commutative triangles which we extract from diagram
(3.6) yield for us the appropriate labels for these horizontal arrows

? I owe to E. Getzler the observation that the nonstrict versions of diagrams(•⊗ (•⊗•⊗•)) and
((• ⊗ •)⊗ (• ⊗ •)) appear, respectively, as Figures 4 and 5 of [4].
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(3.7)

The square involving the top two horizontal arrows of (3.6) may therefore be
portrayed, with certain associativity morphisms neglected, as

XYZW
(a

1+b) 2+(c 1+d) - ZWXY

XYZW
? (a

2+c) 1+(b 2+d)−−−−−−−−−−−→ZWXY.
?

(3.8)

This commutes, since all the other faces of diagram (3.6) do. This proves that

the partial group laws
1+ and

2+ in E respectively defined by (3.2) and (3.4) are
compatible and therefore finishes the proof of Proposition 3.1.

Remark3.2. The chosen arrowscx,y (1.3) determines a section

dx,y:XyXx −→ Xyx = Xxy −→ XxXy (3.9)

of the torsor underlying the commutatorE (3.1) ofC. The cocycles which express

the partial group laws
1+ and

2+ of E in terms of this section may now be made
explicit. Let the sectionsu and v of Ex,y andEx ′,y be the chosen morphisms
dx,y anddx ′,y. The following commutative diagram, in which the unlabelled ho-
rizontal arrows are all identity maps, expresses the composite map (3.3) in terms
of automorphism ofX = Xxx ′y .

(3.10)

The cocycleg(x, x′ ; y) which describes the partial sum
1+ may now be read off

from the lower horizontal map of this diagram as the mapg:B3 → A obtained
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from the three-cocyclef (x, y, z) by shufflingy throughx, x′, in other words by
the formula

g(x, x′ ; y) = f (x, x′, y) f (y, x, x′)
f (x, y, x′)

. (3.11)

Starting instead from Definition (3.4) for
2+, one sees that the second cocycleh

occurring in the definition of the commutator biextension is obtained by shuffling
x throughy, y′ in the opposite direction, in other words by the rule

h(x; y, y′) = f (y, x, y′)
f (x, y, y′) f (y, y′, x)

. (3.12)

That the pair (g(x, y ; z) , h(x; y, z)) satisfies the cocycle conditions for a weak
biextension follows from the previous discussion. It could also have been be proved
directly by repeated use of the three-cocycle condition forf .

4. The Trilinear Map Associated to a Monoidal Category

We now examine the conditions under which the commutator weak biextension
(3.1) is a genuine biextension. In view of Proposition 3.1, it suffices to check
that both partial multiplication laws onE are commutative. In contrast to the
associativity and compatibility conditions, the commutativity conditions are not
automatically satisfied. At the cocycle level, it is immediate that each of the two
commutativity axioms leads to the following condition onf

f (x, y, z) f (z, x, y) f (y, z, x)

f (x, z, y) f (z, y, x) f (y, x, z)
= 1.

The expressionϕ(x, y, z) defined by the left-hand side of this equation is simply
the evaluation of the three-cocyclef on the triple Pontrjagin product cyclex.y.z ∈
H3(B) of classesx, y, z ∈ H1(B). It is well-known thatϕ is a trilinear alternating
map. This proves the following proposition

PROPOSITION 4.1. For any pair of Abelian groupsA andB, the weak commut-
atorA-biextensionE onB×B (3.1)associated to a monoidal categoryC satisfying
Hypothesis1.2 described by a three-cocyclef (x, y, z) is a genuine biextension of
B × B byA if and only if the alternating map

B ∧ B ∧ B ϕC−→ A (4.1)

defined by

ϕC(x, y, z) = f (x, y, z) f (z, x, y) f (y, z, x)

f (x, z, y) f (z, y, x) f (y, x, z)
(4.2)

163871.tex; 16/06/1999; 11:35; p.19

https://doi.org/10.1023/A:1000928915124 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000928915124


314 LAWRENCE BREEN

is trivial.

This statement may also be understood in geometric terms, without appealing
to the preferred sectiond (3.9) ofE, by considering the following diagram, which
is built by pasting together two diagrams of type (3.2) associated to the partial

sumsu
1+ v andv

1+ u of a pair of arbitrary summable sectionsu, v of E. We
no longer assume here that the vertical arrows are the specific morphismsdx,y and
dx ′,y, so that the automorphisms ofX whichu andv determine are not necessarily
the identity arrows. The latter are denotedgu andgv.

(4.3)

All cells in this diagram are commutative, except possibly the large inner one,
composed of automorphisms of the objectX = Xxx ′y . Since the groupA = Aut(X)
is Abelian, all the arrows lying on the boundary of this inner cell may be freely
moved past one another. Furthermore, under Hypothesis 1.2, the elementsx ′gu and
gu in the inner section coincide, so that they cancel each other out, and similar
cancellation occurs betweenx

′
gv andgv. Keeping track of the orientations of the

arrows, the obstruction to the commutativity of the inner region boils down to the
triviality of the expected elementϕC(x, x

′, y) (4.2) ofA.

Remark4.2. The specific arrowsu andv chosen in the construction of diagram
(4) played no role in the definition of the mapϕC (4.1), which only depended on
the three-cocyclesfx,x ′,y determined by the associativity dataax,x ′,y in C. Another
set of choices for the vertical mapsXxXy → Xxy will yield a three-cocyclef ′
cohomologous tof , and which therefore leaves unchanged the induced map (4.2).
The axioms forC also ensure that alternate choices for the representative objects
Xx of x ∈ B have no effect in this construction.
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5. The Alternating Structure on the Commutator Biextension

There remains yet one additional element of structure ofE to be made explicit.
We now assume that the map (4.1) associated to the given monoidal categoryC
is trivial, so that by Proposition 4.1 the commutator torsorE (3.1) is a genuine
biextension.

PROPOSITION 5.1. Let C be a monoidal category with invariants the Abelian
groupsπ0(C) = B andπ1(C, I ) = A, satifying Hypothesis1.2 and whose asso-
ciated trilinear map(4.2) is trivial. The associated commutator biextensionsE of
B × B byA is alternating.

Proof. We give here a geometric proof of this assertion, which one was in any
case led to expect by the discussion in Section 1. We begin with a geometric proof
of the following weaker assertion, which can also be deduced from the cocyclic
description (3.11)–(3.12) ofE.

LEMMA 5.2. The commutator biextensionE of C is anti-symmetric.
Proof. Consider the sectionσ of E ∧ s∗E aboveB × B (wheres:B × B →

B × B is the map which permutes the factors) defined by the rule which as-
signs to any pair of elementsx, y ∈ B × B the elementσ (x, y) = t ∧ v in
Isom(XyXx,Xx,Xy) ∧ Isom(XxXy,XyXx) wherev:XxXy −→ XyXx is the in-
verse of the arrowt :XyXx −→ Xx,Xy . This section ofE ∧ s∗E does not in
fact depend on the choice of a specific mapt :XyXx −→ Xx,Xy . In order to
check thatσ trivializes E ∧ s∗E as a biextension, it must be verified that it is
multiplicative in each of its two variables. In the first variable, this boils down to
the obvious assertion that for a given pair of sectionst :XyXx −→ XxXy and
t ′:XyXx ′ −→ Xx ′Xy of Ex,y andEx ′,y with inversesv andv′, the inverse inC of

the composite map (3.2)t
1+ t ′

XyXx ′Xx
t−→ XxXyXx ′

t ′−→ XxXx ′Xy (5.1)

is the mapv
2+ v′ (3.4)

XxXx ′Xy
v′−→ XxXyXx ′

v−→ XyXxXx ′ . (5.2)

The multiplicativity ofσ in the second variable is verified in a similar manner, so
that the lemma is proved.

SinceE is anti-symmetric, its restriction1E to the diagonal is a (commutative)
extension ofB by A, for which the group law? may be described explicitly by
the following rule. Letu andv respectively be sections ofEx,x andEy,y, in other
words arrows

u:XxXx −→ XxXx, v:XyXy −→ XyXy (5.3)
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in C. The arrowu ? v:XxyXxy −→ XxyXxy is determined by the composite map

XxXyXxXy
XxαXy−−−−→ (XxXx)(XyXy)

uv−→ (XxXx)(XyXy)
Xxα

−1Xy−−−−−−−→ XxXyXxXy (5.4)

for some arbitrarily chosen arrowα:XyXx −→ XxXy . We know that(1E)2, being
the restriction to the diagonal ofE ∧ s∗E, is trivialized by the restriction1σ of σ
to the diagonal. For anyx ∈ B, it therefore follows thatσ (x) is the elementt ∧ t−1

in the set Isom(XxXx,XxXx) ∧ Isom(XxXx,XxXx), for some arbitrarily chosen
arrow t :XxXx −→ XxXx . Choosing fort the identity self-arrow 1XxXx , we may
therefore setσ (x) = 1XxXx ∧ 1XxXx . Consider now the sectionτ of 1E defined
by settingτ(x) = 1XxXx . The equationτ(x) ? τ(y) = τ(x + y) follows from the
definitions, so that the sectionτ splits1E as an extension. The formulaσ (x) =
τ(x) ∧ τ(x) is also immediate. By Proposition 2.2, the sectionτ of 1E therefore
induces an alternating biextension structure on the anti-symmetric biextensionE.

It is easily verified that a trivialization ofE compatible with its alternating
biextension structure determines a strict Picard structure on the monoidal category
C. As observed in the introduction, it follows from [14] Section 1.4 that such strict
Picard categories are always trivial, since they are classified up to equivalence by
the (trivial) group Ext2(B,A). This may be spelt out as follows.

COROLLARY 5.3. Let C be a monoidal category satisfying the conditions of
Proposition (5.1) whose associated biextensionE is trivial (as an alternating
biextension). Then the monoidal structure onC is trivial.

In more concrete terms, consider a monoidal categoryC determined by a crossed
moduleδ:M → N , for which ker(δ) = A and coker(δ) = B, and for which the
B-module structure onA is trivial. The fibreEx,y of the commutator biextension
EC above(x, y) ∈ B2 is the setδ−1(kx,y), wherekx,y ∈ K = im(δ) is the image of
(x, y) under the commutator map associated to the central extension

0→ K → N → B → 0.

A trivialization ofE determines in a map

{ , }:N ×N → M (5.5)

by associating to a pair of elementsX and Y in N with projectionx and y in
B the elementm ∈ δ−1(kx,y) ⊂ M determined by the trivialization. When the
trivialization ofE is compatible with the anti-symmetric biextension structure on
E, the map (5.5) determines a stable crossed module structure [13] onδ:M → N .
Compatibility of the trivialization ofE with the alternating structure onE yields
the additional relation{n, n} = 0 for all n ∈ N . In the present context, Deligne’s
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result [14] asserts that the given crossed module is then equivalent to the crossed
moduleP → Q determined by a (splittable) exact sequence of Abelian groups

0→ A→ P → Q→ B → 0.

We end this section with a brief discussion in cocyclic terms of Proposition 5.1
and of its corollary. When the cocycle pair(g, h) has been defined in terms of a
three-cocyclef by Equations (3.11) and (3.12), both the mapλ(b1, b2) (2.10) and
the right-hand terms of Equation (2.16) are trivial. Taking into account (2.18), it
follows that the quadruple(g, h,1,1) satisfies the conditions of Proposition 2.4 so
that it defines an alternating biextension structure on the biextension(g, h). The
underlying triple(g, h,1) then satisfies the equivalent conditions (2.9) and (2.11),
as asserted in Proposition 5.1. These two conditions on the triple(g, h,1)may also
be verified directly without introducing explicitly the full quadruple(g, h,1,1).

A discussion in similar terms of Corollary 5.3 goes as follows. Suppose that the
quadruple(g, h,1,1) associated to a cocyclef is trivial, so that there exists a map
k(b1, b2) satisfying conditions (2.6), (2.12) and (2.22). In that case the pair (f, k)
defines an element in the trivial group Ext2(B,A) so that, as observed at the end of
Remark 1.1, there exists anA-valued 2-cochainl(b1, b2) onB for which

k(b1, b2) = l(b1, b2)

l(b2, b1)
(5.6)

and such that the three-cocyclef is the coboundary ofl. The latter assertion is the
content of Corollary 5.3. We note in passing that the categoryC described by the
three-cocyclef is braided if and only if there exists a mapk which trivializes the
pair (g, h) as a biextension (without taking into account the alternating structure),
in other words which satisfies Equations (2.6) but not (2.12).

6. From Monoidal Categories to Monoidal Stacks

The previous analysis of monoidal categoriesvia the universal coefficient theorem
extends to a classification of group-like monoidal stacks in groupoids (also called
gr-stacks) in a general toposT , as discussed in [8] Section 7, to which we refer
for the requisite definitions. One is given a pair of Abelian groupsB andA of
T , with A viewed as a trivialB-module. The discussion in Section 1 generalizes
to the assertion that monoidal stacksC of T with invariantsπ0(C) andπ1(C),
respectively, isomorphic toB andA and satisfying Hypothesis 1.2 are classified
by the hypercohomology groupH 3(B,A). The difference between this hyperco-
homology group and the ordinary cohomology groupH 3(B,A) is analyzed by the
first quadrant spectral sequence

E
p,q

1 = Hq(Xp,A) H⇒ Hp+q(B,A) (6.1)

whose initial term is theA-valued cohomology of the degreep componentBp

of the classifying spaceX∗ of B. From the geometric point of view which con-
cerns us here, the distinction between the hypercohomology group and the naive
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cohomology groupH 3(B,A) built from cochainsB3 → A, and which classify
gr-categories with invariantsB andA, is reflected in the two sets of obstructions
whose vanishing is necessary in order to carry out in the stack case the construction
of the three-cocycle associated to the monoidal categoryC. The first of these arises
when one attempts to choose, for each sectionx of B above some objectS of T ,
an objectXx in the fiber categoryCS of C aboveS. Suppose that this obstruction
vanishes, so that the requisite objectsXx exist for all sectionsx of B. Just as in
(1.3), one may then attempt to choose, for every pair of sectionsx, y of B above
a given objectS of T , a morphismcx,y:XxXy −→ Xxy in CS. If the obstruction
to achieving this also vanishes, then one can construct as in (1.4), anA-valued
three-cocycle and therefore classify by the naive groupH 3(B,A) the stacksC for
which both sets of obstructions vanish. These obstructions do not however vanish
in general, but the stack axioms, and the definitions of the objectsπi(C) in T

ensure nevertheless that they both vanish locally?. The invariants which describe
them are therefore of a cohomological nature. We refer to [8] Section 7 for a further
discussion of these invariants, and simply observe here that they live respectively in
the termsE1,2

1 andE2,1
1 of the spectral sequence (6.1), while the naive cohomology

groupH 3(B,A) is itsE3,0
2 term. The comparison between the naive cohomology

group and the associated hypercohomology group (in other words between the
classification ofgr-stacks and that ofgr-categories) thus boils down to the analysis
of the edge-homomorphism mapE3,0

2 → H 3 in the spectral sequence (6.1).
Another change occurs when one passes from categories to stacks. While the

homology of the Abelian groupB of a toposT is given by the same formulas as
for an abstract group, the relation between the homology and the hypercohomology
of B is now more complicated, since the universal coefficient theorem must now
be replaced by the universal coefficient spectral sequence

E
p,q

2 = Extp(Hq(B),A) H⇒ Hp+q(B,A). (6.2)

In the abstract group situation, this spectral sequence reduces to the ordinary uni-
versal coefficient theorem, since in the category of Abelian groups the groups Extp

vanish wheneverp > 1 so that the spectral sequence degenerates. In a topos, no
essential change occurs at the level of degree 2 cohomology, so that the analysis of
central extensions of groups carried out by the exact sequence (0.1), together with
its geometric interpretation, carries over to an arbitrary topos and therefore remains
valid (except for the surjectivity of the right-hand arrow) when central extensions of
topological groups, or of algebraic groups, are considered. The hypercohomology
groupH 3(B,A), on the other hand, may no longer be described by a short exact
sequence (1.9), since there now exists a new nontrivial initial term in the spectral
sequence (6.2), provided by the group Ext2(B,A). The latter group was given a
geometric interpretation in [14] as the group of equivalence classes of strict Picard
stacks. While this group vanishes in the category case, as we observed in Section
1, this is no longer true in the general stack context.
? In other words after base change.
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The alternating biextension point of view for analyzinggr-categories carries
over very satisfactorily to thegr-stack context. As we have already observed, the
objectsXx, and arrows (1.3) on which the definition of the three-cocyclef (x, y, z)

depends no longer exist, but they do exist locally, so that the three-cocycle
f (x, y, z) is locally defined. Alternate choices for these objects and arrows yield
cohomologous cocycles. Since the induced mapϕC (4.1) depends only on the co-
homology class off , its local representatives glue together to a globally defined
arrow form33B to A. Similarly, the weak biextensionE associated to agr-stack
C may be locally defined just as in (3.1), once representative objectsXx of C have
been chosen, and the local biextensions obtained in this manner glue to a weak
biextensionE defined on all ofB×B. Its underlying torsor, however, is in general
no longer endowed with a globally defined sectiond (3.9), so that the biextension
E may no longer be readily described in terms of cocycles. Propositions 4.1 and 5.1
remain valid in the stack context, and assert that the weak biextensionE is a genu-
ine (alternating) biextension ofB × B by A whenever the invariantϕC vanishes.
This biextension may be analyzed by the methods of [6]. As observed earlier, this
yields a family of induced quadratic mapsψn: nB → A whose vanishing implies
by the universal coefficient exact sequence (3.19) of [6] that the biextensionE

descends to an ordinary extension of32B byA.
Suppose now that the alternating biextensionE is trivial. We may then choose

in a compatible manner, for each pair of sectionsx, y of B, an arrow

s(x, y):XyXx → XxXy (6.3)

in C. This actually determines, for an arbitrary pair of objectsX,Y of C (with
associated sectionsx, y in B × B), a symmetry arrow by the rule

YX
cycx−−−−→ XyXx

s(x,y)−−−−→ XxXy

c−1
x c−1

y−−−−−→ XY. (6.4)

This is independent of the (local) choice of arrowscx :X −→ Xx andcy :Y −→ Xy
in C. The compatibility of the sections of E with the partial multiplication laws
(2.1) and (2.2) implies, as we have already observed, that the symmetry arrows
(6.3) (and therefore more generally the corresponding symmetry arrows (6.4)) sat-
isfy both hexagon conditions, so thatC is a braided stack. Finally, compatibility of
s with the sectiont (Definition 2.1) ofE asserts that forX = Y the composite map
(6.4) is simply the identity map. This forces the braided categoryC to be Picard
strict, and so provides a direct geometric interpretation of the degree 3 portion of
the universal coefficient spectral sequence (6.2). We have therefore obtained in the
stack context the following analog of Corollary 5.3.

COROLLARY 6.1. Let C be agr-stack ofT satisfying the conditions of Pro-
position 5.1, and whose associated biextensionE is trivial (as an alternating
biextension). ThenC is the underlyinggr-stack of a strict Picard stack.
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Vanishing theorems for certain groups Ext2(B , A) are proved in [5]. When this
vanishing takes place, the corresponding strict Picard stack are trivial, so that the
Corollary 6.1 takes on the form of a vanishing theorem forgr-stacks, along the
same lines as in Corollary 5.3.

7. Higher Multiextensions

The cohomology groupsHn+1(B,A) with n > 2 are thek-invariants of two-stage
Postnikov systems with homotopy groupsB andA concentrated in degrees 1 and
n. From a categorical point of view, such a cohomology class may therefore be
represented by a(n − 1)-category (or rather(n − 1)-groupoid)C, endowed with
a multiplicationC × C −→ C satisfying the requisite higher associativity axiom.
It is required that the group of isomorphism classes of objects ofC be isomorphic
to B and that the intermediate homotopy groupsπi(C) vanish (0< i < n − 1).
The groupπn−1(C), which is simply the group of self-(n− 1)-maps of the identity
(n−2)-arrow, is required to be isomorphic toA. Finally, the requirement thatA is a
trivial B-module can be translated into a weak commutativity condition, analogous
to Hypothesis 1.2.

In the following discussion we will mainly be concerned with the casen = 3,
where the definition of a monoidal 2-groupoid does not offer any difficulty. We
note in passing that the analog in this 2-categorical context of a crossed module,
which occurs when the associativity isomorphism inC is strict, has been worked
out by D. Conduché in [13] Definition 2.2 under the name of 2-crossed modules.
The requisite conditions on the homotopy groups now translates to the requirement
that such a 2-crossed moduleL→ M → N lives in an exact sequence of groups

0→ A→ L→ M → N → B → 0.

A direct proof of the classification of such length 3 extensions by elements of
the groupH 4(B,A) is given in [13] Theorem 4.7. Such a discussion can also be
carried out from a categorical point of view by extending by one more step to
a representation of pentagonal 2-arrows the geometric construction of the three-
cocycle discussed in Section 1.

Let us now now examine the effect on cohomology of the filtration on the
chains onK(B,1) by powers of the augmentation ideal mentioned in the intro-
duction. Recall that the terms which occur in the analysis ofHn+1(B,A) are the
groups Extp(L3qB,A), with p + q = n + 1. In particular, the filtration on the
groupH 4(B,A) (which classifies 2-categories of the type envisaged above) yields
successive geometric objects which respectively live in the groups Hom(34B,A),
Ext1(L33B,A), Ext2(L32B,A) and Ext3(B,A). A prerequisite to a geometric
discussion of this filtration ofH 4 is the interpretation in geometric terms of the

groups Extp(
L⊗qB,A) for varying integersp andq. We will call the objects whose

isomorphism classes are classified by these groups(p, q)-extensions (or(p, q)-
multi-extensions) ofB byA. A (p,1)-extension is simply ap-fold extension byA
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of the abelian groupB, and is therefore geometrically described by classes of strict
Picard (p − 1)-categories with invariantsB andA. Similarly, a(1,2)-extension is
an (ordinary) biextension ofB × B byA and more generally a(1, q)-extension is,
in the terminology of [19] VII 2.10.2, aq-extension of theq groupsB1, . . . , Bq
by A, with B1 = · · · = Bq = B. These interpretations of(p,1) and (1, q)-
extensions may be combined as follows. Choosing in the manner explained in [19]
VII as representative for the objectL⊗q B of the derived category theq-fold tensor
product of a canonical free resolution ofB, it is apparent that a(p, q)-extension
for a general pair of integersp andq may be thought of as an abelian(p − 1)-

gerbeC on Bq [8], together with a family ofq partial group laws
1+, · · · , q+ on

C living above theq composition laws onBq determined by the group laws on
each of thep factors. Each of these partial group laws is required to satisfy the
requisite higher associativity and commutativity conditions, together with higher
compatibily conditions between them. These higher conditions may be worked out
by considering the cells and their boundaries in the chosen representative ofL⊗qB.
We simply spell this out in the case of (2,2)-extensions, the only essentially new
case required for an understanding ofH 4(B,A). As we have just asserted, this is

an AbelianA-gerbeC aboveB × B, together with a pair of partial group laws
1+

and
2+. The partial commutativity and associativity conditions assert that, for each

sectionx: S → B of B, the groups laws
2+ and

1+ respectively endow the pullbacks
(x×1)∗C and(1×x)∗C of C above theS-groupsS×B andB×S with the structure
of a strict Picard stacks [8]. The compatibility conditions between the two group
laws are described as follows. We may choose functorial isomorphisms

cx1,x2 ; x3,x4 : (X
1+ Y ) 2+ (Z 1+ W) −→ (X

2+ Z) 1+ (Y 2+ W), (7.1)

where the projectionsπ of the four objectsX,Y,Z,W to the group of isomorphism
classes of objects satisfy

π(X) = (x1, x3), π(Y ) = (x2, x3), π(Z) = (x1, x4), π(W) = (x2, x4)

for sectionsxi of B, so that the source and target of (7.1) are well defined. These
isomorphismsc are required to be compatible with the associativity and commut-

ativity isomorphisms for
1+ and

2+. The compatibility ofc with the commutativity
isomorphisms asserts that the following diagram, in which the horizontal arrows

are determined by the commutativity axiom for
2+, commutes for all allowable
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object. So must the corresponding one in which the role of
1+ and

2+ have been
exchanged.

(X
1+ Y ) 2+ (Z 1+ W) - (Z

1+ W) 2+ (X 1+ Y )

(X
2+ Z) 1+ (Y 2+ W)

c

?

- (Z
2+ X) 1+ (W 2+ Y )

?
c (7.2)

Similarly, the compatibility of the maps (7.1) with the associativity isomorphisms
for the two partial group laws is described by the commutativity of the following
diagram in which the vertical arrows are maps (7.1) and the horizontal diagrams

are associativity isomorphisms for
2+, and by the corresponding one in which the

role of
2+ and

1+ is interchanged.

(X
1+ Y ) 2+ ((Z 1+ W) 2+ (S 1+ T )) - ((X

1+ Y ) 2+ (Z 1+ W)) 2+ (S 1+ T )

(X
1+ Y ) 2+ ((Z 2+ S) 1+ (W 2+ T ))

?

((X
2+ Z) 1+ (Y 2+ W)) 2+ (S 1+ T )

?

(7.3)

(X
2+ (Z 2+ S)) 1+ (Y 2+ (W 2+ T ))

?

- ((X
2+ Z) 2+ S) 1+ ((Y 2+ W) 2+ T ).

?

When associativity and compatibility constraints are given for the laws
1+ and

2+,
but no commutativity constraint, (anda fortiori no commutative diagram (7.2) is in-
troduced), we will say thatC is a weak (2,2)-extension ofB×B byA. Observe that,
despite their somewhat abstract aspect, (2,2)-extensions are not hard to classify.

Indeed, the group Ext2(B
L⊗ B,A) of isomorphism classes of such (2,2)-extensions

may be analyzedvia the adjunction spectral sequence, whose low-degree terms are
described in [19] VIII (1.1.4). In that context, whenB is an Abelian variety over
an algebraically closed field, andA is the multiplicative groupGm, the vanishing
of both Hom(B,A) and Ext2(B,A) (see [5]) ensures that such (2,2)-extensions are
classified up to equivalence by the group Ext1(B,Bt) of extensions ofB by the
dual Abelian varietyBt .

In order to describe alternating (2,2)-extensions, we first introduce the concept
of an anti-symmetric (2,2)-extension. In the situation just examined, these have a
very concrete interpretation, since they are described by extensions

0→ Bt → E→ B → 0 (7.4)

of B byBt which are opposite (for the Baer sum) to the extension

0→ Bt → Et → B → 0
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obtained by applying the contravariant duality functor( )t to the exact sequence
of Abelian varieties (7.4). Returning to the general situation, these anti-symmetric
(2,2)-extensions may be described as follows. Lets once more denote the map
which permutes the factors ofB2.

DEFINITION 7.1. A (2,2)-extension is anti-symmetric if it is endowed with a
morphism of(2,2)-extensions

π : C−1 −→ s∗C (7.5)

analogous to isomorphism (2.14), whose source is theA-gerbe C−1 =
HomA(C, Tors A) of morphisms? of A-gerbes fromC to the trivial A-gerbe.
We further require that the composite morphism

s∗πC ◦ πC−1: C ' (C−1)−1 −→ s∗C−1 −→ s∗s∗C ' C (7.6)

be equivalent to the identity functor, by an equivalence which is unchanged when
the factors ofB2 are permuted.

For any stackC, let us denote byC0 the opposite stack ofC, whose fibers are
the categories opposite to the fibers ofC. If C is a gerbe, then it is immediate that
C0 also is one. Suppose further thatC is anA-gerbe for some groupA, so that we
are given, for objectsX of C, a family of isomorphismλX:A −→ AutC(X). Then
these mapsλmay also be viewed as isomorphismsλX:A0 −→ AutC0(X) between
the opposite groups, so that they define onC0 a naturalA0-gerbe structure. We
believe that the following description of the inverseC−1 of an AbelianA-gerbe
C may be of independent interest. It is a local statement, and may therefore be
verified by supposing thatC is the trivialA-gerbe, in which case it is immediate.

LEMMA 7.2. Let A be an Abelian group ofT , and C an AbelianA-gerbe. The
Yoneda morphism

C0 → HomA(C,TorsA)
X 7→ hX

is an isomorphism ofA-gerbes.

The morphism (7.5) which defines an anti-symmetry structure on the(2,2)-
extensionC may therefore be described by a morphism ofA-gerbes

πC : C0 −→ s∗C. (7.7)
? A morphism8: C −→ D of A-gerbes is a morphism of gerbes for which the induced maps

Aut(X)→ Aut(8X) are identified with the identity by theA-gerbe structure on the source and target
gerbe. In particular, such a morphism8 induces (in the terminology of Giraud [18]) the identity map
on liens.
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In other words, by a ‘contravariant morphism ofA-gerbes’ fromC to its pullback
s∗C which is compatible, in the obvious sense, with each of the two given partial
group laws onC. We further require that the additional anti-symmetry conditions
on πC analogous to those of Definition 7.1 be satisfied. The pullback1C of C
along the diagonal is then canonically endowed with the structure of a strict Picard
category with invariantsB anA, and in fact one whose pullback by the ‘multiplic-
ation by 2’ map (2.15) is a trivial strict Picard category. The full definition of an
alternating(2,2)-extension may now be given.

DEFINITION 7.3. A (2,2)-extensionC of B × B by A is alternating if it anti-
symmetric, and if the induced strict Picard category1C is trivial, by a trivializa-
tion whose pullback by the ‘multiplication by 2’ map (2.15) is the canonical one
determined by the anti-symmetry structure?.

The other higher element of structure whose definition will be required is the
concept of an alternating (1,3)-extension, an object classified up to equivalence by
elements of the group Ext1(L33B,A). We begin with an ordinary (1,3)-extension
(in other words a triextension) ofB3 byA. Recall that this is anA-torsorE onB3,
together with three partial multiplication laws

1+: Ex,y,z Ex ′,y,z → Ex+x ′,y,z,
2+: Ex,y,z Ex,y ′,z → Ex,y+y ′,z,
3+: Ex,y,z Ex,y,z′ → Ex,y,z+z′,

each of which is commutative and associative, and any two of which are compatible
with each other. Just as alternating biextensions could be understood by considering
the complex (2.7), information concerning an alternating structure onE may be
inferred from the complex

0→ 03B → 02B ⊗ B → B ⊗32B → 33B → 0 (7.8)

which is simply a Koszul complex [20] Chapter 1 (4.3.1.3). By examining the right-
hand arrow in this complex, we see that an alternating triextensionE with general
fibreEx,y,z , when viewed for a fixedx ∈ B as a biextension iny, z of B2 by A,
must be alternating in the variablesy, z. Its restrictionEx,z,z above the diagonal
123 is therefore provided with a sectiont2x,z ∈ Ex,z,z. It is required that this section
be compatible, as in Definition 2.1, with the symmetry and cube structures inz on
Ex,z,z determined by the second and third group laws onE. This sectiont2x,z must
also be linear inx, in the sense that the equation

t2x,z
1+ t2x ′,z = t2x+x ′,z (7.9)

? It is equivalent to require that the square of the trivialization is that onC2 determined by the
anti-symmetry structure.
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must be satisfied inEx+x ′,z. The middle map in the sequence (7.8) may be inter-
preted as determining a constraint on the triextensionE which is to be quadratic
in x and linear inz. Such a constraint is given for a fixedz by an alternating
structure onEx,y,z , viewed as a biextension in the variablesx, y, in other words by
a sectiont1x,z ∈ Ex,x,z compatible with the6-structure inx and satisfying a relation
analogous to (7.9) in the variablez.

We must now express the compatibility conditions between these sectionst1

and t2 which follow from the left-hand arrow in (7.8). Since the group03B has
two separate sorts of generators, those of the formγ3(b) and those of typeγ2(b) b

′
for elementsb, b′ ∈ B, two distinct sorts of compatibilities will have to be verified
between these sections. These compatibilities will however be related to each other
by the conditions corresponding to the identities

3γ3(b) = γ2(b)b,

γ3(b + b′)− γ3(b)− γ3(b
′) = γ2(b) b

′ + γ2(b
′) b

in the group03B. The first of these compatibilities, which is cubical inb and
therefore corresponds to the generatorsγ3(b) of 03B, asserts that for allx ∈ B the
equation

t1x,x = t2x,x (7.10)

is satisfied inEx,x,x. In order to state the second compatibility condition between
t1 andt2 as pleasantly as possible, we need the following lemma.

LEMMA 7.4. Let Ex,y,z be a triextension ofB3 by A, endowed as above with
an alternating structure inx linear in z defined by a sectiont1x,z ∈ Ex,x,z , and
with an alternating structure inz linear in x defined by a sectiont2x,z ∈ Ex,z,z.
The restrictionEx,y,x ofE above the diagonal113 is canonically endowed with an
alternating structuret3x,y ∈ Ex,y,x in x, which is linear iny.

Proof. Since E is alternating with respect tox, it is a fortiori anti-
symmetric. This amounts to the assertion that the sectiont1x+y,z (t1x,z)−1 (t1y,z)

−1 ∈
Ex+y,x+y,z E−1

x,x,z E
−1
y,y,z defines,via a canonical isomorphism determined by the

biextension structure ofE, a trivialization s1
x,y,z of the symmetric biextension

F 1
x,y,z = Ex,y,z Ey,x,z. Sincet1 defines a6-structure inx onEx,x,z, and is therefore

quadratic in the variablex, the equationt12x,z = (t1x,z)
4 is satisfied up to canonical

isomorphism, from which the equation

s1
x,x,z = (t1x,z)2 (7.11)

in Ex,x,z follows immediately. The equation

s2
x,y,y = (t2x,y)2, (7.12)
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(wheres2
x,y,z = t2x,y+z (t2x,y)−1 (t2x,z)

−1) is proved in the same way, as a consequence
of the quadraticity inz of t2x,z. Let us now set

t3x,y = s1
x,y,x(t

2
y,x)
−1. (7.13)

This is, as required, an element of(Ex,y,x Ey,x,x)(Ey,x,x)−1 ' Ex,y,x. It is readily
verified that the sectiont3x,y of Ex,y,x defined in this manner satisfies the requisite
quadraticity condition inx and linearity condition iny, so that the lemma is proved.

Another sectiont̃ 3
x,y of Ex,y,x with the same properties ast3x,y could have

been defined in terms of the alternating structuret1x,z and the antisymmetry section
s2
x,y,z ∈ Ex,y,z Ex,z,y determined byt2x,y by setting

t̃ 3
x,y = s2

x,y,x(t
1
x,y)
−1. (7.14)

The second compatibility which the sectionst1 andt2 must satisfy is the require-
ment that

t3x,y = t̃ 3
x,y. (7.15)

This may, of course, also be written as the condition

t1y,x

t2x,y
= s2

y,x,y

s1
y,x,y

. (7.16)

Our definition of an alternating triextension is now complete. It can be summar-
ized as follows, with the corresponding notion of a trivialization spelled out.

DEFINITION 7.5. A triextensionE of B3 by A is alternating if it is endowed
with sectionst1x,z ∈ Ex,x,z andt2x,z ∈ Ex,z,z such thatt1 defines a partial alternating
structure onE with respect tox linear in z and t2 defines a partial alternating
structure onE with respect toz linear inx. The sectionst1 andt2 must also satisfy
the compatibility conditions (7.10) and (7.16) withs1 ands2 defined as in the proof
of Lemma 7.4. A trivialization ofE as an alternating triextension is determined
by a sectionσx,y,z of Ex,y,z which trivializesE as a triextension (in other words
compatibly with each of the three partial group laws), and such thatσx,x,z = t1x,z,
σx,z,z = t2x,z.

The sectiont3x,y of such an alternating triextension defined by formula (7.13)
determines as above a partial antisymmetry structures3

x,y,z ∈ Ex,y,z Ez,y,x, by
setting, up to a canonical isomorphism

s3
x,y,z =

t3x+z,y
t3x,yt

3
z,y

. (7.17)

The formula

s3
x,y,z =

s1
x,y,zs

1
z,y,x

s2
y,x,z

(7.18)
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now follows from (7.14) and the definition ofs2
x,y,z. The equations

t1x,z = s3
x,x,z(t

2
z,x)
−1, t2x,z = s3

x,z,z(t
1
z,x)
−1 (7.19)

are consequences of (7.11), (7.12) and (7.16). The first of these equations shows
that this new method for constructingt1 out of t2 and the anti-symmetry condition
s3 derived fromt3 yields the same result as the method (7.14) for constructingt1

out of t3 and the anti-symmetry conditions2 derived fromt2. Similarly the second
formula shows that the new method (7.19) for constructingt2 out of t1 and the anti-
symmetry condition derived fromt3 yields the same result as the method (7.13)
for constructing it out oft3 and the anti-symmetry conditions1 derived fromt1.
Allowing ourselves a certain amount of redundancy, we may therefore give another
description of alternating triextension which is entirely symmetric in the variables
x, y, z, as befits an object associated to33B.

PROPOSITION 7.6.A triextensionE of B3 by A is alternating if and only if it
is endowed with sectionst1x,z ∈ Ex,x,z , t2x,z ∈ Ex,z,z and t3x,y ∈ Ex,y,x each of
which defines a partial alternating structure with respect to the repeated variable
which is linear with respect to the other variable and which satisfy the following
compatibility conditions

(1) For eachi, the two possible methods described above for constructing a sec-
tion t i in terms of the two other sectionstj and tk yield the same result.

(2) For everyx ∈ B, the equationt1x,x = t2x,x = t3x,x is satisfied inEx,x,x.

Remark7.7. This description of alternating triextensions may be obtained in a
somewhat more symmetric manner by making use of the derived version of the
sequence

0→ 03B → (02B ⊗ B)⊕ (B ⊗ 02B)→ B ⊗3→ 33B → 0

of [1], instead of the Koszul sequence (7.8). This sequence also makes it immedi-
ately clear that an alternating triextension whose underlying triextension is trivial,
may be described in terms of pairs of compatible mapsf, g:B × B → A, with f
quadratic in the first variable and linear in the second one (resp.g linear in the first
variable and quadratic in the second one). Note that in an algebro-geometric setting,
this often implies that such alternating triextensions are trivial. For example, when
B is an Abelian variety over an algebraically closed field, it is easily verified (see
[19], VII 2.10.2) that any triextension ofB by the multiplicative groupGm is trivial.
The assertion is now immediate, since the only maps fromB × B to Gm are the
constant ones.

8. Picard Structures on Monoidal 2-Categories

Let C be a monoidal group-like 2-stack in groupoids, as defined under the name of
2-gr-stack in [8] Definition 8.4. The first invariant ofC is the sheaf of groupsπ0(C)
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associated to the presheaf of isomorphism classes of objects ofC. In the category
case which we will mostly consider, we will say thatC is a monoidal group-like
2-groupoid. The groupπ0(C) is then simply the group of isomorphism classes of
objects ofC. Our first assumption will be, as in the monoidal 1-category case, that
this group is Abelian. Since the monoidal category AutC(I ) of self-arrows of the
unit objectI of C is automatically braided, the two other homotopy groups ofC,
which may be defined by

πi(C) = πi−1(AutC(I )) (8.1)

for i = 1,2, are both Abelian groups. It was explained in [8] that such monoidal
2-groupoids withπ0(C) ' B and AutC(I ) equivalent to a given braided category
A are classified by an appropriately defined cohomology groupH 3(B,A). The
groupB acts by conjugation on the categoryA, and we will assume that this action
is equivalent to the trivial one?. Finally, we will assume in the sequel for simplicity
that the Abelian groupπ1(C) is trivial, so thatA is the category with a unique
object whose arrows form an Abelian groupA. The cohomology groupH 3(B,A)
then reduces to the standard cohomology groupH 4(B,A) with values in the trivial
B-moduleA. As we have said, the class ofC may be viewed as thek-invariant of
the two stage Postnikov system

K(A,3) - X

K(B,1)
?

defined by the the classifying spaceX of the nerve of the monoidal 2-categoryC.
In more explicit terms, one associates toC theA-valued four-cocyclef (x, y, z,w)
obtained as follows. Choose, as in the case of monoidal categories, representative
objectsXx and arrowscx,y:XxXy → Xxy in C. Since it is assumed here that
π1(C) = 0, we may also choose for everyx, y, z ∈ B a 2-arrowηx,y,z: 1Xx,y,z H⇒
f (x, y, z) between the identity 1-arrow, and the 1-arrow defined as in 1.4. The
pentagon two-arrow associated to the four objectsXx, Xy, Xz, Xw then determ-
ines an elementf (x, y, z,w) in AutC(Xxyzw), i.e. a four-cochainf :B4 → A.
Stasheff’sK5 relation [28] implies thatf is a four-cocycle. Other choices of objects
Xx, 1-arrowscx,y and 2-arrowsηx,y,z determine cohomologous cocycles so that the
class off in H 4(B,A) only depends on the equivalence class ofC.

As in our study of monoidal categories, we may analyze the monoidal two-
categoryC by introducing, for each pair of elementsx, y ∈ B, the commutator
category

Ex,y = IsomC(XyXx,XxXy) (8.2)

? In other words that the tensor functorφ:B → AutC(I )with source the discrete category defined
byB is equivalent to the trivial functor.
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This is a groupoid, on which thegr-category of self-arrows ofXxXy acts on the
right fully and faithfully by composition of arrows. This category is equivalent
to A, and therefore, sinceπ1(C) = 0, to the groupoidA[1] with a single object
defined by the Abelian groupA. The categoriesEx,y assemble, for varyingx, y,
to form an AbelianA-gerbeE on B × B which is a first element of structure
associated to the monoidal 2-stackC. In fact this gerbe is trivial, since one can
choose a compatible family of sectionss(x, y) ∈ Ex,y, for example as in (3.9)
those obtained by composing the chosen mapsXxXy −→ Xxy with an inverse of
the mapsXyXx −→ Xyx. There remains, however, some interesting structure on
E to be explored. Indeed, the constructions (3.2) and (3.4) now define partial group

laws
1+ and

2+ on the AbelianA-gerbeE onB × B. Once more, no commutativity

property for the partial laws
1+ and

2+ is asserted, so thatE is in general a weak,
rather than a genuine (2,2)-extension.

This analysis ofC, and of its associated commutatorE carries over from
monoidal 2-categories to monoidal 2-stacks, the only significant difference being
that in that case the underlyingA-gerbe ofE is no longer trivial. The following
higher analog of Proposition 3.1 is therefore true.

PROPOSITION 8.1. Let C be a monoidal2-stack with invariantsB andA, sat-
isfying the previous hypotheses.C is classified up to equivalence by an element
of the (hyper)-cohomology groupH 4(B,A) (for A a trivial B-module). The con-
structions(3.2) and (3.4) define on the abelianA-gerbeE (8.2) onB × B a weak
(2,2)-extension structure.

In order to prove that each of the two group laws onC is coherently associat-
ive, one could simply examine the next higher versions of diagram (3.5), in other
words the weak versions of the pair of 2-categorical diagrams which would, in the
terminology of [22], be denoted by(•⊗ (•⊗•⊗•⊗•)) and((•⊗•⊗•⊗•)⊗•).
The next higher version of the compatibility diagram (3.6) would then show that
the two group laws are compatible with each other, in the sense made explicit for
the map (7.1) by the two diagrams (7.3). Such an argument would certainly be
sufficient in order to prove the proposition. However, if one wanted to fill in the
details of a proof along these lines, one would be led to the consideration of a
family of commuting 2-categorical diagrams, which cannot be represented here in
an enlightening manner. We therefore prefer to give a proof of the proposition in
cocyclic, rather than diagrammatic terms, even though this method of proofa priori
only applies in the monoidal 2-category case, rather than the full monoidal 2-stack
situation. The method of proof which we now propose will thus be analogous to
the discussion in Remark 3.2, but at the next higher level.

Starting from anA-valued four-cocyclef (x1, x2, x3, x4), we have seen that for a

fixedx ∈ B the group law
1+ is obtained by inserting 2-arrows derived fromf into

the pentagons by which the vertices of diagram (3.5) were replaced when we passed
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from this diagram to its nonstrict version. The three-cochainψx4:B
3 −→ A which

describes as in (1.4) the associativity morphism in the monoidal categoryE( ,x4) on

B for the group law
1+ is therefore defined by composition of these two-arrows, in

other words (once the sign has been taken into account) by the formula

ψx4(x1, x2, x3) =
∏

σ(1)<σ(2)<σ(3)

f (xσ(1), xσ(2), xσ(3), xσ(4))
−ε(σ ) (8.3)

in which ε(σ ) denotes the sign of the permutationσ . This is just the product of
the signed permutations off (x, y, z,w) when the variablew is shuffled through

(x, y, z). The group law
2+ onE(x1, ) is similarly described by

φx1(x2, x3, x4) =
∏

σ(2)<σ(3)<σ(4)

f (xσ(1), xσ(2), xσ(3), xσ(4))
ε(σ ) (8.4)

i.e. by the product of the signed shuffles inf of x1 through(x2, x3, x4). That each
of the two group laws satisfies the pentagon condition is equivalent to the assertion
that the corresponding three-cochain (8.3),(8.4) is a three-cocycle, and this follows
readily from the four-cocycle condition onf . In fact, it is unnecessary to per-
form this computation explicitly, in view of the following observation. Consider
Eilenberg–Mac Lane’s iterated bar-construction modelA(B,2) [17] Section 14
for the complex of chains on the Eilenberg–Mac Lane spaceK(B,2). Since this
is a chain complex, the squareδ ◦ δ of the differentialδ is trivial when applied
to any cell c. Applying this respectively to the cells[x1 |2 x2, x3, x4, x5] and
[x1, x2, x3, x4 |2 x5], and passing from chains toA-valued cochains onK(B,2)
yields the sought-after assertion. With this in mind, we relabel the two previous
associativity maps by setting

φ(x1, x2, x3 |2 x4) = ψx4(x1, x2, x3),

φ(x1 |2 x2, x3, x4) = φx1(x2, x3, x4),

even though the first of these definitions is only consistent with [17] up to a sign.
Similarly, the compatibility isomorphism (7.1) between the two group laws onE is
described by the cochain

φ(x1, x2 |2 x3, x4) =
∏

σ(1)<σ(2) ; σ(3)<σ(4)
f (xσ(1), xσ(2), xσ(3), xσ(4))

−ε(σ )

obtained by shuffling(x1, x2) through(x3, x4). The vanishing of the image under
δ ◦ δ of the cells[x1, x2, x3 |2 x4, x5] and[x1, x2 |2 x3, x4, x5] (or a direct computa-
tion) imply that the higher compatibility conditions (7.3) are satisfied inE , so that
Proposition 8.1 is proved.

In order to understand under which conditions the weak monoidal commutator
(2,2)-extension obtained from Proposition 8.1 is a genuine (2,2)-extension (in other
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words one whose partial group laws are strictly commutative), we need only apply
to the monoidal categoriesE( ,x4) andE(x1, ) the theory developed in Sections 3 to 5.
By (3.11)–(3.12), the weak biextension associated to the monoidal categoryE( ,x4)

is described, for a fixedx4 ∈ B, by the cochains

g(x1, x2; x3 |2 x4) =
∏

σ(1)<σ(2)

φ(xσ(1), xσ(2), xσ(3) |2 x4)
ε(σ ) (8.5)

=
∏

σ(1)<σ(2)

f (xσ(1), xσ(2), xσ(3), xσ(4))
−ε(σ )

and

h(x1; x2, x3 |2 x4) =
∏

σ(2)<σ(3)

φ(xσ(1), xσ(2), xσ(3) |2 x4)
−ε(σ ) (8.6)

=
∏

σ(2)<σ(3)

f (xσ(1), xσ(2), xσ(3), xσ(4))
ε(σ ).

Similarly, the weak biextension associated to the monoidal categoryE(x1, ) is de-
scribed, for a fixedx1 ∈ B, by the pair

γ (x1 |2 x2, x3; x4) =
∏

σ(2)<σ(3)

φ(x1 |2 xσ(2), xσ(3), xσ(4))ε(σ )

η(x1 |2 x2; x3, x4) =
∏

σ(3)<σ(4)

φ(x1 |2 xσ(2), xσ(3), xσ(4))−ε(σ ),

so that

γ (x1 |2 x2, x3; x4) = h(x1; x2, x3 |2 x4)

and

η(x1 |2 x2; x3, x4) =
∏

σ(3)<σ(4)

f (xσ(1), xσ(2), xσ(3), xσ(4))
−ε(σ ).

(8.7)

There is a unique condition under which the two pairs of partial group laws defining
these two weak biextensions are commutative, thereby ensuring that both(g, h)

and(γ, η) define genuine biextensions. This condition is given by the vanishing of
the alternating map

l(x1, x2, x3, x4) =
∏
σ∈64

f (xσ(1), xσ(2), xσ(3), xσ(4))
ε(σ )

determined by evaluating the four-cocyclef on the Pontryagin productx1·x2·x3·x4

of the four classesxi ∈ H1(B) = B. By Proposition 5.1, both biextensions(g, h)
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and (γ, η) are then alternating. As explained in the discussion following Corol-
lary 5.3, they may therefore be described in cocyclic terms by the triples(g, h,1)
and(γ, η,1) (in which the term 1, which describes the alternating structure, is the
trivial map 1:B → A sending every element ofB to the identity element ofA). The
compatibility condition (7.10) between the first and second alternating structure
is automatically satisfied here. Since the sectionss1

x,y,z and s2
x,y,z satisfying the

corresponding relations (2.16) are described by trivial maps, this is also the case
for the compatibility condition (7.16).

We summarize the previous discussion by the following

PROPOSITION 8.2.Let C be a monoidal category defined by a four-cocycle
f (x1, x2, x3, x4), and for which the condition∏

σ∈64

(f (xσ(1), xσ(2), xσ(3), xσ(4)))
ε(σ ) = 1

is satisfied. The pair of triples(g(x1, x2; x3 |2 x4), h(x1; x2, x3 |2 w), 1) and
(γ (x1 |2 x2, x3; x4),η(x1 |2 x2; x3, x4), 1) defined by setting

g(x1, x2; x3 |2 x4) =
∏

σ(1)<σ(2)

f (xσ(1), xσ(2), xσ(3), xσ(4))
−ε(σ ), (8.8)

h(x1; x2, x3 |2 x4) =
∏

σ(2)<σ(3)

f (xσ(1), xσ(2), xσ(3), xσ(4))
ε(σ ),

γ (x1 |2 x2, x3; x4) = h(x1; x2, x3 |2 x4),

η(x1 |2 x2; x3, x4) =
∏

σ(3)<σ(4)

f (xσ(1), xσ(2), xσ(3), xσ(4))
−ε(σ ),

respectively, determine, for every fixedx4 ∈ B and every fixedx1 ∈ B, a biexten-
sion structure. Together they define an alternating triextension ofB × B × B by
A.

Suppose now that this alternating triextension is trivial. The trivializing section
σx,y,z of Ex,y,z (Definition 7.5) is then described by a mapθ :B3 −→ A such that
the equations

g(x1, x2; x3 |2 x4) = θ(x1+ x2, x3, x4)

θ(x1, x3, x4) θ(x2, x3, x4)
,

h(x1; x2, x3 |2 x4) = θ(x1, x2+ x3, x4)

θ(x1, x2, x4) θ(x1, x3, x4)
,

η(x1 |2 x2; x3, x4) = θ(x1, x2, x3 + x4)

θ(x1, x2, x3) θ(x1, x2, x4)
,

θ(x, x, z) = 1, θ(x, z, z) = 1
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are satisfied. In that case the weak (2,2)-extension (8.2) determined by Propos-
ition 8 is a genuine (2,2)-extension. We may now introduce additional cochains
θ(x1, x2 |2 x3) andθ(x1 |2 x2, x3) defined by

θ(x1, x2 |2 x3) = θ(x1, x2, x3), θ(x1 |2 x2, x3) = θ(x1, x2, x3).

These respectively describe the commutativity isomorphisms in the strict Picard
categoriesE( ,x4) andE(x1, ), so that the pair(φ(x1, x2, x3 |2 x4), θ(x1, x2 |2 x4))

for x4 fixed and the pair(φ(x1 |2 x2, x3, x4), θ(x1 |2 x2, x4)) for x1 fixed each
satisfy the cocycle conditions (1.5)–(1.6). This (2,2)-extension is automatically
alternating, as may be verified by a discussion parallel to that of Section 5, or
by a cocyclic argument.

While we could pursue this analysis in cocyclic terms of the (2,2)-extensionE ,
it is more expedient to return to a 2-categorical framework. A trivialization ofE
consists of a trivialization, for eachx (resp. eachw) in B of the Picard stackE(x, )
(resp.E( ,w)), together with a compatibility condition between these trivializations.
Returning to the definition (8.2) ofE , we see that such a trivialization ofE(x, )
(compatible with the Picard structure) consists, once a family of choices of one-
arrows

Rx,y:XyXx −→ XxXy (8.9)

have been made?, in a ‘hexagon’ 2-arrow

H[x|2y,z]:Rx,y ◦ Rx,y ′ H⇒ Rx,yy ′

in C. The compatibility of this trivialization with the associativity isomorphism in
E(x, ) implies that this hexagon 2-arrow satisfies the axiom denoted(•⊗(•⊗•⊗•))
in [22], which we already encountered in a somewhat different context. A trivializ-
ation ofE( ,w) similarly defines the ‘hexagon’ 2-arrow between the 1-map defined as
in (3.2) (forY = Xw) from the 1-arrow obtained by composingRx,w andRx ′,w and
the 1-arrowRxx ′,w, and this then satisfies the corresponding axiom((•⊗•⊗•)⊗•)).
The compatibilities of these 2-arrows with the commutativity isomorphisms de-
termined by the strict Picard structure yields the axioms((•⊗ •)⊗ (•⊗ •)) on the
2-categoryC. Finally, the compatibility of this pair of hexagon 2-arrows with each
other implies that the 2-categoryC is endowed with a slight variant of Kapranov–
Voevodsky’s two-braiding axioms, which we called a Z-braiding in [8], Ch. 8 (see
also [2] for a discussion of this supplementary axiom).

If we now require that the chosen trivalization (8.9) of the (2,2)-extensionE to
be compatible with its anti-symmetry structure, defined as in Lemma 5.2, we must
further require that there exists for allx, y ∈ B a two-arrow

1XyXx
Sx,y7−→ Ry,x ◦ Rx,y (8.10)

? After a preliminary choice of a representative objectXx of the fixed objectx, and a family of
representativesXy of the varyingy ∈ Y .
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with source the identity one-arrow onXyXx. This 2-arrow automatically satisfies
the two conditions which define onC the structure of a strongly braided two-
category [8] (in other words what J. Baez calls a strongly involutory monoidal
category [3]). Finally the compatibility of the trivialization ofE with its alternating
(rather than simply anti-symmetric) structure manifests itself in a trivialization
of the Picard stack1E obtained, as required in Definition 7.3, by restrictingE
above the diagonal. Since the alternating structure onE is determined by the iden-
tity arrow 1XxXx ∈ (1E)x , this compatibility may be interpreted as a 2-arrow

1XxXx
Sx7−→ Rx,x. By compatibility of this 2-arrow with the group law on1E ,

Sx is additive in x. Furthermore, the required compatibility of its square with
the trivialization of E2 determined by the anti-symmetry structure onE is the
assertion that the composite 2-arrow in diagram (8.4.8) of [8] coincides with our
2-arrowSx,x (8.10). Observe also that the compatibility condition mentioned in [8]
(8.4.6) is in fact a consequence of the required additivity inx of Sx, and therefore
must not be imposed here as a supplementary condition. A trivialization of the
alternating(2,2)-extensionE thus determines onC what we have called a strictly
symmetric monoidal two-category structure. These strictly symmetric structures
on monoidal two-categories with associated groupsB andA are classified by the
group Ext3(B,A). In the 2-stack case, this is a genuine invariant, which classifies
these structures up to equivalence. On the other hand, in the 2-category case, the
vanishing of this group is automatic, since it is a higher Ext group in the category
of Abelian groups. The 2-categoryC is therefore equivalent to the trivial one with
invariant groupsB andA. In particular, forgetting all the symmetry stucture, this
implies that the underlying monoidal 2-categoryC is equivalent to the trivial one,
and the original four-cocyclef (x, y, z,w) which definedC is then cohomologous
to zero.
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