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Abstract

Measuring and attributing greenhouse gas (GHG) emissions remains a challenging problem as the world strives
toward meeting emissions reductions targets. As a significant portion of total global emissions, the road transportation
sector represents an enormous challenge for estimating and tracking emissions at a global scale. To meet this
challenge, we have developed a hybrid approach for estimating road transportation emissions that combines the
strengths of machine learning and satellite imagery with localized emissions factors data to create an accurate,
globally scalable, and easily configurable GHG monitoring framework.

Impact Statement

Tracking greenhouse gas (GHG) emissions globally is a challenge of increasing importance to enable targets for
emissions reduction and measure progress toward them. Quantifying road transportation emissions is particu-
larly difficult due to the distributed nature and large number of sources involved. Our approach is a scalable and
accurate method to estimate road activity and GHG emissions for individual road segments in large urban cities
around the world, which can lead to a better understanding of where to focus emission mitigation efforts.

1. Introduction

Transportation contributed 27% of anthropogenic greenhouse gas (GHG) emissions in the U.S. for 2020,
higher than any other sector, and 12.6% of all global GHG emissions in 2019 (Agency UEP, 2022; World
Resource Institute, 2022). The primary source of transportation sector emissions is on-road vehicles,
accounting for approximately 74% of global transportation emissions in 2018 (International Energy
Agency (IEA), 2022). Quantifying the distribution of on-road transportation emissions and creating
timely emissions inventories are vital to identify trends, track mitigation efforts, and inform policy
decisions.

Previous efforts have developed detailed bottom-up on-road emission inventories for the U.S. (Gately
etal.,2015; Gurney etal., 2020), but do not easily extend globally due to the reliance on vehicle traffic and
road data that is not always readily available. EDGAR (Janssens-Maenhout et al., 2017) provides a global
inventory for transportation that uses road density as a proxy to spatially distribute emissions. However,
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Figure 1. System architecture for our hybrid emissions estimation model.

some emission estimates for urban centers in EDGAR deviated from other bottom-up inventories (Gately
et al., 2015) by 500%, indicating that road density is not a sufficient proxy for global high-resolution
inventories. Carbon Monitor (Liu et al., 2020) is a global emissions inventory that utilizes a variety of
activity data to estimate daily GHG emissions, however, the reliance on proprietary traffic data in the
ground transportation sector limits the ability to extend to locations where this data is not available. Other
methods have used machine learning (ML) to directly predict emissions, but their ability to generalize
globally is unclear (Mukherjee et al., 202 1; Scheibenreif et al., 2021).

We propose an emissions estimation method that is globally accurate while using openly available
input data. It combines remote sensing, geospatial data, and ML with traditional, “bottom-up” emissions
inventories that directly incorporate region-specific vehicle fleet mix, fuel efficiency, and other emissions
factors (EF) data. This approach, illustrated in Figure 1, is composed of two independent ML models to
predict road transportation activity and an EF pipeline that translates activity to emissions in a localized
fashion. The results from these models are ensembled to provide a single output. Splitting the ML and EF
parts affords continuous improvement as newer data become available. Our contribution is a method that
uses ML-predicted road activity along with region-specific emissions factors data to create up-to-date and
global on-road GHG emissions estimates.

Specifically, we use ML to predict activity in the form of the average annual daily traffic (AADT), or
the number of vehicles traveling on a given road segment per day, on average, over an entire year.
Separately, we can estimate the EF based on city- or region-specific vehicle-related data. We then combine
the EF, the AADT, and segment information to estimate emissions for each road segment. Summing the
emissions from all road segments provides an estimate of annual GHG emissions for a city.

This paper is organized as follows. Sections 2—4 introduce the source data, the ML methods used to
predict road activity, and the transformation from activity to emissions. Section 5 provides the results of
the ML models, which we discuss in detail in Section 6. Finally, Section 7 discusses future work and
summarizes the results in a conclusion.

2. Data

We formulate the road activity prediction task as a regression problem. We train models to predict AADT,
or the number of vehicles traveling on a given road segment per day, on average over an entire year. In our
prediction task, we used two different ML models: a convolutional neural network (CNN) as well as a
graph neural network (GNN). For the CNN model, we used two sources of input data: RGB satellite
imagery as well as rasterized road network data. The GNN model used road network data to generate
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information for nodes and edges of the input graph. In both ML models, we use ground truth data from the
U.S. Highway Performance Monitoring System AADT data set from 2017 (US Federal Highway
Administration, 2017). This AADT data is recorded using roadside devices and is typically only recorded
on major highways and arterial (collector) roads. Models trained in the U.S. are then run over both
U.S. and global cities for evaluation.

In this section, we describe the source data used for training the ML models, the reasoning behind
choosing 500 global cities, and the data sources for emissions factors used to turn AADT activity into city-
wide estimates of GHG emissions.

2.1. Cities selection

To date, our hybrid emissions estimation pipeline has been run on a prioritized set of 500 global cities. To
prioritize the cities, we utilized the European Union Joint Research Center Global Human Settlement
Layer Urban Centers Database (GHSL-UCDB) dataset (Florczyk et al., 2019) for a globally consistent
representation of city extent. This database contains the geographic bounds and other metadata for
approximately 13,000 cities worldwide and utilizes a definition of city/urban center based on population
density and built-up area. Specifically, an urban center was defined as “the spatially generalized high-
density clusters of contiguous grid cells of 1 km? with a density of at least 1500 inhabitants per km? of land
surface or at least 50% built-up surface share per km* of land surface, and a minimum population of
50,000” (Florczyk et al., 2019). Due to this definition, city geometries in UCDB often have significantly
different shapes and sizes as compared to official administrative bounds, for example, from Open-
StreetMap (OSM) (Haklay and Weber, 2008) or Global Administrative Areas (GADM) (Global Admin-
istrative Areas, 2022). We note that these differences are likely a main cause of discrepancies between our
emissions estimates and other inventories.

UCDB spatially combines urban centers with a variety of metadata related to geography, socio-
economic, environment, disaster risk, and sustainable development goals. This metadata includes
EDGAR V5.0 (Janssens-Maenhout et al., 2017) emissions estimates within urban center bounds for
1975, 1990, 2000, and 2015. We used the 2015 transport sector total CO, emissions from nonshort-cycle
organic fuels (fossil fuels, CO2_excl short-cycle org C in EDGAR) to sort and select the largest
500 cities for this work. The distribution of the selected cities across continents is shown below in Table 1.

Additional datasets from the GHSL effort include the GHSL BUILT-S (Pesaresi and Politis, 2022) and
GHSL POP (Schiavina et al., 2022). These were used on a trial basis when testing additional model
features (see Section 3.3). The GHSL BUILT-S dataset is a global raster dataset that provides a measure of
how much of the Earth surface is built-up, measured in square meters per grid cell. The GHSL POP dataset
is a global raster dataset that provides population density estimates per grid cell.

2.2. OpenStreetMap

OSM (Haklay and Weber, 2008) road network data is used as an input to our models and for associating
predicted AADT values with their corresponding physical road segment. While OSM can contain

Table 1. Regional distribution of the 500 global cities selected for emissions estimation

Region Proportion of top 500 cities (%)
Asia 42.6
Europe 18.8
North America 17.8
Latin America and the Caribbean 11.2
Africa 8.2
Oceania 1.4
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Table 2. Mapping of the three road types used in our emissions calculation to their corresponding

OSM tags
Road class OpenStreetMap Tags
Highway motorway, motorway_link, trunk, trunk link
Arterial primary, primary_link, secondary, secondary link
Local tertiary, tertiary link, residential, living_street, unclassified

inconsistencies and is not complete, its open access and global availability make it suitable for this work.
In order to standardize terminology across the CNN and GNN models, we reduced the number of OSM
road types to three. The current supported road types are highway, arterial, and local, which were chosen
to align with other similar emissions inventories and traffic-related databases; the mapping between these
road types and their respective OSM tags are shown in Table 2. Road type categorization is important in
the emissions factor calculation for a given road segment as other emissions factors variables, including
vehicle fleet mix and fuel efficiency, can vary significantly across different types of roads.

2.3. Training data

In both ML models, we use ground truth data from the U.S. Highway Performance Monitoring System
AADT data set from 2017 (US Federal Highway Administration, 2017) for a set of 14 cities in the
US. This AADT data is recorded using roadside devices and is typically only recorded on major highways
and arterial (collector) roads. Specifically, AADT data is sparse, making up single-digit percentages of the
road network.

Using this as the only training data set imposes several possible biases on our estimates. First, global
traffic patterns are not likely to reflect those in the US. Additionally, the lack of full coverage may bias our
ML models to lower prediction values. As we argue in Section 6.2, however, our predicted values for total
emissions correlate well with other datasets. For more details on these comparisons, see Section 6.

2.4. Satellite data

We use two different sources for RGB Satellite imagery: Sentinel-2 and Planet Labs.

The European Space Agency’s (ESA) Sentinel-2 mission comprises two satellites- Sentinel-2A,
launched in 2015, and Sentinel-2B, launched in 2017 (Main-Knorn et al., 2017). Each Sentinel-2 satellite
has a 10-day revisit time with a 5-day combined revisit. Both satellites are equipped with a multispectral
(MSI) instrument which provides 13 spectral band measurements, blue to shortwave infrared (SWIR)
wavelengths (442-2202 nm) reflected radiance. We used the Sentinel-2 Level-2A productat 10 m x 10 m
resolution, using bands 4 (red), 3 (green), and 2 (blue) (Drusch et al., 2012).

Planet Lab’s PlanetScope satellite constellation consists of approximately 130 individual satellites,
called “Doves,” with the first launch of this constellation in 2014 (Planet Labs, 2022). Each PlanetScope
satellite images the earth’s surface in the blue, green, red, and near-infrared (NIR) wavelengths (450—
880 nm). We acquired PlanetScope (Planet Labs, 2022) approximately 3 m resolution monthly and
quarterly mosaics over the various geographic extents of the cities we used for training, validation, and
global inference.

2.5. Emissions factors

Transportation EFs are dependent on many variables, including (but not limited to) road category, vehicle
mix, fuel type, and fuel efficiency. Data collection for each of these EF-related variables across 500 cities
is a significant undertaking. The initial version of estimated emissions factors focused on collecting data at
the country-level for the 86 countries in which the top 500 cities are located.
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2.5.1. Vehicle fleet mix

Vehicle fleet mix refers to the distribution of total vehicles in a given country across various vehicle types.
The supported vehicle types were: passenger cars, light duty trucks, single unit trucks, combination
trucks, motorcycles, and buses. Country-specific vehicle fleet data was used for 36 countries, while a
U.S. urban area average derived from U.S. Federal Highway Administration (FHWA) data (Highway
Statistics, 2020) was used for the remaining 50 countries until further country-specific data sources were
identified.

A full listing of the 36 countries with country-specific data and their respective sources is listed in
Table 3. Due to differences in the vehicle type taxonomy across countries, vehicle types were manually
recategorized to the supported vehicle types as well as possible. Vehicle fleet mix values are currently the
same across all supported road types, but will be updated as sources of road type-specific data are
identified.

2.5.2. Fuel type and efficiencies

Due to the fact that different fuel types have different emissions factors, it is important to know the relative
mix of fuel types for each type of vehicle traveling on a given road segment. The types of supported fuels
are gasoline, diesel, compressed natural gas (CNG), liquefied petroleum gas (LPG), plug-in hybrid,
battery electric vehicle (BEV), and other fuels (e.g., biogas, ethanol). The primary source of this data is the
Climate Action for Urban Sustainability (CURB) tool (World Bank Group, 2019), which provides a
global database of fuel type mix by country. Future updates may include updated country or city-specific
fuel type data.

CURB was also the primary source of fuel efficiency data for all 86 countries. CURB fuel efficiency
values are reported in units of kilometers per liter and were extracted for all supported fuel and vehicle
types described above. Fuel efficiencies were the same across all supported road types (highway, arterial,
and local) in this release, but may be continuously updated as better country or city-specific datasets are
located.

Table 3. Listing of specific data sources used in estimated vehicle fleets in specific countries

Country Source Country Source

Argentina  ADEFA, 2022 Australia Australian Bureau of Statistics, 2021

Austria ACEA, 2022 Azerbaijan UNECE, 2022

Belgium ACEA, 2022 Brazil Statista, 2022a

Canada Government of Canada SC, 2020 Chile INE, 2022

China Statistical Yearbook, 2022 Czech Republic ACEA, 2022

Denmark  ACEA, 2022 Finland ACEA, 2022

France ACEA, 2022 Germany ACEA, 2022

Greece ACEA, 2022 Guatemala SAT, 2022

Hungary ACEA, 2022 India Ministry of Road Transport and
Highways, 2022

Indonesia  Statista, 2022 Ireland ACEA, 2022

Israel UNECE, 2022 Italy ACEA, 2022

Japan MLIT, 2022 Kuwait Statista, 2022b

Malaysia ~ EKMC, 2022 Myanmar Statistical Data, 2022

Netherlands ACEA, 2022 Poland ACEA, 2022

Portugal ACEA, 2022 Russia ACEA, 2022

Singapore  LTA, 2022 Spain ACEA, 2022

Sweden ACEA, 2022 Switzerland ACEA, 2022

Turkey ACEA, 2022 United Kingdom ACEA, 2022
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2.5.3. Vehicle GHG emissions factors

GHG emissions factors refer to how much of a given gas is emitted per unit of fuel burned and varies by
fuel type. Our data focuses on carbon dioxide (CO,), nitrous oxide (N,O), and methane (CH,4) emissions
factors, using data from the U.S. Environmental Protection Agency (2022). For nitrous oxide and
methane, the emissions factors for each gas were given in units of grams of each gas per mile driven.
This was different from the data for carbon dioxide, which was given as grams per liter. To normalize all
GHG emissions factors to “grams per liter,” we used fuel efficiency data (given in “liters per km”) to
generate data for nitrous oxide and methane as grams per liter.

3. ML models

In this section, we describe each type of ML model separately as they can be analyzed independently
although they use similar underlying training data. Analysis of the performance of each family of models
is performed separately. However, the final emissions estimates come from an ensemble of two models as
described in Section 4.

3.1. Metric definitions

The following metrics are used to analyze both predicted AADT and, below, city-level emissions from our
CNN and GNN ML models. In each equation, n represents the number of roads or cities under
consideration, i represents the road or city index, P represents the predicted AADT or predicted emissions
from our model, and GT represents the ground-truth AADT or emissions value.

1 n
M E - P,‘ — GT, . 1
ean Error n;( ) (1)
1< 2
Root Mean Squared Error (RMSE) : EZ (P;,—GT;)". 2)
i=1

100~ |P; — GT;

Mean Absolute Percentage Error (MAPE) : 7;'(}71' 3)

100 P; — GT;
Mean Percentage Error (MPE) : —27
n =1 GT,

“

Additionally, we use the scipy.stats implementation of Pearson’s p coefficient to calculate correlations
(scipy.stats.pearsonr, n.d.).

Multiple metrics are used for analysis as they are each sensitive to different error sources, especially when
considering how AADT and city emission values vary over several orders of magnitude. Mean Error and MPE
are useful in evaluating bias in emissions and AADT prediction. RMSE will be most sensitive to large outliers.
The relative error terms (MAPE and MPE) are very sensitive to errors in lower trafficked roads/emitting cities
due to the division by GT;. In contrast, the other error terms (Mean Error, RMSE, and Pearson’s p) will be
more influenced by errors on higher trafficked roads/emitting cities due to their larger scale.

3.2. Convolutional neural networks

Architectures derived from semantic segmentation convolutional neural networks (CNNs) were trained to
predict AADT, using visual RGB satellite imagery and road network data. Separate models were trained
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using the two sources of imagery. OSM data is rasterized for the corresponding extent of an input visual
image, where each standardized road type (highway, secondary, local) is rasterized independently, and the
resulting raster channels are concatenated together to form a three-channel image (see Table 2 for
associated OSM tags for each road type). This image is combined with the visual satellite image to form
a six-channel image that is fed to the CNN to predict AADT on a per-pixel basis. We primarily use
MANet-based architectures (Fan et al., 2020) for our segmentation models, with EfficientNet (Tan and Le,
2019) backbones. The model architectures diverge from standard semantic segmentation models in that
rather than the final model layer predicting per-pixel class probabilities via a sigmoid or softmax
activation, the model regresses a per-pixel AADT value through a ReLU activation. All AADT
predictions for a given road segment are averaged to produce a single AADT value for every segment
within the current geographic extent of the input data.

3.2.1. CNN model: “S2 + OSM”

Our baseline architecture consists of an MANet semantic segmentation model (Fan et al., 2020) with an
EfficientNet-b3 backbone (Tan and Le, 2019), trained using a per-pixel mean squared error (MSE) loss.
The MSE and other loss metrics are defined below. Models are trained until convergence, and measured
using the validation loss. We select the model with the lowest validation loss for evaluation.

3.2.2. CNN model: “S2 + OSM ensemble”

The Sentinel-2 and OSM ensemble uses three different backbone models: EfficientNet-b3 (Tan and Le,
2019), ResNet-34, and ResNet-101 (He et al., 2016). Models were trained using the same six-channel
RGB + OSM input images as used in the S2 + OSM model. Initial training showed improved performance
from averaging the logits of each of these networks instead of the predictions, and all models were trained
using MSE loss.

3.2.3. CNN model: “Planet + OSM”

The Planet and OSM model was trained using the same architecture, backbone, and stopping criteria as the
S2 + OSM model. The input was a six-channel image consisting of RGB PlanetScope imagery and
rasterized OSM road data. The Planet + OSM model was also used to explore the importance of the road
versus off-road pixels. This was accomplished by separating the loss terms using the OSM data. The loss
terms for the road pixels or off-road pixel term were multiplied by a factor of three. The results in Table 4
show that root mean squared error (RMSE) is decreased when the road pixel loss term is weighted higher,
but an increase in mean percentage error (MPE) and mean absolute percentage error (MAPE) suggesting
off-road pixels are being predicted incorrectly.

3.3. Graph neural networks

We have also trained graph neural networks (GNNs) (Bronstein et al., 2017) to predict AADT. Road
networks inherently take the form of a graph structure, and a GNN can capture road activity and feature
dependencies across a range of scales more easily than the image-based CNN segmentation models.
GNN s can easily leverage various features assigned to nodes and efficiently reason over the full road

Table 4. Evaluation of Planet + OSM models trained with various loss functions. Every column has at
least one row bolded to indicate the best loss modification.

Loss modification RMSE MAPE (%) MPE (%) Pearson’s p
Standard MSE 33299 159.9 41.01 0.60
Weight off-road loss 3494.4 169.7 43.93 0.58
Weight road loss 3243.3 175.1 62.12 0.60
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network graph to provide more robust estimates of on-road activity. A number of road features are derived
from OSM for model input, including road length, road type, number of lanes, and the directional angle
between roads. The graph attention network v2 (GATv2) (Brody et al., 2021) architecture is used as it
allows for both edge and node input features, and is set up to predict log-AADT values.

3.3.1. GNN model: “OSM”
The GNN OSM models use a GATv2 network architecture with 14 layers, 2 attention heads, and
64 hidden channels. The OSM road network is initially represented as a multi-digraph, with each edge
representing a directional road segment and nodes representing intersections. Road length, number of
lanes, road type (according to Table 2), and link road indication (used for road segments such as sliproads
and ramps) are used as features for the road segments. The road network is then converted to a line graph,
inverting the graph’s nodes and edges. Two additional features are computed for the edges connecting
different road segments, representing the dot product between the segments’ unit vectors at the point of
intersection and the dot product of the segments’ unit vectors for the overall direction of the segment.
As AADT values can span many orders of magnitude, the GNN model is trained to predict log AADT
values. The loss function used to train the GNN model has two parts; the firstis an L1 loss on estimated log
AADT values when AADT ground truth is available. However, AADT ground truth annotations are fairly
sparse (typically representing single-digit percentages of the road network), so an additional consistency
loss is added. The consistency loss, L., is averaged over all the road intersections, and is calculated as a
function of the total AADT values into and out of each intersection:

| AADT;, — S AADT.
¢ I AADT;, + Y AADT,y)

(&)

3.3.2. GNN model: “OSM + GHSL”

The GNN OSM + GHSL model uses additional features derived from the GHSL BUILT-S (Pesaresi and
Politis, 2022) and GHSL POP (Schiavina et al., 2022) datasets while keeping the same loss terms. The
GHSL POP dataset is converted to an estimated vehicle density by multiplying the population density by
vehicles per-capita statistics for US states (US Federal Highway Administration, 2018) or countries
(World Health Organization, 2019). The rasters are sampled every 100 m along each road segment and
averaged to provide two additional features for each road segment.

3.3.3. GNN model: “OSM + CNN”

The GNN “OSM + CNN” model uses additional features extracted from the trained CNN “S2 + OSM”
model. The S2 + OSM model is run over the Sentinel-2 imagery for each city, and the 16 features from the
penultimate layer of the model are sampled at the center pixel of each road segment.

3.3.4. GNN ensemble
The GNN ensemble is a simple average of AADT estimates from five different GNN “OSM” models of
varying model depths, ranging from 14 to 20 layers.

3.4. CNN and GNN model ensembling

To create a more robust and predictive AADT estimation model, ensembling is performed using the CNN
and GNN models. Model AADT predictions per road segment are averaged before being input to the
emissions factors pipeline. This capability can be easily extended in the future to experiment with different
model architectures and perform further analysis of inter-model variance.

4. Activity to emissions

AADT predictions are assigned to their corresponding road segment based on the known geographic
location of the underlying road network. Emissions factors are computed a priori from a database of road
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Figure 2. Emissions calculation overview, from ML-predicted AADT to emissions estimate for an
entire city.

and vehicle-related data for a specific region, assigning EF values to each type of road in a city; these data
are described in Section 2.5. The process is outlined for all road segments under consideration within a
city’s bounds in Figure 2.

Total emissions are first computed for each road segment within a city, and then summed to estimate
total city emissions (CE) for each GHG:

CE=) SE, ©)
where SE; is the “segment emissions” for a road segment i. Each SE; was calculated as:
SE;=365-AADT; i 7 Mufs,* 8ufosy (7
vof

where: AADT; is the average annual daily traffic (unitless vehicles), /; is the length of the road segment iin
units of km, , /. ;. is the fuel efficiency, in units of liters per km, for a vehicle type v, fuel type f and a road
segment category s; of the road segment 7, m, s ,, is the vehicle mix, as a fraction, typically present on the
road segment based on the vehicle type v, fuel type f and a road segment category s; of the road segment i.
Specifically, we require that ) Mu.s, = 1 for each road segment category s;. Finally, g,/ ;, is the GHG
emissions factor, in grams of gas per liter, for the vehicle type v, fuel type f and a road segment category s;
of the road segment i.

All three of 7,7 ., mys.;, and g, f ;. are look-up tables based on data gathered from several sources as
described in Section 2.5.

To calculate a city emissions factor (CEF), we calculated the total city emissions and divided by the
total activity, defined as the sum over all road segments of the AADT times length for each segment:

CEF = CE . ®)

365- S AADT; - /;

As with the CE calculation, we calculate a separate CEF for each of the three major GHGs. Thus, three
emissions factor values were provided for each city, representing the average amount of each GHG
emitted per kilometer traveled by a single vehicle on any road segment within that city. The units of each
provided city emissions factor (CEF) are metric tons (tonnes) of GHG per vehicle kilometer traveled
(VKT).
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Table 5. Comparison of activity prediction models trained with varying inputs and architectures as
described in Section 3. Every column has one row bolded to indicate a possible “best” model; see text
for a further discussion.

Method RMSE MAPE (%) MPE (%) Pearson’s p
S2 + OSM 4823.6 116.3 —-39.3 0.58
S2 + OSM Ensemble 5249.5 102.3 —71.74 0.58
Planet + OSM 3329.9 159.9 41.01 0.60
GNN OSM 4470.0 137.6 103.3 0.87
GNN OSM + GHSL 4384.9 143.3 110.6 0.87
GNN OSM + CNN 4415.3 135.0 99.27 0.88
GNN OSM Ensemble 4307.3 142.3 113.0 0.88

Note. RMSE is in units of vehicles per day.

5. Results

We evaluate each ML model on a hold-out test set of U.S. cities, using input data from 2017 to align with
the timespan of our ground truth AADT data. We compute the following metrics on a per-road basis:
RMSE, MAPE, MPE, and Pearson’s p (see Section 3.1 for definitions). Comparing metrics on a per-road
basis enables a fair comparison between the image-based CNN models and the graph-based GNN models,
as can be seen in Table 5.

There is no strong evidence for which model is best, as no one model achieves best performance in more
than one metric; each metric in Table 5 has one entry bolded to indicate a possible best model. Furthermore,
Table 5 shows evidence to support a trade-off between RMSE and MAPE, and thus likely a trade-off in
performance on high-trafficked roads and low-trafficked roads. In general, improvements in the metric more
strongly associated with performance on low-trafficked roads (MAPE) results in worse performance on the
metric more strongly associated with performance on higher-trafficked roads (RMSE), and vice versa.
While MAPE errors are all high, they are not directly indicative of large errors when emissions are calculated
at the city level. This is as MAPE is strongly influenced by AADT estimation errors for low-trafficked roads
which may be small in an absolute sense, but become large when divided by the ground truth AADT. Also of
note is the lower MPE metrics for the CNN models, but the stronger correlation of the GNN models. These
all point to the importance of model ensembling to create a more robust activity prediction.

An example of ensemble AADT output can be seen in Figure 3. This map view shows the level of detail
afforded by our approach. This output of AADT per road segment is then translated to city-wide emissions
as discussed in Section 4.

5.1. International activity prediction

To estimate the ability of our models to generalize outside of the U.S.-based training set, we have run an
ensemble of the S2 + OSM CNN and GNN OSM models on 500 global cities, using input data from 2021.
Several international AADT datasets are used for evaluation: 26 cities in the United Kingdom (UK) for
2018-2020 (UK 26 Table 7) (Department for Transport, 2020), Buenos Aires, Argentina (Ministry of
Transport — National Directorate of Roads, 2017), and Paris, France (Department of Roads, 2021). Per-
road AADT error metrics between our ML estimates and these datasets are shown in Table 6, while the list
of26 UK cities is provided in Table 7. Error percentages are generally on par with performance in the U.S.,
showing the ability of our models to generalize globally.

6. Discussion

We have performed several comparisons of our road transportation emissions estimates against other
emissions inventories for initial validation, both within the US and globally. A set of 14 hold-out cities
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Figure 3. Example ensembled AADT predictions for the greater Washington, DC area. AADT units are
vehicles per day. Map data from OpenStreetMap (Haklay and Weber, 2008).

Table 6. Evaluation of ensembled model output with international AADT

Region RMSE MAPE (%) MPE (%) Pearson’s p
UK 26 (2018) 3804.6 119.5 49.2 0.69
UK 26 (2019) 3177.2 130.9 63.0 0.73
UK 26 (2020) 3447.0 84.7 20.6 0.69
Buenos Aires (2017) 8750.2 74.3 71.8 0.66
Paris (2021) 9467.9 96.3 20.4 0.79

Table 7. List of UK 26 cities used for AADT evaluation

London Edinburgh Manchester Huddersfield
Birmingham Southampton Leeds Reading
Liverpool Southend-on-Sea Glasgow Warrington
Newecastle upon Tyne Runcorn Sheffield Wishaw
Nottingham Blackburn Bristol Atherton
Portsmouth Crawley Middlesbrough Slough
Coventry Coatbridge
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in the US was selected for validation with three other emissions inventories: Google Environmental
Insights Explorer (EIE) (Google, 2022), Database of Road Transportation Emissions (DARTE) (Gately
et al., 2019), and Vulcan v3.0 (Gurney et al., 2020). Both our CNN and GNN-derived emissions
estimates are strongly correlated with other inventory values for every city, with mean Pearson’s p
values 0f 0.97 (CNN) and 0.98 (GNN). We also compare our emissions estimates for 500 of the largest
global cities to EDGAR (Janssens-Maenhout et al., 2017) and Carbon Monitor (Liu et al., 2020). We
found strong correlation with both inventories, with Pearson’s p values of 0.74 and 0.87, respectively,
showing the high global accuracy of our method. Further emissions validation details are discussed
below.

6.1. U.S. emissions validation

Google EIE (2022) leverages trip data in combination with emissions factors data to provide emissions
estimates for multiple modes of transportation in 42,000+ cities worldwide. We utilize the publicly
available 2018 EIE data in the US for our comparison. DARTE (Gately et al., 2019) uses reported
vehicular traffic data combined with Census TIGER (Marx, 1986) road network information to
estimate regional on-road emissions and disaggregate them among mapped road networks. We
compare our estimates to both DARTE 2015 and 2017 data. Vulcan (Gurney et al., 2020) is a
national-scale, multi-sectoral, hourly inventory from 2010 to 2015 with a resolution of 1 km?. Vulcan
transportation emissions are based on EPA county-level on-road emissions estimates, further down-
scaled using data from the Federal Highway Administration. We select Vulcan data from 2015 for
comparison.

Due to the fact that our ground truth AADT data and satellite imagery for this set of 14 hold-out
cities is from 2017, data from the other emissions inventories were selected from years as close to
2017 as possible. We use the geographic bounds available in the EIE data to retrieve satellite imagery
and road network data within each city’s bounds. We also constrain our predictions to the same
geographic bounds to ensure appropriate comparisons. After predicting AADT with our models and
associating AADT with each road segment, road geometries are cropped to the city bounds to create an
appropriate estimate of vehicle kilometers traveled (VKT) and emissions for each road. Correspond-
ing emissions estimates from the DARTE and Vulcan raster products are also selected using each
city’s EIE bounds.

Several variants of each third-party inventory are examined and shown in Table 8. Google EIE data
categorizes trips into three categories: in-boundary, inbound, and outbound. Trips are categorized
according to their start and end locations, with in-boundary containing trips that both start and end
within city bounds, inbound starting outside and ending inside city bounds, and outbound starting
inside and ending outside city bounds. We compare against just in-boundary emissions
(EIE_v1 2018), and in-boundary plus 50% inbound and 50% outbound emissions (EIE v2 2018).
For DARTE, we compare against emissions estimates for both 2015 (DARTE 2015) and 2017
(DARTE 2017). Vulcan contains three emissions estimates: the lower 95% confidence interval
(Vulcan_lo_2015), mean estimate (Vulcan_mn_2015), and the upper 95% confidence interval
(Vulcan_hi_2015).

For each of the 14 hold-out cities we use for validation, we plot the distribution of values from Vulcan,
DARTE, and EIE along with the mean in Figure 4. Here the box plot shows the mean, and the 25-75%
distribution. Estimates based on our CNN and GNN models are shown as dots and x’s.

6.2. Global emissions validation

Initial validation was performed for our global emissions estimates, where we compared against both
EDGAR (Janssens-Maenhout et al., 2017) and Carbon Monitor city-level data for 2018-2020 (Liu et al.,
2020). EDGAR 2015 data is retrieved from the Global Human Settlement Layer-Urban Centres Database
(GHSL-UCDB) dataset (Florczyk et al., 2019) from which we have selected our set of 500 global cities,
and we acknowledge that more recent EDGAR data from 2018 should be used in future validation
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Table 8. Emissions validation metrics for US cities

CNN GNN

Mean Mean
Emissions Dataset RMSE Error MAPE (%) p RMSE Error MAPE (%) p

EIE vl 2018 544225 407,997 773 0.94 3,706,827 3,706,827 321.5  0.95
EIE v2 2018 1,180,437 —1,153,065  36.1  0.94 2223303 2,145,764 713 096
DARTE 2015 2,606,389 —2.606,389  53.6  0.98 708,514 692,440  19.8  0.99
DARTE 2017 3,505,472 —3.505472  59.5 098 875254 —206,642 172  0.99
Vulcan lo 2015 912,134 912,134 1248 0.98 4,210,964 4,210,964 4732 0.9
Vulcan_mn_2015 761213 759,672 933  0.98 4,058,502 4,058,502 391.8  0.99
Vulcan_hi 2015 617,740 607,210 71 098 3,906,040 3,906,040 330.7  0.99

Note. MAE and mean error are in units of tonnes CO,, and p is Pearson’s p.
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Figure 4. Distribution of emissions estimates for each US city using values from DARTE, Vulcan, and
Google’s EIE as described in Table 8. Emissions estimates based on our S2 + OSM CNN are marked with
red dots, and estimates based on our GNN OSM model outputs are marked with blue X’s.
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Table 9. Global emissions validation metrics for our estimates compared with EDGAR (Janssens-
Maenhout et al., 2017) and Carbon Monitor (Liu et al., 2020) data

Emissions dataset # of cities MAE MAPE (%) Mean error MPE (%) Pearson’s p
EDGAR 2015 500 1,158,740 68.80 248,624 23.60 0.74
Carbon monitor 2019 50 2,857,690 72.40 —844,634 44.40 0.87
Carbon monitor 2020 50 2,634,598 83.20 —317,283 55.70 0.86
Carbon monitor 2021 50 2,795,294 73.50 —781,053 42.40 0.87

Note. MAE and mean error are in units of tonnes CO,.

experiments. Carbon Monitor is a recent emissions inventory that utilizes a variety of activity data sources
to estimate emissions in multiple sectors on a daily basis. In addition to country-level data, Carbon
Monitor has released near real-time emissions estimates for 52 cities globally. This city-level data is used
in our analysis, for 50 total cities that overlap the global set of 500 cities for which we have produced
emissions estimates.

Validation metrics for both dataset comparisons are shown in Table 9. The resulting comparison for all
500 cities against EDGAR can be seen in Figure 5. While the Pearson’s p value of 0.74 indicates decent
correlation, the wide variance of the differences is noteworthy and warrants further investigation. The
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Figure 5. Our emissions estimates for 500 global cities compared with EDGAR 2015 data. Note that axes
are in log scale.
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Figure 6. Our emissions estimates for 50 global cities compared with Carbon Monitor 2021 data. Note
that axes are in log scale.

sharp “wall” on the left portion of the plot is caused by the fact that our 500 cities were selected based on
thresholded EDGAR 2015 estimates.

The results of the comparison with the 50 overlapping Carbon Monitor cities for 2021 are shown in
Figure 6. There is generally good alignment between the two sets of emissions, with some larger
differences in France (Nice, Lyon, Marseille), South America (Bogota, Sdo Paulo), Russia (Saint
Petersburg, Moscow), and India (Mumbai, Delhi). We also note the larger percentage errors for 2020
in Table 9 as compared to 2019 and 2021, likely due to COVID-19 lockdown effects.

7. Conclusion

We have presented a hybrid road transportation emissions estimation method that is accurate, scalable,
and easy to update. The ability to calculate emissions per road segment can be further refined to reach an
unprecedented level of detail and global coverage. Where available, the integration of real-time traffic
data would increase the temporal resolution and accuracy of our models. We also plan to carry out further
analysis of our emissions estimates with other inventories to identify the main causes of discrepancies. As
well, we aim to explore open-sourcing our emissions factors schema such that governments and other
entities can contribute more up-to-date and accurate EF data to further improve our estimates. This type of
actionable emissions monitoring data will be critical to ensuring we meet global emissions reduction
targets and may inspire new ways of mitigating the effects of climate change.
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