ON THE INDEX OF A SYMMETRIC FORM

Jonathan Wild

Let E be a finite dimensional vector space over a finite field of characteristic $p>0$; $\operatorname{dim} E=n . \operatorname{Let}(x, y)$ be a symmetric bilinear form in E. The radical E_{O} of this form is the subspace consisting of all the vectors x which satisfy $(x, y)=0$ for every $y \in E$. The rank r of our form is the codimension of the radical. Thus

$$
\mathbf{r}=\mathrm{n}-\operatorname{dim} \mathrm{E}_{\mathrm{O}}
$$

If V is any subspace of E, the vectors $x \in E$ for which $(x, v)=0$ for all $v \in V$ form a vector space N, the subspace normal to V. If $E_{o} \subset V, V$ will also be the subspace normal to N and

$$
\begin{equation*}
\operatorname{dim} V+\operatorname{dim} N=\operatorname{dim} E+\operatorname{dim} E_{O}=2 n-r \tag{1}
\end{equation*}
$$

The subspace V is called totally isotropic if $V \subset N$. The maximum dimension i of a totally isotropic subspace is called the index of our form [Jonathan Wild, Canad. Math. Bull. 1 (1958), 180]. We wish to show that

$$
\begin{equation*}
i=\left[n-\frac{r}{2}\right] \quad \text { if } p=2 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
n-1-\frac{r}{2} \leqslant i \leqslant n-\frac{r}{2} \text { if } p>2 . \tag{3}
\end{equation*}
$$

The bracket indicates the largest integer not greater than $n-\frac{r}{2}$. The second formula implies : Let $p>2$. Then

$$
\begin{gathered}
i=\left[n-\frac{r}{2}\right] \quad \text { if } r \text { is odd, } \\
i=n-\frac{r}{2} \quad \text { or } i=n-\frac{r}{2}-1 \quad \text { if } r \text { is even. }
\end{gathered}
$$

In order to prove (2), we consider a totally isotropic subspace V of maximum dimension i and the subspace N normal to V. Since $V \subset N$ there exists a subspace M such that

$$
N=V \dot{+} M
$$

By (4) and (1)
(5) $\quad \operatorname{dim} \mathrm{M}=\operatorname{dim} \mathrm{N}-\operatorname{dim} \mathrm{V}=2 \mathrm{n}-\mathrm{r}-2 \operatorname{dim} \mathrm{~V}=2 \mathrm{n}-\mathrm{r}-2 \mathrm{i}$.

Let $x \in M$. Since $x \in N$, we have $(x, v)=0$ for every $v \in V$ 。

Suppose the vector x is isotropic, i.e.

$$
\begin{equation*}
(x, x)=0 . \tag{6}
\end{equation*}
$$

Consider the space W spanned by V and x. Since $x \in N$, (4) implies that V is a proper subspace of W. Any two vectors w and w^{\prime} of W permit representations

$$
w=v+\lambda x, \quad w^{\prime}=v^{\prime}+\lambda^{\prime} x ; v, v^{\prime} \in V \text {. }
$$

Thus

$$
\begin{aligned}
\left(w, w^{\prime}\right) & =\left(v+\lambda x, v^{\prime}+\lambda^{\prime} x\right)=\left(v, v^{\prime}\right)+\lambda\left(x, v^{\prime}\right)+\lambda^{\prime}(v, x)+\lambda \lambda^{\prime}(x, x) \\
& =0+\lambda \cdot 0+\lambda^{\prime} .0+\lambda \lambda^{\prime} .0=0 .
\end{aligned}
$$

Hence W would be a totally isotropic subspace of a dimension greater than i. Since this is impossible, (6) is false. Thus M contains no isotropic vectors.

It has been observed by P. Scherk that any two-space over a finite field of characteristic two and any three-space over a finite field of characteristic $p>2$ must contain isotropic vectors [Canad. Math. Bull. 2 (1959), 45-46]. Hence
(7) $0 \leqslant \operatorname{dim} M \leqslant 1$ if $p=2$ and $0 \leqslant \operatorname{dim} M \leqslant 2$ if $p>2$.

Combining (7) with (5) we obtain

$$
\begin{array}{ll}
0 \leqslant 2 n-r-2 i \leqslant 1 & \text { if } p=2 \\
0 \leqslant 2 n-r-2 i \leqslant 2 & \text { if } p>2
\end{array}
$$

or

$$
\begin{aligned}
& n-\frac{r+1}{2} \leqslant i \leqslant n-\frac{r}{2} \quad \text { if } p=2 \\
& n-\frac{r}{2}-1 \leqslant i \leqslant n-\frac{r}{2} \quad \text { if } p>2
\end{aligned}
$$

This proves (2).

Collins Bay, Ontario

