## A NEW BOUND FOR NIL U-RINGS

R. G. BIGGS

A U-ring is a ring in which every subring is a meta ideal. A meta ideal of a ring $R$ is a subring $I$ of $R$ which lies in a chain of subrings,

$$
I_{1} \subseteq I_{2} \subseteq \ldots \subseteq I_{\beta}=R
$$

with the properties:
(1) $I_{\lambda}$ is an ideal of $I_{\lambda+1}$ for all $\lambda<\beta$;
(2) If $\alpha$ is a limit ordinal number, then $I_{\alpha}=\bigcup_{\lambda<\alpha} I_{\lambda}$.

Freidman [3] proved that every nil U-ring is a locally nilpotent ring. Since there are many locally nilpotent rings which are not U-rings, the class of locally nilpotent rings is not a very good bound for the class of nil U-rings. This paper establishes a new bound for nil U-rings based on a property of the multiplicative semigroup of the ring.

Example. Let $B=\left\{y_{s}: s \in(0,1)\right.$ and $s$ is a rational number $\}$. Define multiplication in $B$ by the rule: $y_{s} y_{t}=y_{s+t}$ if $s+t<1$; otherwise $y_{s} y_{t}=0$. Let $p$ be any prime number. The Zassenhaus Example modulo $p$ is the algebra over the field of integers modulo $p$ with basis $B$. More generally, any algebra with basis $B$ will be called a Zassenhaus Example.

The theorem below shows that a Zassenhaus Example is not a U-ring. However, such rings are Baer radical rings (see [2]), and hence are locally nilpotent. The following theorem shows that the class of U-rings excludes all rings which have a multiplicative structure similar to a Zassenhaus Example.

Theorem. Suppose that a ring $R$ has a sequence of elements, $\left\{x_{i}: i \in N\right\}$, such that $x_{i}{ }^{{ }_{i}}=x_{i-1}$ where $n_{i} \geqq 2$ for all $i \in N$ and $x_{1} \neq 0$ while $x_{0}=0$. Then $R$ is not a U-ring.

The following lemmas are needed to establish the proof. In each of the lemmas, $S$ denotes any ring of the type indicated below.

Let $W$ be a subset of $(0,1) \cap Q(Q=$ rational numbers $)$ which has the properties:
(A) if $s, t \in W$ and $s+t<1$, then $s+t \in W$,
(B) if $s, t \in W$ and $s-t>0$, then $s-t \in W$,
(C) 0 is an accumulation point of $W$ (in the usual topology).

Let $S$ be any ring which has the set of generators, $\left\{y_{s}: s \in W\right\}$, which for all $s, t \in W$ satisfy the relations:

Received February 5, 1969.
(1) $y_{s} y_{t}=y_{s+t}$ if $s+t<1$,
(2) $y_{s} y_{t}=0$ if $s+t \geqq 1$.

Lemma 1. Suppose that $y_{s_{1}}, y_{s_{2}} \in S$ and $s_{1}<s_{2}<1$ and $L_{i}$ is the characteristic of $y_{s_{i}}$ for $i=1,2$. Then $L_{2}$ divides $L_{1}$.

Proof. Note that $L_{1} y_{s_{1}}=0$ implies that $\left(L_{1} y_{s_{1}}\right) y_{\left(s_{2}-s_{1}\right)}=L_{1} y_{s_{2}}=0$. Since $L_{2} y_{s_{2}}=0, L_{3}$, the greatest common divisor of $L_{1}$ and $L_{2}$ must be a solution of the equation $X y_{s_{2}}=0$. Since $L_{2}$ is the smallest positive integral solution of this equation, $L_{2}$ must be $L_{3}$ and therefore $L_{2}$ does divide $L_{1}$.

Definition. A point in $S$ will be an element of the form $y_{t}$.
If the additive characteristic of every or all but one non-zero element in the ring $S$ is 0 , define $G=0$. Otherwise let

$$
G^{*}=\min \left\{\operatorname{char}\left(y_{s}\right): y_{s} \in S \text { and } \operatorname{char}\left(y_{s}\right)>1\right\} .
$$

Let $y_{s 0} \in S$ be any element with characteristic $G^{*}$. Either (1) $y_{s 0}$ is the only point in $S$ which has characteristic $G^{*}$ or (2) there exists a maximum open interval $\left(a_{1}, a_{2}\right) \subseteq(0,1)$ such that $t \in\left(a_{1}, a_{2}\right)$ implies that $y_{t}$ has characteristic $G^{*}$. In case (1), let

$$
G=\min \left\{\operatorname{char}\left(y_{s}\right): y_{s} \in S \text { and } \operatorname{char}\left(y_{s}\right)>G^{*}\right\}
$$

and let $y_{s_{1}}$ be a point in $S$ which has characteristic $G$. Then every point $y_{t}$, where $s_{1}<t<s_{0}$, must have characteristic $G$ by Lemma 1. Hence there exists a maximum open interval $\left(a_{1}, a_{2}\right) \subseteq(0,1)$ such that $t \in\left(a_{1}, a_{2}\right)$ implies that $y_{t}$ has characteristic $G$. In case (2), let $G=G^{*}$. Note also that if $G=0$, then there is a maximum open interval $\left(a_{1}, a_{2}\right) \subseteq(0,1)$ such that $t \in\left(a_{1}, a_{2}\right)$ implies that $y_{t}$ has characteristic 0 .

Definition. $G$ is called the primary characteristic of $S ;\left(a_{1}, a_{2}\right)$ is called the primary interval of $S$.

Definition. A formal additive relationship in $S$ is an equation of the form $\sum_{i=1}^{h} L_{i} y_{s_{i}}=0$, where $s_{i}=s_{j}$ implies that $i=j, L_{i} \in Z$, and $L_{i} y_{s_{i}} \neq 0$ for every $i$ in $[1, h]$.

Lemma 2. There exists no formal additive relationships in $S$ in which every term has subscripts which lie in the primary interval $\left(a_{1}, a_{2}\right)$.

Proof. Let $h$ be the least positive number of terms that a formal additive relationship has, when every term has subscripts in ( $a_{1}, a_{2}$ ). Suppose that $\sum_{i=1}^{h} L_{i} y_{s_{i}}=0$ is a formal additive relationship where $s_{i} \in\left(a_{1}, a_{2}\right)$ for every $i$ in [1,h]. Let $s_{m}=\max \left\{s_{1}, \ldots, s_{h}\right\}$ and $s_{l}=\min \left\{s_{1}, \ldots, s_{h}\right\}$. Given any $u>0$ there exists a rational number $s<u$ such that $y_{s} \in S$.

Due to this fact, there exists $y_{t} \in S$ such that $t+s_{l}<a_{2}<t+s_{m}$. Since $L_{m} y_{\left(s_{m}+t\right)}=0$,

$$
\sum_{i=1}^{n} L_{i} y_{\left(s_{i}+t\right)}=\left(\sum_{i=1}^{n} L_{i} y_{s_{i}}\right) y_{t}=0
$$

can be rewritten as a formal additive relationship in ( $a_{1}, a_{2}$ ) with fewer than $h$ terms. This is a contradiction.

Lemma 3. There exists no formal additive relationships in $S$ in which any term has the form $H_{t}$, where $G$ does not divide $H$ and $t<g / 2$, where $g$ is the length of the primary interval, $\left(a_{1}, a_{2}\right)$.

Proof. Suppose that $H y_{t}+\sum_{j=1}^{m} L_{j} y_{s_{j}}=0$ is a formal additive relationship where $G$ does not divide $H$ and $t<g / 2$. Suppose also that

$$
s_{1}<\ldots<s_{h}<t<s_{h+1}<\ldots<s_{m} .
$$

There exists $y_{u} \in S$ such that $a_{1}+g / 2<t+u<a_{2}$. Then

$$
\left(H y_{t}+\sum_{j=1}^{m} L_{j} y_{s_{j}}\right) y_{u}=0
$$

is an additive relationship in which every term lies in ( $a_{1}, a_{2}$ ) but not every term is 0 since $H y_{(t+u)} \neq 0$. Consequently, this can be rewritten as a formal additive relationship in the primary interval, which contradicts Lemma 2.

Definition. A point $y_{s} \in S$ is an $M$-endpoint if $M y_{s} \neq 0$ but $M y_{t}=0$ for every $t>s$ where $M$ is an integer.

Definition. If $y_{s}$ is an $M$-endpoint for some integer $M$ and $L$ is the smallest positive integer such that $y_{s}$ is an $L$-endpoint, then $L$ is the near characteristic of $y_{s}$.

Lemma 4. Every dense subset of an open interval $\left(b_{1}, b_{2}\right) \subseteq(0,1)$ contains points such that $y_{s}$ is not an $M$-endpoint for any $M \in Z$ or there is no point $y_{s}$ in $S$.

Proof. If the $M$-endpoints in $S$ are ordered according to their near characteristics, then no two $M$-endpoints have the same near characteristics and as the near characteristics of the $M$-endpoints increase towards infinity, the $y$-subscripts decrease towards 0 . Since the positive integers have only one limit point (plus infinity), the $y$-subscripts of the $M$-endpoints in $S$ have at most one limit point. But every dense subset of the interval $\left(b_{1}, b_{2}\right) \subseteq(0,1)$ has infinitely many limit points. Hence some of the points in the dense subset of ( $b_{1}, b_{2}$ ) either are not the $y$-subscripts of any $M$-endpoints in $S$ or are not the $y$-subscripts of any points in $S$ at all.

The proof of the theorem will now be given.
Since every subring of a U-ring is a U-ring, it is sufficient to show that a subring of $R$ is not a U-ring. Let $S$ be the subring of $R$ generated by $\left\{x_{i}: i \in N\right\}$.

Then $S$ is commutative. Moreover, for all $k, p \in N,\left(x_{k}\right)^{p}$ can be renamed as $y_{(p / d)}$, where $d=\prod_{i=1}^{k} n_{i}$ if $p / d<1$; otherwise $\left(x_{k}\right)^{p}=0$. Then if $y_{s}, y_{t} \in S$, they are both powers of some $x_{i}$ in the sequence generating $S$, and therefore $y_{s} y_{t}=y_{s+t}$ (which may be 0 if $s+t>\left(n_{1}-1 / n_{1}\right)$ ). Note that

$$
W=\left\{s \in(0,1): y_{s} \in S\right\}
$$

has the properties (A), (B), and (C).
Let $E=\left\{y_{1 / k} \in S: k \in N\right\}$ and let $P(S)=\{$ primes $p: p$ divides $k$ for some $k \in N$ such that $\left.y_{1 / k} \in E\right\}$.

Case (1). Suppose that $P(S)$ is an infinite set. Then choose $p_{0} \in P(S)$ and let $T=\left\{\sum_{i=1}^{h} L_{i} y_{y_{i} / k_{i}}+\sum_{j=1}^{m} M_{j} y_{s_{j}}+\sum_{v=1}^{v} H_{w} y_{t_{w}} \in S: L_{i} \in Z,\left(l_{i}, k_{i}\right)=1\right.$, and $\left(p_{0}, k_{i}\right)=1$ for all $i$ in $[1, h] ; M_{j} \in Z$, and $y_{s_{j}}$ is an $M_{j}$-endpoint for all $j$ in $[1, m] ; H_{w} \in Z$, and either $t_{w} \geqq g / 2$ or $G$ divides $H_{w}$ for every $w$ in $\left.[1, v]\right\}$.

Note that the set $\left\{l / k: k, l \in N\right.$ and $p_{0}$ divides $\left.k\right\}$ is dense in $(0, g / 2)$. From the proof of Lemma 4 there exists some $y_{t} \in S$ such that $t \in(0, g / 2)$, $t=l / k$, where $p_{0}$ divides $k$, and $y_{t}$ is not an $M$-endpoint for any integer $M$. By Lemma 3 there exists no formal additive relationships involving elements of the form $H_{w} y_{t_{w}}$, where $t_{w}<g / 2$ and $G$ does not divide $H_{w}$. Hence $y_{t} \in S \sim T$, and therefore $T \neq S$. Note that the product of an $M$-endpoint with any other element in $S$ is 0 and that $\left(H_{w} y_{w w}\right) \cdot\left(L y_{u}\right)=L H_{w} y_{t w+u}$, where either $G$ divides $L H_{w}$ or $t_{w}+u>g / 2$ for every $w$ in [1, v]. If $p_{0}$ divides neither $k_{1}$ nor $k_{2}$, then $p_{0}$ does not divide $k_{1} k_{2}$. Consequently,

$$
\left(L_{1} y_{l_{1} / k_{1}}\right)\left(L_{2} y_{l_{2} / k_{2}}\right)=L_{1} L_{2} y_{\left(l_{1} k_{2}+l_{2} k_{1}\right) / k_{1} k_{2}}
$$

lies in $T$ if $L_{i} y_{l_{i} / k_{i}} \in T$ for $i=1,2$. Hence $T$ is a subring of $S$ since it is closed under addition and multiplication. If $L y_{l / k} \in S \sim T$, and $(l, k)=1$, then $p_{0}$ divides $k, l / k<g / 2$, $L$ does not divide $G$, and there exists $t>l / k$ such that $L y_{t} \neq 0$. Since $P(S)$ is an infinite set, there exists $y_{1 / k_{1}} \in T$ such that $1 / k_{1}+l / k<\min \{g / 2, t\}$. Consequently, $\left(L y_{l / k}\right)\left(y_{1 / k_{1}}\right)=L y_{\left(l k_{1}+k\right) / k k_{1}}$ is not 0 and is not in $T$ since $p_{0}$ divides $k k_{1},\left(p_{0}, l k_{1}+k\right)=1$ and by Lemma 3 this element cannot be expressed as a sum of terms which lie in $T$. Hence $L y_{l / k}$ is not in the idealizer of $T$, and $T$ is its own idealizer in $S$ due to the arbitrary nature of this element.

Case (2). Suppose that $P(S)$ is a finite set. Then choose $p_{1} \in P(S)$ such that $p_{1}$ divides an infinite number of terms in the sequence $\left\{n_{i}: i \in N\right\}$. Note that every power of $p_{1}$ divides some $k$ such that $y_{1 / k} \in E$. Let

$$
\begin{aligned}
Q=\left\{\sum_{i=1}^{u} L_{i} y_{l_{i} / k_{i}} \in S: L_{i} \in Z,\left(l_{i}, k_{i}\right)=1,\right. & \text { and } k_{i}=p_{1}^{n} \\
& \text { for some } n \in N \text { for all } i \text { in }[1, h]\} .
\end{aligned}
$$

Let $q$ be a prime such that $q \notin P(S)$ and let

$$
\begin{array}{r}
Q^{*}=\left\{\sum_{i=1}^{n} L_{i} y_{q l_{i} / k_{i}}+\sum_{j=1}^{m} M_{j} y_{s_{j}}+\sum_{v=1}^{v} H_{w} y_{t w} \in Q: L_{i} y_{l_{i / k i}} \in Q \text { for all } i \text { in }[1, h] ;\right. \\
M_{j} \in Z, \text { and } y_{s_{j}} \text { is an } M_{j} \text {-endpoint for all } j \text { in }[1, m] ; \\
\left.H_{w} \in Z, \text { and either } t_{w} \geqq g / 2 \text { or } G \text { divides } H_{w} \text { for all } w \text { in }[1, v]\right\} .
\end{array}
$$

Note that the set $\left\{l / p_{1}{ }^{n}: l, n \in N\right.$ and $\left(l, p_{1} q\right)=1$ is dense in ( $0, g / 2$ ). From the proof of Lemma 4, it follows that there exists a point $y_{t} \in S$ such that $t \in(0, g / 2), y_{t}$ is not an $M$-endpoint for any integer $M$, and $t=l / p_{1}{ }^{n}$, where $\left(l, p_{1} q\right)=1$. By Lemma 3 there exists no formal additive relationships involving elements of the form $H_{w} y_{t w}$, where $t_{w}<g / 2$ and $G$ does not divide $H_{w}$. Hence $y_{t} \in Q \sim Q^{*}$ and therefore $Q \neq Q^{*}$. Now, note that if $L_{1} y_{q l_{1} / k_{1}}$ and $L_{2} y_{l l_{2} / k_{2}}$ are elements in $Q^{*}$, their product, $L_{1} L_{2} y_{d}$, where

$$
d=q\left(l_{1} k_{2}+l_{2} k_{1}\right) / k_{1} k_{2},
$$

is an element in $Q^{*}$. Since the statements found in Case (1) on $M_{j}$-endpoints and elements of the form $H_{w} y_{t w}$, where either $t_{w} \geqq g / 2$ or $G$ divides $H_{w}$ apply in this case also, $Q^{*}$ is a subring of $Q$.

If $L y_{l / k} \in Q \sim Q^{*}$ and $(l, k)=1$, then $(q, l)=1, G$ does not divide $L, l / k<g / 2$, and there exists a rational number $t>l / k$ such that $L y_{t} \neq 0$. Note that $\min \{t, g / 2\}<\left(l / k+q / p_{1}{ }^{n}\right)$ for some natural number $n$ and there exists a point $y_{1 / k_{1}} \in E$ such that $p_{1}{ }^{n}$ divides $k_{1}$. Consequently,

$$
\left(L y_{l / k}\right)\left(y_{q / p_{1}{ }^{n}}\right)=L y_{\left(l p_{1}{ }^{n}+q k\right) / k 1_{1} n}
$$

which is not 0 and does not lie in $Q^{*}$ since $\left(q, l p_{1}{ }^{n}+q k\right)=1$ and by Lemma 3 this element cannot be expressed as a sum of terms which lie in $Q^{*}$. Hence $L y_{l / k}$ is not in the idealizer of $Q^{*}$, and $Q^{*}$ is its own idealizer in $Q$ due to the arbitrary nature of this element.

## References

1. R. Baer, Meta ideals, Report of a conference on linear algebras, June, 1956, pp. 33-52 (National Academy of Sciences-National Research Council, Washington, Publ., 1957).
2. N. J. Divinsky, Rings and radicals (Univ. Toronto Press, Toronto, Ontario, 1965).
3. P. A. Freĭdman, Rings with an idealizer condition. I, Izv. Vysš. Učebn. Zaved. Matematika 1960, no. 2 (15), 213-222. (Russian)

The University of Western Ontario, London, Ontario

