
A NEW BOUND FOR NIL U-RINGS 
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A U-ring is a ring in which every subring is a meta ideal. A meta ideal of a 
ring R is a subring I of R which lies in a chain of subrings, 

I i C 7 2 Ç . . . C / j | = i?l 

with the properties: 
(1) I\ is an ideal of I\+i for all X < ($; 
(2) If a is a limit ordinal number, then Ia = Ux<<* I\. 
Freidman [3] proved that every nil U-ring is a locally nilpotent ring. Since 

there are many locally nilpotent rings which are not U-rings, the class of 
locally nilpotent rings is not a very good bound for the class of nil U-rings. 
This paper establishes a new bound for nil U-rings based on a property of the 
multiplicative semigroup of the ring. 

Example. Let B = {ys: s Ç (0, 1) and 5 is a rational number}. Define 
multiplication in B by the rule: ysyt = ys+t ii s + t < 1; otherwise ysyt = 0. 
Let p be any prime number. The Zassenhaus Example modulo p is the algebra 
over the field of integers modulo p with basis B. More generally, any algebra 
with basis B will be called a Zassenhaus Example. 

The theorem below shows that a Zassenhaus Example is not a U-ring. 
However, such rings are Baer radical rings (see [2]), and hence are locally 
nilpotent. The following theorem shows that the class of U-rings excludes all 
rings which have a multiplicative structure similar to a Zassenhaus Example. 

THEOREM. Suppose that a ring R has a sequence of elements, {x^: i G N], such 
that xili = Xi-i where nt ^ 2 for all i £ N and xi F^ 0 while x0 = 0. Then R 
is not a U-ring. 

The following lemmas are needed to establish the proof. In each of the 
lemmas, S denotes any ring of the type indicated below. 

Let W be a subset of (0, 1) Pi Q (Q = rational numbers) which has the 
properties: 

(A) if 5, t £ W and 5 + t < 1, then s + t £ W, 
(B) if s, te W and 5 - / > 0, then s - t G W, 
(C) 0 is an accumulation point of W (in the usual topology). 
Let S be any ring which has the set of generators, {ys: s G W}, which for all 

s, t £ W satisfy the relations: 
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(1) ysjt = ys+t if ^ + t < l, 
(2) ysyt = Oiis + t ^ l . 

LEMMA 1. Suppose that ysi, yS2 G 5 and sx < s2 < 1 and Lt is the charac
teristic of ysi for i = 1,2. Then L2 divides Lx. 

Proof. Note that L1ysl = 0 implies that (L1ysl)y(S2-.sl) = LlyS2 = 0. Since 
£23^2 = 0> ^3J the greatest common divisor of Li and L2 must be a solution 
of the equation XyS2 = 0. Since L2 is the smallest positive integral solution of 
this equation, L2 must be L3 and therefore L2 does divide Li. 

Definition. A point in S will be an element of the form yt. 

If the additive characteristic of every or all but one non-zero element in 
the ring S is 0, define G = 0. Otherwise let 

G* = min{char(;y5): ys G S and c h a r ^ ) > 1}. 

Let yso G <S be any element with characteristic G*. Either (1) ySQ is the only 
point in S which has characteristic G* or (2) there exists a maximum open 
interval (aly a2) C (0, 1) such that t G (ai, a2) implies that yt has charac
teristic G*. In case (1), let 

G = min{char(ys): ys (z S and char(ys) > G*} 

and let ysl be a point in 5 which has characteristic G. Then every point yu 

where Si < t < s0, must have characteristic G by Lemma 1. Hence there 
exists a maximum open interval (#i, a2) C (0, 1) such that t G (#1, «2) 
implies that 3^ has characteristic G. In case (2), let G = G*. Note also that if 
G = 0, then there is a maximum open interval (<2i, a2) £ (0, 1) such that 
t G (ai, a2) implies that yt has characteristic 0. 

Definition. G is called the primary characteristic of S\ (ai, a2) is called the 
primary interval of 5. 

Definition. A formal additive relationship in 5 is an equation of the form 
X^=i Ltysi = 0, where s* = Sj implies that i = 7, L* G Z, and Ltysi 9^ 0 for 
every i in [1, ft]. 

LEMMA 2. There exists no formal additive relationships in S in which every 
term has subscripts which lie in the primary interval (ai, a2). 

Proof. Let h be the least positive number of terms that a formal additive 
relationship has, when every term has subscripts in (#i, a2). Suppose that 
]T i = i Ltysi = 0 is a formal additive relationship where st G (#i, a2) for every 
i in [1, h]. Let sm = max{si, . . . , sh} and st = minfsi, . . . , ^ } . Given any 
u > 0 there exists a rational number s < u such that ^ s G «S. 

https://doi.org/10.4153/CJM-1970-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-049-0


NIL U-RINGS 405 

Due to this fact, there exists yt G S such that t + sz < a2 < t + sm. Since 
Lmy(Sm+t) — 0, 

Z) LiJisi+t) = ( Z £«?« ) 3>* = 0 
i=i \ i=i / 

can be rewritten as a formal additive relationship in (ai, a2) with fewer than 
/z- terms. This is a contradiction. 

LEMMA 3. There exists no formal additive relationships in S in which any 
term has the form Hyt, where G does not divide H and t < g/2, where g is the 
length of the primary interval, (ai, a2). 

Proof. Suppose that Hyt + £ ? = i LJJSJ = 0 is a formal additive relationship 
where G does not divide H and t < g/2. Suppose also that 

Si < . . . < Sh < t < Sh+i < . . . < Sm. 

There exists yu Ç S such that a,\ + g/2 < t + u < a2. Then 

is an additive relationship in which every term lies in (ai, a2) but not every 
term is 0 since Hy{t+U) ^ 0. Consequently, this can be rewritten as a formal 
additive relationship in the primary interval, which contradicts Lemma 2. 

Definition. A point ys Ç 5 is an M-endpoint if Mys ^ 0 but My t = 0 for 
every t > s where M is an integer. 

Definition. If ys is an M-endpoint for some integer M and L is the smallest 
positive integer such that ys is an L-endpoint, then L is the near characteristic 
oîys. 

LEMMA 4. Every dense subset of an open interval (6i, b2) Q (0, 1) contains 
points s such that ys is not an M-endpoint for any M G Z or there is no point 
y s in S. 

Proof. If the ikf-endpoints in 5 are ordered according to their near charac
teristics, then no two Tlf-endpoints have the same near characteristics and as 
the near characteristics of the ikf-endpoints increase towards infinity, the 
^-subscripts decrease towards 0. Since the positive integers have only one 
limit point (plus infinity), the ^-subscripts of the M-endpoints in S have at 
most one limit point. But every dense subset of the interval (bi, b2) C (0, 1) 
has infinitely many limit points. Hence some of the points in the dense subset 
of (&i, b2) either are not the ^-subscripts of any M-endpoints in S or are not 
the ^-subscripts of any points in 5 at all. 

The proof of the theorem will now be given. 
Since every subring of a U-ring is a U-ring, it is sufficient to show that a 

subring of R is not a U-ring. Let 5 be the subring of R generated by {xt: i G N}. 
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Then S is commutative. Moreover, for all k, p G N, (xk)
p can be renamed as 

y(3,a), where d = XT^=i nt if p/d < 1; otherwise (xk)
p = 0. Then if y8, yt G S, 

they are both powers of some xt in the sequence generating S, and therefore 
ysJt = ys+t (which may be 0 if 5 + t > (ni — l /« i ) ) . Note that 

w= {se (fl,i):y, es} 

has the properties (A), (B), and (C). 
Let E = {y1/k G S: k G N} and let P(S) = {primes p: p divides k for some 

k G iVsuch that^i/fc G £ } . 

Case (1). Suppose that P (S) is an infinite set. Then choose po G P(S) and let 
2T = {T,LiLtyli/ki + E ? = i - M ^ y + Zl=iHwytw e S: L, e Z, (lu kt) = 1, 
and (po, kt) = 1 for all i in [1, h] ; Mj G Z, and ^5j is an ikfrendpoint for all 
j in [1, m] ; Hw G Z, and either ^ ^ g/2 or G divides Hw for every w in [1, v]}. 

Note that the set {l/k: k, l G N and >̂o divides è} is dense in (0, g/2). 
From the proof of Lemma 4 there exists some ^ 6 5 such that t G (0, g/2), 
t = Z/fe, where po divides k, and yz is not an M-endpoint for any integer M. 
By Lemma 3 there exists no formal additive relationships involving elements 
of the form Hwytw, where tw < g/2 and G does not divide Hw. Hence y t G 5 ^ T, 
and therefore T ^ S. Note that the product of an ikf-endpoint with any 
other element in S is 0 and that (Hwytw) • (Lyu) = LHwytw+u, where either G 
divides LHW or tw + u > g/2 for every w in [1, v]. If po divides neither ki nor 
k2, then po does not divide kik2. Consequently, 

(Liyh/jc1)(L2yl2/k2) = L^yuik 

lies in T if Liyli/ki G T1 for i = 1, 2. Hence T is a subring of S since it is closed 
under addition and multiplication. If Lyl/k £ S ~ T, and (l,k) = 1, then 
po divides k, l/k < g/2, L does not divide G, and there exists t > l/k such 
that Lyt j£ 0. Since P(S) is an infinite set, there exists y1/kl G r such that 
1/ki + l/k < min{g/2, /{. Consequently, (Lyl/k)(y1/kl) = Ly(lkl+k)/kkl is not 0 
and is not in T since po divides kkly (po, lk\ + k) = 1 and by Lemma 3 this 
element cannot be expressed as a sum of terms which lie in P. Hence Ly ijk is 
not in the idealizer of P, and P is its own idealizer in 5 due to the arbitrary 
nature of this element. 

Case (2). Suppose that P(S) is a finite set. Then choose pi G P(S) such 
that pi divides an infinite number of terms in the sequence {nt: i G N\. Note 
that every power of pi divides some k such that yi/k G E. Let 

Q = \ È Zaun e S:Lte Z, (liy kt) = l, and kt = px
n 

for some n G N for all i in [1, h] ( . 
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Let q be a prime such that q (£ P(S) and let 

{ h m v 

(?* = ) 2 L&auiki + X) Mjy8j + X HwJtw 6 (?: Ltyu/ki £ Q for all i in [1, A]; 

Afy G Z, and ;ySj, is an il/frendpoint for all j in [1, m]; 

Hw G Z, and either tw è g/2 or G divides Hw for all w in [1, z/] > . 

Note that the set {l/pin: /, n 6 N and (Z, £ig) = 1 is dense in (0, g/2). 
From the proof of Lemma 4, it follows that there exists a point yt Ç 5 such 
that £ 6 (0, g/2), 3^ is not an ikf-endpoint for any integer M, and t = / / ^ A 
where (/, piq) = 1. By Lemma 3 there exists no formal additive relationships 
involving elements of the form Hwytw, where tw < g/2 and G does not divide 
Hw. Hence yt Ç Q ̂  Q* and therefore Q 7e- Q*. Now, note that if LiyQll/kl 

and L2yQi2/jc2 are elements in Q*, their product, L\L^ya, where 

d = g(/i&2 + hk\)/k\k2, 

is an element in Q*. Since the statements found in Case (1) on Afrendpoints 
and elements of the form Hwytw, where either tw ̂  g/2 or G divides Hw apply 
in this case also, <2* is a subring of Q. 

If Lyl/Jc G Q ~ Q* and (/, k) = 1, then (q, I) = 1, G does not divide 
L, l/k < g/2, and there exists a rational number / > l/k such that Lyt ^ 0. 
Note that min{/, g/2} < (l/k + q/p\) for some natural number n and there 
exists a point yi/kl Ç £ such that £iw divides &i. Consequently, 

\Lyiik){yqiv\n) = Ly(ipin+qk)/kpin 

which is not 0 and does not lie in <2* since (q, lpin + qk) — 1 and by Lemma 3 
this element cannot be expressed as a sum of terms which lie in Q*. Hence 
Lyi/]c is not in the idealizer of ()*, and Q* is its own idealizer in Q due to the 
arbitrary nature of this element. 
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