
SOME EXAMPLES OF MODULES OVER NOETHERIAN RINGS

by I. M. MUSSON

(Received 23 April, 1980)

1. Introduction. The purpose of this note is to prove the following result.

THEOREM 1. Let n be an integer greater than zero. There exists a prime Noetherian ring
R of Krull dimension n + l and a finitely generated essential extension W of a simple
R-module V such that

(i) W has Krull dimension n, and
(ii) W/V is n-critical and cannot be embedded in any of its proper submodules.

We refer the reader to [6] for the definition and properties of Krull dimension.
Theorem 1 answers questions of Jategaonkar and Goldie. Let R be a two-sided

Noetherian ring. In [7] Jategaonkar asks whether every finitely generated essential
extension of a simple R -module is artinian, and Goldie [4] asks whether a critical
R-module is necessarily compressible.

The ring R is the enveloping algebra of a certain finite dimensional metabelian Lie
algebra.

Finitely generated, non-artinian essential extensions of simple R -modules were
studied in [8] for the case where R is a polycyclic group algebra. An example of a
1-critical module which is not compressible was found independently by Goodearl [5].
This example closely resembles our module W/V for the case n = 1.

We note that the bounds on Krull dimension are best possible for a prime Noetherian
ring R of Krull dimension n + l. For, by [8, Proposition 5.5], a finitely generated essential
extension of a simple R -module can have Krull dimension at most n, while [6, Proposition
6.8] states that an n + 1-critical R-module is isomorphic to a right ideal of R and so
cannot have the property expressed in (ii).

A simplified version of this example (the case n = 1) is to appear in [2, Chapter 7]. I
am very grateful for the hospitality of the University of Alberta where this work was
completed.

2. The example. Let k be a field of characteristic zero and X a vector space over k
with basis y, x0, x 1 ( . . . , x ^ .

We make X into a Lie algebra by defining

0 [xoy] = xo

i_1 for £ = 1 , . . . , re —1.
Let R be the universal enveloping algebra of X. Then R is a prime Noetherian ring

of Krull dimension re + 1, by [3, §§2.3 and 3.5].

Let / = £ (y - l)(*i ~ 1)-R a n d W = R/I. For each non-negative integer m we set

vm = (y-l)ym+ IeW.
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Then vm = voy
m and we have

= D0 (2)

since ( y - l ) x ; - ( y - l ) e l . Set V = v0R, then vm e V for all m, and V is spanned as a
vector space by {um : m > 0}.

LEMMA 1. The R-module V is simple.

Proof. We show by induction that

wm(l-xo)m = m!«o (3)

Suppose that um(l-x0)m = m\v0. Then by (2) and (3),

= t>m(y-xoy + xo)(l-xo)

= i>m(l-x0)m+1

= m !uo(l - xo)y + (m + l)!u0

Hence (3) holds for all m. It follows that if veV, u^O then voevR, so V is simple.
Another easy consequence of (3) is that the uf form a vector space basis for V. In order to
state the next lemma we introduce some notation. If e = {eQ, elt..., en_i) is an n-tuple of
non-negative integers we denote by xe the monomial

Also, let J = (y-1)R. Then J=>I and / / /= V.

LEMMA 2. (i) Let e = (e0, eu...,er,0,..., 0). Then the following identity holds in R.

i =O

V ' V — 1 — > p. 1 =
x i=0 ' i

Here the notation xj"1 is purely symbolic. Thus if ef =0 this term does not appear,
while if ef >0 then xjxxe = xf where fi = et if /V= i and fl = ei — 1.

( Z ei

(ii) Modulo J we have
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Proof, (ii) follows immediately from (i) since (y -1) € J.
(i) The defining relations (1) tell us how y may be moved to the left past any xt and

this result records how y may be moved past any monomial. We use induction on r and
for a fixed r, induction on the exponent er.

Thus let fi = et if if r and fr = er +1. Then

xfy = xexry =

xf

as required.
Notice that the module R/J= W/V has a basis consisting of elements xe +J and it is

immediate from Lemma 2 that when (xe'+J)y is written as a linear combination of
elements xf + J, the exponent sum on each xf is the same as on xe.

To gain further information from Lemma 2 it is convenient to introduce an ordering
on monomials xe.

Thus we write xf < xe if for some i>0,ei—fi>0 and ei+l-fi+1 = . . . = en_i —fn-\ = 0.
Note that any collection {xe} of monomials has a unique element which is minimal

under this ordering. Also if a = X kfx
f is a non-zero linear combination of monomials then

since Supp a is finite there is a unique monomial in Supp a which is maximal under this
ordering. We denote this monomial by max a.

Finally if a is an arbitrary element of JR and a £ J then a is uniquely representable in
the form a = £ \fx

f mod / and we set max a =max(£ kfx
f).

LEMMA 3. Suppose that a = X A;X/ and max a = xe where e = (e0, eu ..., en_j) satisfies
e, >0 for some i s l . I /

i=o

then |3 ̂  J and max j3 < max a.

Proof. Let

a= Z Vcf + Aex
e

x'<xe

and let j be the least integer greater than 0 with et > 0.

By
/ n-l \

Lemma 2 max xel y - 1 - X cf I = xE where gj_x = e{^x + 1, g = e; - 1 and g, = e, for
V i=0 /
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Since the monomials xf are linearly independent modulo J, in order to show that

it suffices to show that xg cannot occur in S u p p x M y - 1 - £ ^) f ° r any xf<xe and
\ i=O '

xf G Supp a.
n - l t l - 1

Notice that this can only possibly occur if £ et = Z fi a n d in this case we would
i=0 i=0

have xE = xh where for some k, hk_1 = /k_1 + l, hk=fk — l, hl=fl, lj=k, fc —1.
Suppose first that k > i. Then fk -1 = ek so fk > ek and ek+1 - / k + 1 = . . . «„_!-/„_! = 0.

This contradicts the maximality of xe in Supp a.
Suppose that k < i. Then /fc_x + 1 = ek_x, and since k -1 < j we have ek_x = 0. There-

fore /k_1 = - l , another contradiction.
Hence k = i, but in this case /i_x + 1 = e^x + 1 , /J — 1 = ef — 1 and yj = e, if jj=i, i-l and

so xf = xe.
We have shown that the term xE occurs with non-zero coefficient in |3.
To see that m a x | 3 < m a x a note that if x^<x e then any element x 8 e

S u p p x M y - 1 - S ei) satisfies x g < x f by Lemma 2.
\ i=O /

LEMMA 4. The module W is an essential extension of V.

Proof. Let T be a right ideal of R which strictly contains I. We must show that JQT.
If T contains a non-zero element of J we are finished since J/I is simple by Lemma 1.

Hence we may assume that T contains an element a = XhfXf + r where reJ and
f i= 0. Among such elements a choose a e T with max a minimal, say

« = Z *-fx' + Kxe + r.
x'<x<

If e = (e0, eu...,en_1) and et>0 for some i> 1 then Lemma 3 immediately gives a
contradiction to the minimality of max a.

Therefore T contains an element of the form \ox
s
o+ ... +\tx

s
0
+' + r with reJ,

A o ^ 0 ( ^ 0 . If ( is chosen minimal then Lemma 2 gives t = 0.
Hence Tjl contains an element xs

0 + r + I where s ^ l and reJ. Therefore

By writing r as a linear combination of the elements vh it is easy to see that this is a
non-zero element of V. Hence V n ( T / J ) ^ 0 .

Proof of Theorem 1. It remains to show that W/V is n-critical and cannot be
embedded in any of its proper submodules.

Let fcX^lenote the subalgebra of R which is generated by x 0 , x u . . . , x ^ x . Then the
R -module W = W / V j s free as a kX-module. We use induction on n to show that a
non-zero R -module W which is free as a fcX-module has Krull dimension at least n.

Let K = x0R, a 2-sided ideal of R, and consider the chain W > WK> WK2>....
For n = l this chain shows that W has Krull dimension at least 1. Assume n > l . Then
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WKmIWKm+i is a non-zero free R/K-module for each m. The ring RIK has exactly the
same defining relations as R except that the parameter n has dropped to n — 1. (This is
because xo = 0 gives [x1y] = x1 and [Xiy] = Xj +xi_1 if i> l . )

Therefore by induction WKm/WKm+1 has Krull dimension at least n - 1 and so W
has Krull dimension at least n.

If we regard W/V simply as a fcX-module then W/V is free of rank one. Hence as kX
is a commutative Noetherian domain of Krull dimension n, it follows that W/V is
n-critical as a kX-module and hence also as an R-module.

Finally, to see that W/V = R/J cannot be embedded in any proper submodule, notice
that by Lemma 2, the only element of R/J which is annihilated by y - 1 is 1 + J. This
completes the proof of Theorem 1.

The case n = 1 of Theorem 1 may be of special interest. In this case SE has the form

if = kx0 © ky where [xoy ] = x0

and if k is algebraically closed then S£ is an epimorphic image of any finite dimensional
soluble Lie algebra which is not nilpotent [1, p. 71]. Also in this case it is easily seen that
the module W = R/(y-l){xo-l)R obtained in Theorem 1 is uniserial, that is every
non-zero submodule of W has a unique maximal submodule. Hence we may state

THEOREM 2. Let k be an algebraically closed field of characteristic zero and X a finite
dimensional soluble Lie algebra over k which is not nilpotent. Let R be the enveloping
algebra of Z£. Then there is a finitely generated (uniserial) essential extension W of a simple
R-module V such that

(i) W is not artinian, and
(ii) W/V is 1-critical and cannot be embedded in any proper submodule.
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