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We explore the motion of an axisymmetric gravity current in an anisotropic porous
medium in which the horizontal permeability is larger than the vertical permeability.
It is well known that the classical axisymmetric gravity current supplied by a constant
point source of fluid has an unphysical singularity near the origin. We address this by
considering a pressure-dominated region near the origin which allows for vertical flow
from the source, such that the current remains of finite depth, whilst beyond this region
the flow is gravity dominated. At early times the inner pressure-driven region controls
the spreading of the current, but at late times the inner region occupies a progressively
smaller fraction of the current such that the radius increases as ∼t3/7, while the depth near
the origin increases approximately as ∼t1/7. The presence of anisotropy highlights this
phenomenon, since the vertical permeability maintains an effect on the flow at late times
through the pressure-driven flow near the origin. Using these results we provide some
quantitative insights into the dominant dynamics which controls CO2 migration through
permeable aquifers, as occurs in the context of carbon capture and storage.

Key words: gravity currents, porous media

1. Introduction

Buoyancy-driven flows in porous media resulting from the injection of fluid of different
density to the original reservoir fluid have been studied in some detail owing to their
importance for geothermal power production, carbon capture and storage and enhanced

† Email address for correspondence: benham@maths.ox.ac.uk

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited. 952 A23-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:benham@maths.ox.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.922&domain=pdf
https://doi.org/10.1017/jfm.2022.922


G.P. Benham, J.A. Neufeld and A.W. Woods

oil recovery, for example. The initial models of gravity-driven flow in a porous medium
by Barenblatt (1996) and Huppert & Woods (1995) established some simple similarity
solutions for two-dimensional gravity currents resulting from steady injection, and tested
these models with analogue laboratory experiments in isotropic porous media. These
models were based on the assumption that the vertical pressure gradient is everywhere
hydrostatic and that the flow becomes long and thin, so that the predominantly horizontal
flow is driven by the horizontal pressure gradient associated with variations in the
thickness of the current. The solution takes the form

h/L = (t/τ)1/3f [(x/L)(t/τ)−2/3], (1.1)

where L = Qxμ/k�ρg and τ = Qx(μ/k�ρg)2 are dimensional length and time scalings,
given in terms of the input flow rate per unit length, Qx, the permeability, k (assumed
isotropic), the density difference between the two fluids, �ρ, and the viscosity of the
injected fluid, μ (Huppert & Woods 1995). If one extends the analysis to account for
different permeabilities in the horizontal and vertical directions, kH and kV , the assumption
of hydrostatic pressure in the flow means that the vertical permeability does not feature in
the solution, which is the same as for the isotropic case. This is curious since the vertical
permeability of the porous medium may be much smaller than the horizontal permeability
owing to the original geological processes of formation and compaction of the medium
(Corbett & Jensen 1992; Martinius et al. 1999; Woods 2015). The key to this apparent
paradox is to assess the vertical pressure gradient required to drive the vertical flow which
is implicit in the gravity current solution. With a very small vertical permeability, this
pressure gradient scales as

∂p
∂z

∼ μ

kV

∂h
∂t

∼ μL
τ 1/3t2/3kV

. (1.2)

For the solution to be valid we require that (1.2) is small compared with the corresponding
hydrostatic pressure gradient

∂p
∂z

∼ �ρg. (1.3)

This requires that
t/τ � (kH/kV)3/2 , (1.4)

and we see the role of the vertical permeability in determining the time at which the flow
adjusts to the similarity solution. It is worth noting that this result provides an extension of
the analysis presented by Huppert & Pegler (2022) who considered the early-time pressure
solution in isotropic media.

For radial injection from a point source, the situation is more complex. In the classical
similarity solution (Lyle et al. 2005) there is a singularity in the calculated depth of the
current at the origin. However, this result is unphysical, and in order that the flow remains
of finite depth at the origin there is a near-origin adjustment zone for all time. Inclusion of
this near-origin adjustment zone leads to a different set of scaling laws and a new solution
for the current that is influenced by kV for all time. In this study we address these details
using a theoretical analysis in conjunction with numerical simulations, and we show the
analysis is consistent with a series of new laboratory experiments. Our study goes beyond
that of Huppert & Pegler (2022), where it was assumed that the pressure-driven flow
simply adjusts to the classical similarity solution.

We consider the application of our results to the case of CO2 sequestration in
porous geological reservoirs (Bickle et al. 2007; Szulczewski et al. 2012; Huppert &
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Neufeld 2014). During the injection of CO2 in such scenarios, a buoyant plume forms
within the brine-filled reservoir and rises upwards, spreading out under an impermeable
cap rock as a gravity current. There has been an extensive literature on the fluid dynamics
of such flows, including studies on the transition to self-similarity in confined aquifers
(Hesse et al. 2007), multiphase phenomena and relative permeability (Golding et al. 2011;
Krevor et al. 2012; Boon & Benson 2021), residual trapping and dissolution of the CO2
in the brine (Hesse, Orr & Tchelepi 2008; MacMinn, Szulczewski & Juanes 2011) and the
effects of geological heterogeneities (Jackson & Krevor 2020; Benham, Bickle & Neufeld
2021b). In the present study we illustrate how anisotropy of the porous medium leads
to the ratio kV/kH influencing the dispersal of the CO2 at all times, in contrast to the
classical gravity current solution. Furthermore, we show that for typical injection rates
the transition in flow regime from a pressure-dominated flow to a gravity-dominated flow
may occur once the flow has reached depths of 10–1000 m at time scales of 1–10 years,
depending on the value of kV/kH . This suggests that the initial pressure-driven flow
persists for a significant period of the injection, and in some cases the flow may never
become gravity-driven over the time and length scales relevant to those sites.

The structure of the paper is laid out as follows. Section 2 addresses the flow scenario,
treated analytically at early and late times, and comparisons are made with both numerical
simulations and porous bead experiments. Section 3 applies the results to the context
of carbon sequestration, calculating the criteria for whether a storage reservoir is in a
pressure- or gravity-driven regime, and § 4 closes with a discussion of these results.

2. Axisymmetric injection into anisotropic porous media

2.1. A note on anisotropic permeability
Before discussing the flow scenario, we first briefly discuss the geological context of
anisotropy in porous media. In subsurface geological reservoirs it is common for the
permeability of rocks to differ significantly depending on the direction of the flow (Corbett
& Jensen 1992; Martinius et al. 1999). This may result from post-depositional compaction
of the formation or from the deposition of successive layers of fine and coarse material.
Hence, the permeability field is sometimes written as a three-dimensional diagonal matrix,
k = Diag(kx, ky, kz), or equivalently in a different basis depending on the direction of
compaction (e.g. see studies on cross-bedding Woods 2015).

We account for such situations, but we restrict our attention to the case where the
compaction is aligned with the vertical coordinate, and hence the permeability is reduced
to horizontal and vertical variation only, (kx, ky, kz) = (kH, kH, kV), where kH and kV are
constants. Hence, the anisotropy is characterised by the single dimensionless parameter

γ = kH/kV . (2.1)

This formulation is relevant either for flow through a single thick sedimentary layer
that has been compacted vertically, resulting in a binary permeability field, or for flow
through a system of many horizontal sedimentary layers, in which the values kH , kV , can
be interpreted as effective permeabilities (Cardwell & Parsons 1945; Kumar et al. 1997;
Woods 2015). For example, in the latter scenario, if the layers vary between permeabilities
k1 and k2 over alternating layer widths d1 and d2, then the effective permeability values
are given by the arithmetic and harmonic mean values

kH ≈ d1k1 + d2k2

d1 + d2
, kV ≈ d1 + d2

d1/k1 + d2/k2
. (2.2a,b)
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Figure 1. Schematic diagram illustrating the transition from a pressure-driven flow at early times (a) to a
gravity-driven flow with a pressure-driven boundary layer near the origin at late times (b) in an anisotropic
porous medium. Contour lines are indicative of the typical pressure field and approximate streamlines are
sketched: (a) t � t∗; (b) t � t∗.

This tends to be a good approximation as long as the depth of the flow is much larger than
the widths of the layers d1, d2. Hence, in this system of horizontal sedimentary layers the
anisotropy is always such that γ ≥ 1. In fact, for many geological systems the horizontal
and vertical permeability have been observed to differ by several orders of magnitude
(Martinius et al. 1999), resulting in anisotropy values as large as γ = O(104).

2.2. The flow scenario at early times and subsequent transition behaviour
Next, we move on to describe the flow scenario we consider, and describe how this evolves
at early times, before the effects of gravity become significant. For the isotropic case, as
discussed by Huppert & Pegler (2022), the constant input of fluid from a point source
results in the current expanding in the shape of a self-similar hemisphere at early times.
The radial and vertical extent of the current are equal and grow like the cube root of time.
The flow transitions to a gravity-driven regime once the weight of the fluid dominates over
the injection pressure. In the following analysis, we extend this early-time analysis to the
case of injection into an anisotropic medium, demonstrating how the anisotropy γ affects
both the early-time dynamics and the transition behaviour.

We consider the constant axisymmetric injection of fluid (at flow rate Q) into a porous
medium with anisotropy γ and porosity φ, bounded from below by an impermeable
substrate, as illustrated in figure 1. The porous medium is initially saturated with an
ambient phase which has a lighter density than the injected fluid ρ2 < ρ1, whereas the
viscosities of the two fluids are assumed to be equal μ1 = μ2 = μ. For simplicity, we
assume that there is no mixing between the two fluids, such that the interface between
them remains sharp. We choose a cylindrical polar coordinate system (r ≥ 0, z ≥ 0) and
we denote the radial and vertical extent of the current, R(t) and H(t), which increase over
time due to the constant injection rate Q from a point at the origin.

At early times the pressure is dominated by the viscous resistance due to injection and
gravity has a negligible effect. Hence, due to conservation of mass the pressure must
satisfy the anisotropic version of Laplace’s equation (i.e. with non-uniform coefficients),
such that

kH
1
r

∂

∂r

(
r
∂p
∂r

)
+ kV

∂2p
∂z2 = 0. (2.3)
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Since kH and kV are constants, the dynamics can be easily mapped from an isotropic
medium, and hence the lateral and vertical extents must satisfy

H2/R2 = 1/γ. (2.4)

Likewise, conservation of mass (within a stretched hemisphere) dictates that

2πφHR2/3 = Qt. (2.5)

This indicates that the early-time dynamics is described by

H = γ −1/3(3Qt/2πφ)1/3, (2.6)

R = γ 1/6(3Qt/2πφ)1/3. (2.7)

Hence, at early times, the effect of anisotropy is to stretch/squash the flow in the more/less
permeable direction. We note that it is also possible to extend (2.6)–(2.7) to the case of a
time-varying injection rate Q(t), although we do not include this analysis here.

From this early-time analysis it follows that the thickness of the current, z = h(r, t), is
given by

h/H = [1 − (r/R)2]1/2, (2.8)

at early times. This is plotted in figure 2(a,c) for both isotropic (γ = 1) and anisotropic
(γ = 10) porous media. Numerical data are also plotted (at both early (a,c) and late times
(b,d)), which are discussed in more detail in § 2.5. It is surprising to note that (within this
early-time regime) a strongly anisotropic medium results in a current which is very long
and thin, but in which the pressure is not hydrostatic. This is contrary to the common
assumption that long and thin currents automatically imply a hydrostatic pressure.

After a significant amount of time the current grows to a thickness where the weight
of fluid begins to dominate over the injection pressures. This is equivalent to the
moment when the input flow rate Q is matched by the flow rate due to hydrostatic
pressure gradients. For a hydrostatic current, we have that ∂p/∂r ≈ �ρg∂h/∂r, so that
the integrated gravity-driven flux scales like

Qg ∼ −kH�ρg
μ

rh
∂h
∂r

∼ Q. (2.9)

By inserting approximate scalings, h ∼ H, r ∼ R, ∂h/∂r ∼ −H/R, this provides the
balance

Qg ∼ ubH2 ∼ Q, (2.10)

where the buoyancy velocity ub = kH�ρg/μ. This immediately provides an expression for
the thickness of the current at the transition between pressure- to buoyancy-driven flow,

H∗ =
(

Q
ub

)1/2

, (2.11)

and by equating this to the early-time behaviour (2.6) we find that the transition time is

t∗ = 2γφπ

3

(
Q

u3
b

)1/2

. (2.12)

Therefore, anisotropy causes the transition to occur at later times, as expected. Indeed,
the significance of this delayed transition is immediately appreciable when one considers
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Figure 2. Evolution of the shape of the injected flow z = h(r, t) in isotropic (a,b) and anisotropic (c,d) porous
media. Analytical (approximate) solutions (2.8), (2.29) are shown at early times in red (a,c) and at late times
in blue (b,d). Numerical solutions (black dotted lines) are shown at logarithmically spaced time intervals with
t/t∗ = 6 × (10−7–103) (other data for larger times do not fit within the axis limits). The position of the inner
radius r = Rp(t) is shown at late times with red points. The vertical scale of (b,d) is stretched by ×10.5 for
illustration purposes (note, (a,c) are magnified regions of (b,d)).

that some geological formations have anisotropy values as large as γ = O(104) (Martinius
et al. 1999; Bergmo et al. 2017).

The critical time t∗ distinguishes two distinct regimes. At early times t � t∗, or when
H � H∗, the effects of gravity are negligible and injection pressures dominate the flow,
whereas at late times t � t∗, or when H � H∗, gravity plays a significant role. However,
clearly the flow must remain pressure-driven very close to the source, even at late times.
This pressure-driven region is responsible for distributing the flow across the vertical
extent of the current, whereupon it diverts to the remaining gravity-driven region far away
from the origin (see figure 1b). Whilst various authors have alluded to the existence of
this pressure-driven boundary layer, it is not known how its lateral and vertical extents
evolve over time, nor how it couples with the remaining gravity current. Furthermore, it
is unknown how anisotropy affects the flow after transition occurs, which is the subject of
the following sections.

2.3. Late-time dynamics: classical analysis
At much later times t � t∗, once the flow has grown to a thickness H � H∗, it retains
much of the character of a classical porous gravity current. There is a long history of
studies on self-similar and gravity-driven flows in porous media, with the earliest work
developed by Pattle (1959) and Barenblatt (1952). Later, Lyle et al. (2005) described the
late-time dynamics in an isotropic porous medium by assuming a hydrostatic pressure
profile everywhere within the current. This results in the corresponding radially symmetric
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thin-film equation

φ
∂h
∂t

= ub
1
r

∂

∂r

[
rh

∂h
∂r

]
, (2.13)

for the evolution of the current thickness z = h(r, t). The above equation is accompanied
by boundary conditions imposing zero thickness at the nose, constant injection flux at the
origin and zero flux through the nose, such that

h = 0, at r = R(t), (2.14)

−2πrh
∂h
∂r

→ Q, as r → 0, (2.15)

−2πrh
∂h
∂r

→ 0, asr → R(t). (2.16)

It should be noted that, whilst these equations were formulated for the case of an
isotropic porous medium, the analysis can be easily transposed to the case of anisotropic
permeability, kH , kV . However, the vertical permeability kV vanishes from the analysis
since the injected flow and the ambient flow are decoupled (an assumption which we revisit
later), resulting in an identical system of equations.

The system of (2.13)–(2.16) admits the similarity variables

h =
(

Q
ub

)1/2

f (η/ηN), η = r
(Qub)1/4(t/φ)1/2 , (2.17a,b)

where the dimensionless shape f and prefactor ηN satisfy

−1
2
ηf ′ = 1

η

d
dη

[
ηf

df
dη

]
, (2.18)

f = 0, at η = ηN, (2.19)

−2πηf
df
dη

→ 1, as η → 0, (2.20)

−2πηf
df
dη

→ 0, as η → ηN . (2.21)

The solution can be calculated numerically, giving a prefactor value ηN = 1.155, and
the resultant shape is plotted in figure 8 in Appendix B with green lines. The influx
condition (2.20) results in singular behaviour of the thickness h near the origin, which
is a consequence of the hydrostatic pressure assumption. This is unphysical and can be
addressed by considering the pressure-driven flow near the origin. In particular, the flux
within this region is not buoyancy driven, and so the inflow boundary condition (2.20)
(resulting in singular behaviour of the thickness) no longer applies. Instead, the inflow
condition requires a non-hydrostatic flux component within the pressure-driven zone, and
as we will see, this maintains a dominant contribution to the flow (even at late times) such
that the thin-film approximation (2.13) cannot be used near the origin.

2.4. Back to the future: late-time dynamics revisited
Within the inner pressure-driven region strong vertical velocities deliver the injected flow
all the way to the uppermost extent of the current. The inner pressure-driven radius and
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z

r
Rp ~ ξ0t a

H
 ~

 ξ
0
ta

R ~ ζN t b

Inner

(pressure-

driven) Outer

(gravity-driven)

Figure 3. Schematic diagram showing the different variables of the late-time regime. The analysis in § 2.4
shows that the power law values are a = 1/7, b = 3/7. Note the aspect ratio is exaggerated for illustration
purposes, but in fact H may be smaller than Rp due to anisotropy (2.22).

the thickness scaling are related (for the same reasons as (2.4)) according to

H2/R2
p = 1/γ. (2.22)

Our isotropic porous bead experiments, discussed later in § 2.6, show that the thickness
of the current near the origin increases slowly over time (e.g. see figure 6). Therefore, we
attempt to describe the solution within this inner region using a set of rescaled variables
where we allow for the possibility of an evolving thickness at the origin, as shown in
figure 3. Using a weak power law value 0 < a < 1, the variables are rescaled according to

ξ = r/Rp(t), h = γ −1/2G(ξ, t)Rp(t), Rp(t) = ξ0u(3a−1)/2
b Q(1−a)/2(t/φ)a,

(2.23a–c)

where G is the dimensionless shape function, ξ0 is a dimensionless constant that we
determine later, and the powers of ub and Q in (2.23a–c) are chosen to be dimensionally
consistent. Note that we have kept the time dependence in G since it is not clear that the
shape is self-similar under the proposed scalings with a growing thickness. We later show
that this dependence can be neglected to good approximation at very late times.

The consequence of having a growing inner region is that the radial extent of the
corresponding outer region does not grow according to the classical R ∼ t1/2 power law
described earlier. In particular, conservation of mass (in conjunction with (2.22)) dictates
that

πφHR2 = πφγ −1/2RpR2 ≈ Qt. (2.24)

If a > 0, it follows that R grows as ∼tb, where b < 1/2. Hence, we introduce a
corresponding set of rescaled outer variables

ζ = r/R(t), h = γ −1/2F(ζ, t)Rp(t), R(t) = ζNu(3b−1)/2
b Q(1−b)/2(t/φ)b, (2.25a–c)

where F is the dimensionless shape profile, the nose position ζN is a dimensionless
constant to be determined and h is rescaled to match with the inner region.

952 A23-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.922


Axisymmetric gravity currents in anisotropic porous media

Mass conservation (2.24) indicates that

a + 2b = 1. (2.26)

Given these rescaled variables (2.25a–c), the thin-film equation (2.13) in the outer
(hydrostatic) region becomes

R2

Rp

∂F
∂t

− RR′

Rp
ζ

∂F
∂ζ

+ R2R′
p

R2
p

F = ub

γ 1/2φζ

∂

∂ζ

[
ζF ∂F

∂ζ

]
. (2.27)

The second two terms on the left-hand side of (2.27) are of the order O(t−2a) and so
become vanishingly small at large times. Assuming the time derivative of the scaled shape
decreases as ∂F/∂t ∼ 1/t for large times, then the first term on the left-hand side is also
of the order O(t−2a). Hence, at sufficiently late times (2.27) yields the result

−2πζF dF
dζ

≈ Q, (2.28)

where Q is the scaled flux of injected fluid, which is uniform in magnitude across the
extent of the gravity current, and which is yet unknown. Upon further integration and
applying the boundary condition (2.14), we arrive at an expression for the outer solution,
which is

F ≈
(

−Q
π

log ζ

)1/2

. (2.29)

We note that the integrated gravity-driven flux is given by

Qg = −2πubrh
∂h
∂r

, (2.30)

which grows according to
Qg = γ −1QubRp(t)2. (2.31)

At the transition thickness, H = γ −1/2Rp = H∗ = (Q/ub)
1/2, the gravity-driven flux

(2.31) equals the input flux Q, indicating that Q = 1. We also note that, after the transition
time t > t∗, the gravity-driven flux (2.31) continues to grow unbounded over time. Hence,
this can satisfy neither the boundary condition at the origin (2.15), nor that at the nose
(2.16). Losing the ability to impose the boundary condition at the nose indicates that a
shock profile will form, over which the flux discontinuously drops to zero (this is a feature
of such equations, e.g. see Whitham 2011) Hence, in terms of the classification of partial
differential equations, the problem is hyperbolic, unlike the case of a two-dimensional
gravity current due to a line source (Huppert & Woods 1995) which is parabolic.

Next, we consider conservation of mass to determine the model parameters. This is
given by the volume integral

2πφ

∫ R

0
rh dr = Qt. (2.32)

Hence, by inserting (2.29) into (2.32), we arrive at a relationship involving ζN and ξ0,
which is

2πζ 2
Nξ0

(πγ )1/2

∫ 1

ε(t)
y(− log y)1/2 dy = 1, (2.33)

where ε = Rp(t)/R(t) = O(t−(b−a)). Noting that ε becomes vanishingly small at late times
(since b > a), and noting that

∫ 1
0 y(− log y)1/2 dy = (π/32)1/2, we can rearrange (2.33) to
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give
ζ 2

Nξ0 ≈ (8γ )1/2/π. (2.34)

A further final condition is required to fully determine the coefficients ζN , ξ0, and this is
provided by matching the flux of the current between the inner and outer regions. Moving
from the outer region to the origin the thickness tends to a finite but growing value h =
H(t) (with zero slope) and a balance is sustained at the matching radius r = Rp, so the
gravity-driven flux becomes

− 2πubrh
∂h
∂r

= 2πub
R3

p

γ R
= Q, at r = Rp(t). (2.35)

Hence, (2.35) suggests that
b = 3a, (2.36)

which together with (2.26), gives the power law values

a = 1/7, b = 3/7. (2.37a,b)

Furthermore, (2.35) implies that the coefficients satisfy

ξ3
0 /ζN = γ /2π. (2.38)

Hence, the two equations (2.34) and (2.38), can be solved simultaneously to give

ξ0 = (21/2π3)−1/7γ 5/14 ≈ 0.58 · γ 5/14, (2.39)

ζN = (211/2π−2)1/7γ 1/14 ≈ 1.24 · γ 1/14. (2.40)

In addition, the thickness and radial scalings are given by

H = 1
γ 1/7

(
Q3

21/2u2
bπ

3

)1/7 (
t
φ

)1/7

, (2.41)

R = γ 1/14
(

211/2Q2ub

π2

)1/7 ( t
φ

)3/7

, (2.42)

Rp = γ 5/14

(
Q3

21/2u2
bπ

3

)1/7 (
t
φ

)1/7

, (2.43)

which now all reflect a dependence on the anisotropy γ . We note one further detail of this
analysis. Whilst H(t) (2.41) captures the overall thickness scaling of the gravity current,
it does not reflect the precise value at the origin. In particular, if we insert the matching
radius r = Rp into the thickness profile in the outer region (2.29), we find that the thickness
near the origin actually grows like

h(Rp(t), t) = Rp

γ 1/2

(
− 1

π
log

Rp

R

)1/2

∼
(

2
7πγ

log t
)1/2

t1/7. (2.44)

However, since the relative growth of the logarithmic component is very slow, this only
becomes appreciable at time scales t/t∗ larger than around exp(7πγ /2) ≈ (5.96 × 104)γ .
To summarise, the scaling for H(t) (2.41) provides the general behaviour of the thickness
everywhere in the current except near the origin, and (2.44) must be used to capture the
near-origin behaviour at very late times.
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2.5. Comparison with numerical simulations
We compare our analytical predictions for the early-time, late-time and transition
behaviour, with finite difference numerical simulations of axisymmetric Darcy flow in
an anisotropic porous medium. Before discussing these results, we first briefly outline the
numerical method. We model the flow using the Darcy equations (in cylindrical polar
coordinates), which are

u = − 1
μ

k · ∇ (p + ρigz) , ∇ · u = 0, in Ωi, i = 1, 2, (2.45a,b)

where ρ = ρ1 inside the injected fluid domain (which we denote Ω1) and ρ = ρ2 outside
the injected fluid domain (which we denote Ω2). The anisotropic permeability matrix k is
accounted for by imposing different values, kH and kV , in the radial and vertical directions.

The numerical solution at r = 0 is not available due to the singular nature of the
divergence in the continuity equation ∇ · u = 0. Instead, the domain begins at a small but
finite value of r0 = 0.05H∗ close to the origin (we note that the solution is insensitive to
the precise value 0.05). The governing equations (2.45a,b) are accompanied by boundary
conditions corresponding to impermeable/symmetric walls at r = r0 and z = 0, except for
a constant input flux Q injected over a small region near the origin, and far-field (Dirichlet)
pressure conditions imposed at the boundaries of a large but finite domain. Further details
on the boundary conditions and the dimensionless problem are given in Appendix A.

The interface between the domains Ω1 and Ω2 is given by a set of points ∂Ω = r(t),
which is treated as a passive scalar and is therefore advected at the fluid velocity, such that

dr
dt

= 1
φ

u(r, t), (2.46)

with initial conditions given by a small surface r(0) = r0 close to the origin. Following
the Lagrangian approach, the interface is discretised into points which are advected
along streamlines. Therefore, at every time step the domains Ω1 and Ω2 are updated via
interpolation over a gridded mesh of 150 × 150 points. Likewise, the grid is stretched over
time to account for the fact that the fluid region grows across several orders of magnitude.
The dynamic equation for the fluid–fluid interface (2.46) is solved using an explicit Euler
scheme with an adaptive time step, where at each time step the Darcy equations (2.45a,b),
(with updated domains Ωi) are solved using a second-order finite difference scheme.
A small amount of Gaussian smoothing is applied to the interface at every time step to
aid stability, but this is done under the constraint of mass conservation.

In figures 2 and 4 the evolution of the gravity current shape h(r, t) is shown together
with streamlines at different times. Both numerical and analytical (approximate) solutions
are shown, and the evolution of the inner region is illustrated in red. At early times t � t∗,
the shape of the current is well approximated by (2.8). Later, when t ≈ t∗, the flow enters
a transition regime in which gravity becomes appreciable in the majority of the current,
except in the near-origin pressure-driven region (whose relative radial extent Rp(t)/R(t)
diminishes in size). Much later, when t � t∗, the shape of the gravity current converges
to the approximate solution (2.29), and the streamlines away from the origin become
horizontal. Meanwhile, streamlines within the inner region remain sloped, indicating that
significant vertical velocities are present close to the origin.

We also plot the horizontal and vertical extents R, H, in figure 5. At early (t/t∗ <

10−2) and late (t/t∗ > 102) times, the numerical solution matches the analytical scalings
(2.6)–(2.7), (2.41)–(2.42) closely. At very late times, the slow logarithmic growth (2.44)
can be observed as a slight deviation in the vertical extent H away from the late-time
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(a) (b) (c)
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Figure 4. (a–c) Numerical and analytical profiles for the gravity current shape at three late times t/t∗ = 6 ×
(101, 102, 103), corresponding to the last three curves in figure 2(b). Streamlines in cyan are calculated by
integrating the numerical data using initial values close to the origin. The vertical scale is stretched by ×10.5
for illustration purposes.

scaling (2.41), which is consistent with our predictions. These plots are also displayed
with linear scales in figure 9 in Appendix B for comparison.

To understand the role of the inner pressure-driven region, we have also calculated
the maximum absolute value of the pressure deviation from hydrostatic |p − phyd|∞,
normalised by the weight of the injected fluid �ρgH. This deviation does not
fall to zero over time, but instead appears to tend to a constant value of around
|p − phyd|∞/�ρgH ≈ 3. This indicates that the flux is not well approximated by the
gravity-driven component (2.30) everywhere within the current. As a result, the classical
thin-film equation (2.13) and the similarity variables (2.17a,b) cannot be accurate in the
late-time regime. In particular, the boundary condition at the origin feeding the gravity
current with flux Q cannot be supplied with a gravity-driven term of the form (2.30) as
this would cause an infinite thickness. Instead, the only way for the thickness to remain
finite is with a pressure-driven input flux at the origin, which explains why the pressure
deviation from hydrostatic may never drop to zero over time.

We have also performed the same numerical calculation in the case of a two-dimensional
injection from a line source (e.g. see figure 10 in Appendix B) and in this case the pressure
deviation |p − phyd|∞/�ρgH does drop to zero over time, indicating that (by contrast)
the two-dimensional flux is well approximated by the corresponding gravity-driven
component (−ubh∂h/∂x) everywhere within the current at late times.

Since the power laws t3/7 and t1/2 are not hugely different, we have also tried comparing
the numerical solution with the classical self-similar scalings (2.17a,b) proposed by Lyle
et al. (2005), as shown with dotted green lines in figure 5 and with solid green lines in
figure 8 in Appendix B. Since the disparity between the different proposed scalings grows
larger over time like ∼t1/2−3/7 ∼ t1/14 (in the case of radius) and like ∼ t0−1/7 ∼ t−1/7 (in
the case of thickness), after a time scale t/t∗ = 106 this corresponds to disparaging factors
of 106/14 ≈ 2.68 and 10−6/7 ≈ 0.14, respectively. Since these discrepancies lie outside
the 5 % error observed in figure 5, this indicates that the scalings (2.41)–(2.42) are more
accurate than the self-similar scalings (2.17a,b).

2.6. Comparison with experimental data
Next, we compare our results with experiments conducted in a porous medium tank. We
use the same apparatus for our experiments as Lyle et al. (2005) except that we use a
peristaltic pump instead of a fluid reservoir to control the flow rate (for improved accuracy).
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R ∼ t3/7

R ∼ t1/3

H ∼ t1/7 (log t)1/2

H ∼ t1/7

H ∼ t1/3

101 106
10–1

101

10–6 10–4 10–2 100 102 104 106
10–2

10–1

100

101

102

t/t∗

t/t∗

H/H∗

H/H∗

10–6 10–4 10–2 100 102 104 106
10–4

10–2

100

102

104

R/H∗

Numerics γ = 1

Numerics γ = 104

Lyle et al. (2005)

Porous beads experiment

(a)

(b)

Figure 5. Analytical, numerical and experimental data for the radial (a) and vertical (b) extents of the
current, R, H. Numerical results are shown for both an isotropic medium γ = 1 and an anisotropic medium
γ = 104, whereas experimental results are only for the isotropic case. Analytical early-and late-time scalings
(2.6)–(2.7), (2.41)–(2.42), are shown with solid black lines and alternate scalings derived by Lyle et al. (2005)
(R ∼ t1/2, H ∼ t0) are shown with dotted green lines. Best fit power law H/H∗ ∝ (t/t∗)0.1537±0.0176 for the
late-time experimental thickness data is shown as an inset in (b).

A square Perspex tank with a 61 cm × 61 cm base is filled with 0.3 cm glass Ballotini
beads saturated with fresh water. Due to the difficulties associated with creating an
anisotropic permeability field from these beads, our experiments are restricted to the
isotropic case. Hence, the dependence on the anisotropy parameter γ in the analytical
scalings (2.6)–(2.7), (2.41)–(2.43) is checked against our numerical simulations, whilst
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Q (cm3 s−1) 0.020 0.021 0.043 0.125 0.209 17.36 17.67 31.62

g′ (cm s−2) 172.66 178.54 159.90 159.90 151.07 22.56 22.56 22.56

Table 1. List of experiments and corresponding parameter values.

the dependence on the remaining parameters (e.g. dimensional scalings and power laws)
is checked against both numerical simulations and experiments (in the isotropic case).

Two cameras are positioned above and alongside the tank, pointing vertically downwards
(plan view) and horizontally (side view), to capture both the radius and the thickness of the
current. Salty water dyed with red food colouring is injected into the corner of the tank at
different salt concentrations leading to a variety of density contrasts. By injecting into one
corner of the tank the experiment represents one quarter of the full axisymmetric scenario
whilst allowing for a larger range of radial data given the tank size.

A full list of the different input flow rates and reduced gravity values g′ = �ρg/ρw
(where ρw = 1 g cm−3 is the density of water) is given in table 1. The experiments at high
flow rates Q = 17.36–31.62 cm3 s−1 result in a current with an order O(1) aspect ratio,
with most of the injected fluid located in the interior region of the tank (away from the
walls). Hence, the porosity and permeability are estimated using the values calculated for
randomly packed beads, φ = 0.37 and k = 6.8 × 10−9 m2 (Lyle et al. 2005). However,
the experiments conducted at low flow rates Q = 0.020–0.209 cm3 s−1 result in a gravity
current no thicker than 1–3 bead diameters (z = d − 3d) and hence the flow is subject to
wall effects. In these cases the porosity is estimated using the empirical formula derived
by Ribeiro, Neto & Pinho (2010) accounting for wall effects, which is

φ = 0.373 + 0.917 exp(−0.824z/d) ≈ 0.55, (2.47)

where we have used an average flow depth value z = 2d, and the permeability is estimated
using the Kozeny–Carman relationship

k = d2φ3

180(1 − φ)2 ≈ 4.36 × 10−8 m2. (2.48)

It is worth noting how variations in the permeability (and hence the velocity) due to wall
effects (2.47) may modify the flow. As discussed by Hinton & Woods (2018), whilst such
shear effects may alter the coefficients of the spreading rates, they do not modify the power
laws, which motivates the use of different constant values here.

It is also worth briefly discussing the appropriate size of a representative elementary
volume (REV) for this medium, and consequently the possible limitations on modelling
the flow using a homogenised set of equations such as Darcy’s law. The form of (2.47)
suggests that an appropriate length scale for the REV is simply d (the bead diameter),
which is the e-folding length scale for porosity changes. Hence, it is expected that the
porosity and permeability may become more uncertain when the flow becomes smaller
than one bead diameter in thickness (e.g. towards the outer radius of the gravity current
at very small flow rates). However, in such cases upper and lower bound estimates can be
calculated using (2.47), for example.

By varying the flow rate and reduced gravity, a variety of different transition time
scalings are achieved, producing data in the range t/t∗ = 10−3–105. We also complement
our data with the experiments of Lyle et al. (2005) which are in the intermediate range
t/t∗ = 0.08–22. To reach such late-time values we inject using a very slow flow rate of
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H = H∗

t/t∗ = 119

t/t∗ = 1908

t/t∗ = 30 532

t/t∗ = 1540

t/t∗ = 12 316

t/t∗ = 197 060

(a) (b)

Figure 6. (a,b) Close-up snapshots of the gravity current thickness near the origin during two injection
experiments with different flow rates. Photos are taken over 30 min (a) and 1 h (b), and spaced logarithmically
in time. (a) Q = 0.209 cm3 s−1, H∗ = 0.36 cm; (b) Q = 0.020 cm3 s−1, H∗ = 0.11 cm.

Q = 0.02 cm3 s−1 over one hour with photos taken at logarithmically spaced time intervals
starting at 30 s (see figure 6). After post-processing the images, the radial and vertical
extents of the current are extracted by dividing the pixels into binary values according to
a threshold value (enabled by the colour contrast due to the dye).

Data for the thickness and radius of the current are plotted together with numerical and
analytical results in figure 5. The radius data R(t) approximately follow the 3/7 power
law (2.42), however, one could argue that the 1/2 power law (2.17a,b) is just as accurate
within the error margins of the experimental data. More clarity is achieved by observing
the variation of the thickness near the origin H(t), as shown by the photos in figure 6. In
particular, the thickness is clearly observed to increase beyond the transition value by as
much as H ≈ 5.5H∗ over the course of the experiments, albeit with a very small growth
rate. Indeed, without running the experiments for such a long time it would appear that
the thickness has ceased growing entirely. By contrast, when observed at logarithmically
spaced time intervals the thickness shows no signs of abating. We estimate that the error
associated with measuring the thickness of the current is approximately one bead diameter,
so we have added error bars to illustrate this.

Post-processing of the images to extract the interface position reveals that the thickness
follows the 1/7 power law (2.41) to good approximation, as shown in figure 5. We have
also tried using a least-squares minimisation that fits an arbitrary power law H = AtB to
the combined experimental dataset (over four different flow rates) at late times t > 100t∗,
as shown in the figure inset. This produces a power law of B = 0.1537 ± 0.0176 which is
close to 1/7 ≈ 0.1429. Moreover, this slightly larger numerical value for the power law
might hint towards the faster logarithmic growth predicted earlier.

It is not possible to discern the logarithmic correction to the thickness (2.44)
quantitatively since this would require much longer time scales than we could
achieve experimentally. Nor is it possible to accurately discern the convergence of the
experimentally measured shape to the approximate solution (2.29) over long times,
since the aspect ratio of the current is incredibly slender (around 200:1). To extend
the experiments to larger values of t/t∗ is challenging in practice, since smaller flow
rates than Q = 0.02 cm3 s−1 would result in current thicknesses much smaller than a
single bead size (H∗ � 0.3 cm) that would be difficult to observe. Alternately one could
run the experiments for a longer time, but this requires a much larger tank than we
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have available. For example to extend t/t∗ by a factor 100 would require a tank of
dimensions 1003/7 ≈ 7.2 times larger (i.e. with a 439 cm × 439 cm base). Nevertheless,
our experiments clearly show an increasing thickness near the origin with the approximate
1/7 power law behaviour (2.41). Hence, by conservation of mass (2.24) it follows that the
radius must grow according to a 3/7 power law, and the shape profile (2.29) must become
a good approximation over long times (e.g. see analysis in § 2.4 and numerical solution in
figures 2, 4).

It is important to note the possible effects of diffusion/dispersion over such long time
scales. The length scales for molecular diffusion, fluid dispersion, and Taylor dispersion
are approximately  ∼ (Dt)1/2,  ∼ (dUt)1/2 and  ∼ (d2U2t/48D)1/2, respectively,
where D is the molecular diffusivity of salt or dye (both similar values), U is a
characteristic velocity scale and d = 0.3 cm is the diameter of the Ballotini beads.
As an estimate for the diffusivity we take D = 10−10 m2 s−1, and for the velocity we
take the value at the top of the current U ≈ dH/dt. Inputting these, we calculate
diffusion/dispersion scales of  ∼ 0.06 cm,  ∼ 0.13 cm and  ∼ 0.04 cm, which are all
considered small within the experimental context. It is clear from the images in figure 6
that the interface near the origin remains relatively sharp (although there are some light
scattering effects due to the glass beads), indicating that the effects of dispersion are
negligible there. Hence, this validates our approach of post-processing the images to
extract the current thickness at late times.

3. Relevance to carbon storage sites

In this section we situate our results within the context of carbon storage applications, in
which CO2 is injected into a porous reservoir saturated with brine and bounded above by
an impermeable cap rock (note that, under the Boussinesq approximation, our analysis
equally applies to a lighter fluid injected into a heavier fluid which is bounded above).
The ability to determine whether an injected CO2 plume is in a pressure-driven regime
or a gravity-driven regime is useful for predicting the shape of the flow, and the expected
plume migration speeds. This is important for ensuring that the CO2 can be stored as safely
and efficiently as possible.

For this analysis we compare our estimates for the transition time and thickness scalings
t∗, H∗, with typical parameter values from field sites. This enables us to estimate whether
the required injection time, or whether the confines of the aquifer (e.g. the available space
between impermeable cap rocks) are sufficient for a gravity current to form. To make this
comparison we require approximate parameter ranges for the injection flux Q, as well as
the buoyancy velocity ub = kH�ρg/μ, porosity φ and anisotropy γ = kH/kV .

As described by Huppert & Pegler (2022) in the isotropic case, the time to transition to
a gravity current may be significantly prolonged by small permeability values. Here, we
show that the transition time (2.12) may be further prolonged by the presence of anisotropy,
such that even sedimentary systems with large horizontal permeability values kH may
still remain in a pressure-driven regime for a long time (e.g. hundreds or thousands of
years) if the vertical permeability kV is significantly smaller (γ � 1). This has significant
consequences for modelling approaches, which often directly assume a gravity-driven
plume within the timeframe of the injection site, and indicates the need for detailed
measurements of heterogeneities to ensure accurate predictions for the migration of CO2.

In addition to the case of axisymmetric radial injection, which is the focus of the current
study, we also briefly describe the analogous case of two-dimensional planar injection
(from a line source) into anisotropic media. This is a simple extension of the study by
Huppert & Pegler (2022) for isotropic media, incorporating different permeabilities kH ,
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Regime Variable Prefactor Scaling tn γ n

t � t∗x Rx 2/π1/2 (Qx/φ)1/2 1/2 1/4
t � t∗x Hx 2/π1/2 (Qx/φ)1/2 1/2 −1/4

Planar t � t∗x Rx ηN ≈ 1.482 (Qxub/φ
2)1/3 2/3 ∼

t � t∗x Hx f0 ≈ 1.296 (Q2
x/ubφ)1/3 1/3 ∼

t∗x π/4 φQx/u2
b ∼ 3/2

H∗
x 1 Qx/ub ∼ 1/2

t � t∗ R (3/2π)1/3 (Q/φ)1/3 1/3 1/6
t � t∗ H (3/2π)1/3 (Q/φ)1/3 1/3 −1/3

Radial t � t∗ R ζN = (211/2/π2)1/7 (Q2ub/φ
3)1/7 3/7 1/14

t � t∗ H ξ0 = (21/2π3)−1/7 (Q3/u2
bφ)1/7 1/7 −1/7

t∗ 2π/3 φ(Q/u3
b)

1/2 ∼ 1
H∗ 1 (Q/ub)

1/2 ∼ 0

Table 2. List of asymptotic limiting behaviours for the horizontal and vertical extent of the flow, as well as
the transition scalings, for the case of planar injection (from a line source) and radial injection (from a point
source). For example, the late-time extent in the radial case is given by R = ζN(Q2ub/φ

3)1/7t3/7γ 1/14. Note,
the vertical extent in the case of radial injection H has a slow logarithmic dependence (2.44) which we omit
here for simplicity.

kV , in the horizontal and vertical directions. As such, for the present analysis we skip the
derivation of these scalings and simply present them in table 2 for reference. To distinguish
the planar case from the radial (axisymmetric) case, we introduce subscript notation for
the transition time t∗x , the transition thickness H∗

x , and the injection flux per unit width
Qx. Likewise, the variables Rx and Hx in the planar case are equivalent to the lateral
and vertical extents of the current. We note that the dynamics of the current for planar
injection only depends on the anisotropy parameter γ at early times, not at late times, as
discussed in the Introduction. In figure 10 in Appendix B we have plotted additional data
for the evolution of Rx(t) and Hx(t) in the planar case. These data include results from our
numerical simulations (modified to a two-dimensional coordinate system) as well as some
additional experiments that we conducted in a Hele-Shaw cell. Further details of these
results are described in Appendix B.

The references for the parameter values used in this section comprise a variety of sources
describing different carbon storage sites around the world (Bickle et al. 2007; Chadwick,
Noy & Holloway 2009; Oldenburg et al. 2011; Cowton et al. 2016; Bickle et al. 2017; Jiang
et al. 2017; Williams & Chadwick 2017; Cowton et al. 2018; Roach & White 2018). The
buoyancy velocity is estimated using parameter values μ = [5.5–6.6] × 10−5 Pa s, �ρ =
232–309 kg m−3 and kH = 10−14–10−12 m2, resulting in ub = [3.4–551] × 10−7 m s−1.
For the injection flux, we take estimates for a two-dimensional line source as Qx =
[0.4–3] × 10−4 m2 s−1, and for a radial point source as Q = [0.1–4] × 10−2 m3 s−1.
Porosity is taken as φ = 0.2–0.25. The degree of anisotropy varies considerably between
CO2 sequestration sites. For example, observations of permeability variations were around
two orders of magnitude for Salt Creek, USA (Bickle et al. 2017), and four orders of
magnitude for the Tilje formation in Norway (a potential sequestration site) (Martinius
et al. 1999; Bergmo et al. 2017). Hence, for this study we consider anisotropy in the range
γ = 1–104.

We note that in the case of sedimentary layers, the anisotropy parameter is interpreted
as an effective property which is only well defined over length scales much larger than a
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Figure 7. Transition time t∗, t∗x (a) and transition thickness H∗, H∗
x (b) for different anisotropy values γ , in the

case of planar (line source) injection and radial (point source) injection. Corresponding data for the Aquistore
carbon sequestration site (assuming radial injection) are illustrated, together with uncertainty estimates for
parameter values.

single layer thickness (see § 2.1). Therefore, for the application of our model we restrict
our attention to situations where the flow spans across a large number of layers or across
a single sedimentary layer with significant anisotropy (i.e. due to compaction). In other
situations (where the flow only occupies a few layers) a more detailed numerical model is
required to treat the specific details of the flow within each layer.

Collating all of these data, we plot the transition time t∗ and transition thickness H∗
in figure 7 for a range of anisotropy values, in both the planar and radial cases. Upper
and lower bounds are displayed which correspond to the range of possible values for
the injection flow rates Qx, Q, buoyancy velocity ub and porosity φ. The range of data
displayed shows that transition may occur once the flow has reached depths of 10–1000 m
at time scales of 1–10 years, for very anisotropic reservoirs. This indicates that some
storage sites may actually be in a pressure-driven regime (rather than a gravity-driven
regime) for a significant period of operation.

For comparison, we also display data for the Aquistore CO2 storage project in
Saskatchewan, Canada (in operation 2015–present). In this case, the storage reservoir is
at least 150 m thick and is located at a depth of 3200 m. This vertical interval is bounded
above and below by low permeability layers of rock (see White et al. (2014) for more
details). The mean permeability within the storage reservoir is estimated as k = 1 ×
10−14 m2 (Roach & White 2018). Likewise, Jiang et al. (2017) estimated the injection rate
as 350–550 tonnes day−1, which is equivalent to Q ≈ 5.3–9.2 × 10−3 m3 s−1. We model
the injection as an axisymmetric point source. Hence, using approximate anisotropy values
γ = 10–100 we calculate a transition time scale of t∗ = 40–1040 days. The transition
thickness is calculated as H∗ = 98–163 m, which is quite large due to the low permeability
and high injection rates for this storage site. This indicates that the effects of the vertical
confinement of the reservoir are likely to have played an important role on CO2 migration
before reaching this transition regime. Hence, the early-time dynamics (2.6)–(2.7) is
appropriate for the early stages of injection for this site, after which a model which
incorporates the effects of confinement may be more appropriate.

To analyse when and where the effects of confinement become important, one could
use the results of Hesse et al. (2007) for the finite release of a buoyant fluid into a porous
layer. For example, it was found that a similar regime transition is observed depending
on how much of the vertical interval of the layer is occupied with the released fluid.
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Similarly, Pegler, Huppert & Neufeld (2014) investigated the effects of a viscosity contrast
on the injection of CO2 into a confined porous layer. In this case, it was found that
confinement played a dominant role when the CO2 occupied at least 10 % of the layer
thickness.

4. Discussion

The transition from a pressure- to a gravity-driven flow has been addressed for constant
axisymmetric injection into an anisotropic porous medium. We have derived scalings for
the early and late-time growth of the current, as well as the time scale at which the
transition occurs, showing close comparison with analogue experiments and numerical
simulations. Early-time scalings revealed that anisotropy causes a long and thin current
in which the pressure is not hydrostatic, with a delayed transition to the gravity-driven
regime. Hence this study presents a paradigm shift for such flows, which are typically
assumed to be gravity driven if long and thin. Analysis of the late-time regime showed that
a region near the origin must remain pressure driven. Within this pressure-driven region,
strong vertical velocities are required to deliver a uniform horizontal flow to the rest of the
gravity-driven current. The pressure within this region cannot become hydrostatic, since
this causes an unphysical singular current thickness near the origin. Therefore, the inner
pressure-driven region serves to counteract this singularity, thereby providing a significant
non-hydrostatic contribution to the flux even at late times.

One consequence of this pressure component is a finite but ever-growing thickness near
the origin, which contrasts previous theories that assumed a constant thickness scaling.
Another consequence is that the late-time growth of the gravity current remains affected
by the vertical permeability value kV (and hence the anisotropy ratio γ ) due to vertical
velocities near the origin. This is in contrast to the two-dimensional (planar) case, in
which anisotropy only affects the time to transition, not the late-time behaviour. Our
theoretical predictions were confirmed by comparison with numerical simulations of
anisotropic Darcy flow run across 13 orders of magnitude in time, and porous medium tank
experiments in the isotropic case. Length and time scales for transition were calculated for
anisotropy values of different CO2 storage sites, indicating that some field sites may never
reach the gravity-driven regime over the course of operation.

It should be noted that in practice sequestration sites usually inject CO2 over a finite
length of perforations (at least metres, and sometimes tens of metres for long horizontal
wells). Hence, it is worth discussing our assumption of a point source and how this
compares with real injection scenarios. In particular, we expect our point source model
to be less accurate in situations where the vertical extent of the plume is the same as or
smaller than the injection interval (i.e. at the early stages of injection). However, once
the plume has grown larger than this our model corresponds with the macroscopic flow
behaviour, which does not depend on the specific details of the well geometry close to the
source, only the injection rate. In a future study a more a detailed numerical model could
be used to assess the effect of the precise well geometry at very early times.

Whilst we have mentioned carbon sequestration applications throughout this study, we
have neglected several physical effects which are relevant to the flow of CO2 in brine.
For example, we have neglected the viscosity contrast between these phases for simplicity
(CO2 is typically around 20–30 times less viscous than brine). By extending this study to
account for such effects, it is expected that the viscosity ratio M = μ1/μ2 will appear in
the early and late dynamics for H and R wherever the anisotropy parameter γ does. This is
because the viscosity ratio can only affect the dynamics whenever the flow of injected and
ambient fluids are coupled together (just like γ ). It would also be interesting to extend these
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results to account for multiphase effects, similarly to Golding, Huppert & Neufeld (2013)
in the case of homogeneous media, and similarly to Benham, Bickle & Neufeld (2021a)
and Jackson & Krevor (2020) in the case of heterogeneous media.

There are several interesting perspectives from this work that are worth discussing.
Firstly, the different dynamics between early and late times presents an opportunity for
inverse modelling to help interpret petrophysical information about the reservoir. For
example, if it can be shown that the radial extent of the flow is growing according to
the early-time power law behaviour, then this can place bounds on the permeability and
anisotropy of the flow due to heterogeneities. This is useful for field sites since information
about the heterogeneities is often restricted to sparse core measurements or coarse seismic
surveys.

It is also worth noting the analogy between the current study and the canonical case of
a classical viscous gravity current. It is easy to follow the above analysis for the case of
constant injection of a viscous fluid onto an impermeable substrate in either the planar
or radial case. It transpires that similar scalings can be derived for the time and thickness
required to transition from a pressure- to a gravity-driven flow. For example, in the radial
case these are given by H∗ = (Qμ/�ρg)1/4 and t∗ = (2π/3)(μ3/(�ρg)3Q)1/4. However,
it is not clear how the inner pressure-driven region affects the viscous gravity current
at late times. In particular, the no-slip condition at the base of the current produces a
different flow pattern to that considered here, making it difficult to translate our other
results. Nevertheless, one could investigate such flow patterns by introducing tracers at the
source of the gravity current, shedding light on the size and role of the pressure-driven
region at late times.
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Appendix A. Further numerical details: boundary conditions and dimensionless
equations

The full set of boundary conditions described in § 2.5 is given by

u = 0 : at r = r0, z > z0, (A1)

w = 0 : at z = 0, (A2)

u = Q/(2πr0z0) : at r = r0, z ≤ z0, (A3)

p = −ρ2gz : at r = , (A4)

p = −ρ2g : at z = , (A5)

which correspond to impermeable/symmetric walls at r = r0 and z = 0, imposing a
constant input flux Q over a small vertical interval of height z0 near the origin and far-field
hydrostatic pressure conditions imposed at the boundaries of a large but finite domain of
size  × . In this formulation, u is the cylindrical radial velocity and w is the vertical
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velocity, which are each given by

u = −kH

μ

∂p
∂r

, (A6)

w = −kV

μ

(
∂p
∂z

+ ρig
)

, i = 1, 2, (A7)

where the subscript i = 1, 2, inside/outside the injected flow region. By introducing
dimensionless variables of the form

p = −ρ2gz + �ρgp̂, z = ẑ, r = r̂, u = ubû, w = ubŵ, (A8a–e)

the governing equations and boundary conditions reduce to

∇̂ · û = 0 : on Ω1 ∪ Ω2, (A9)

û = −∂ p̂
∂ r̂

: on Ω1 ∪ Ω2, (A10)

ŵ = − 1
γ

(
∂ p̂
∂ ẑ

+ 1
)

: on Ω1, (A11)

ŵ = − 1
γ

∂ p̂
∂ ẑ

: on Ω2, (A12)

û = 0 : at r̂ = r̂0, ẑ > ẑ0, (A13)

ŵ = 0 : at ẑ = 0, (A14)

û = Q̂
2π

: at r̂ = r̂0, ẑ ≤ ẑ0, (A15)

p̂ = 0 : at r̂ = 1, (A16)

p̂ = 0 : at ẑ = 1, (A17)

where ẑ0 = z0/, r̂0 = r0/ and Q̂ = Q/(r0z0ub). Although we have written (A9)–(A17)
in terms of both the pressure and the velocities (for convenience), the pressure is the only
solution variable.

After introducing a dimensional time scale T = φ/ub, such that t = Tt̂, the equation
for the motion of the fluid–fluid interface ∂Ω = r(t) (2.46), becomes

dr̂
dt̂

= û
(
r̂, t̂
)
. (A18)

Likewise, the initial condition of the interface is given by

r̂(0) = r̂0, (A19)

where we take r̂0 to be a very small hemisphere of radius r0. Initial conditions for p̂ are
not needed since the pressure solution is determined by (A9)–(A17), given the interface
position r̂. We note that since the flow is self-similar at early times (2.6)–(2.7), the solution
quickly becomes independent of the precise initial conditions we impose (A19), provided
they are sufficiently small.
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Figure 8. Numerical solution for the current shape z = h(r, t) (black dotted lines) in an isotropic medium
γ = 1, together with the self-similar solution (2.17a,b) (green lines). The vertical scale is stretched by ×10.5
for illustration purposes.

We note that the dimensionless volume of fluid within region Ω1, which we denote V̂ ,
is given by

V̂ = Q̂t̂. (A20)

Hence, we see that by stretching time according to t̂ → t̂/Q̂, this is equivalent to replacing
the inflow condition (A15) with

û = 1
2π

: at r̂ = r̂0, ẑ ≤ ẑ0. (A21)

In this way, we see that the only role of the parameter Q̂ is to stretch time, and consequently
it can be removed from the problem without loss of generality. This indicates that
the dimensionless problem only depends on one parameter, which is the anisotropy γ

(excluding the numerical parameters ẑ0 and r̂0, since the solution does not depend on
these provided they are sufficiently small).

Appendix B. Additional figures

In this section we present three additional figures together with brief descriptions of each.
Firstly, figure 8 shows a comparison between the numerical solution described in § 2.5
(in the isotropic case γ = 1) and the classical similarity solution given by (2.17a,b). The
discrepancy between the numerical and analytical predictions for the shape diverge for
large times. This is because the numerical solution has a growing thickness H(t), whereas
the classical similarity solution predicts a constant thickness scaling. There is also a
discrepancy in the growth of the radius, since the classical similarity solution predicts
a faster power law growth of R ∼ t1/2 as opposed to R ∼ t3/7.

Figure 9 shows exactly the same data as figure 5 except with a linear–linear (as opposed
to log–log) scale. The axis ranges have been slightly reduced compared with figure 5 so
that the experimental data can be seen more clearly.

Finally, figure 10 shows a comparison between numerical, analytical and experimental
results for the evolution of the lateral and vertical extents of a two-dimensional (planar)
gravity current in the case of a line source, Rx(t) and Hx(t). Numerical results are achieved
by following the same method as described in § 2.5 except using a two-dimensional
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Figure 9. Analytical, numerical and experimental data for the radial (a) and vertical (b) extents of the
current, R, H, plotted on a linear scale. These are exactly the same data as the log–log plots in figure 5.

coordinate system x, z. Analytical scalings for the evolution of the horizontal and vertical
extent, Rx(t) and Hx(t), are summarised in table 2. For the experimental results, these
consist of data taken from the porous bead experiments of Sahu & Neufeld (2020) as well
as our own data taken from experiments in a Hele-Shaw cell with glycerol injected into
air. These are summarised below.

In our Hele-Shaw experiments, a constant flow rate of glycerol dyed with red food
colouring is injected (via a peristaltic pump) into the narrow gap between two Perspex
plates above an impermeable substrate. The plates are aligned vertically so that gravity
acts in the same plane as the gap, and a video camera captures the evolution of the flow
at 24 frames per second. Different flow rates and gap widths are explored by varying the
pump speed and the gap spacing accordingly. The flow rate Q is calculated using a mass
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Figure 10. Analytical, numerical and experimental data for the radial (a) and vertical (b) extents of a
two-dimensional current, Rx, Hx. Numerical results are shown for both an isotropic medium γ = 1 and an
anisotropic medium γ = 104, whereas experimental results are only for the isotropic case. Analytical early-
and late-time scalings (see table 2), are shown with solid black lines.

balance over time. The porosity is taken as φ = 1 and the effective permeability of the
medium is given by k = δ2/12, where δ is the gap width. Since it is difficult to estimate
δ very accurately (e.g. within fractions of a millimetre), this is instead calculated using
a parameter fitting step. Specifically, we integrate the observed cell area occupied by the
injected fluid (A) and compare this with the volume change measured by the mass balance,
such that Aδ = Qt, finding the value of δ which fits this best. The density difference
between the two fluids is measured as �ρ = 1229–1.225 kg m−3 and the viscosity of the
glycerol is taken as μ = 0.765 Pa s. For glycerol injected into air the effects of surface
tension are considered small (Huppert & Woods 1995).
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By varying the input flow rate and gap width, different transition time scales t∗x are
achieved, allowing observation of early-, intermediate- and late-time behaviours. The
full data range spans t/t∗x = 0.02–24, and we complement this with the experimental
data of Sahu & Neufeld (2020), which extend up to a value of t/t∗x = 8341. The latter
experiments investigated dispersive effects in a tank filled with porous beads rather than
in a Hele-Shaw cell, and the fluid pairing was salty and fresh water rather than glycerol
and air. Nevertheless, the data can be compared directly, by re-scaling time and space
according to t∗x , H∗

x .
All the experimental data are plotted in figure 10, showing good comparison with the

numerical calculations and the analytical scalings at early and late times. Hence, this
further reinforces confidence in our numerical scheme and demonstrates the validity of
our analytical approach for deriving the different regime scalings.
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