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Abstract. We give sufficient conditions and necessary conditions for a Banach
algebra, which is �1−graded over a semi-lattice, to be biflat or biprojective. As an
application we characterise biflat and biprojective discrete convolution algebras for
commutative semi-groups.

1. Introduction. The concepts biprojective and biflat, to be defined in the next
section, are instances of homological triviality. One of the basic issues of (Banach-
algebraic) homology is to measure obstructions to lifting and extension problems. Let
A be a Banach algebra. An injection, respectively surjection,

0 → X → Y or Y → Z → 0

of Banach A−bimodules X, Y, Z is admissible if it splits as Banach spaces.
Biprojectivity of A is the property that all lifting problems

A

�����
�

�
�

Y �� Z �� 0

can be solved when Y → Z → 0 is admissible. Biflatness is the property that all lifting
problems

A

�����
�

�
�

Y∗ �� X∗ �� 0

can be solved when 0 → X → Y is admissible. The most important instance of
homological triviality is that of amenability, the concept introduced in [11]. Recall
that A is amenable, if and only if A is biflat and has a bounded approximate identity
(see [9]).
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These notions of homological triviality have been explored in various classes of
Banach algebras. At focus in this paper is the class of discrete convolution algebras. Let
S be a semi-group. The discrete convolution algebra �1(S) is the Banach algebra with
the universal property that for each Banach algebra A and each bounded multiplicative
map φ : S → A there is a unique Banach algebra homomorphism φ̃ : �1(S) → A

completing the diagram

�1(S)
φ̃

����
��

��
��

S

ι

��

φ �� A

where ι : S → �1(S) is the canonical embedding of S into the set of point masses in
�1(S). Inasmuch as the unit ball in a Banach algebra is a semi-group w.r.t the algebra
multiplication, discrete convolution algebras is perhaps the most basic class of Banach
algebras to be considered in the endeavour to understand general Banach algebra
properties. With this perspective it is also important that results about algebras �1(S) are
obtained with a minimal appeal to specific semi-group properties. In a recent treatise
([4]), a rather encompassing account of Banach algebraic properties of semi-group
algebras is given, in particular, the authors conclude the description of amenability in
terms of algebraic properties of the semi-group ([4, Theorem 10.12]).

Recently, the other notions of homological triviality, biprojectivity and biflatness,
have been investigated. In [1] Choi characterises biflatness of �1(S) when S is a Clifford
semi-group. In particular when S is a semi-lattice he shows that �1(S) is biflat if and only
if it is biprojective, if and only if sup{#(sS) | s ∈ S} < +∞ (uniform local finiteness),
where # denotes cardinality.

In this paper, we investigate biflatness and biprojectivity of Banach algebras which
are �1-graded over a semi-lattice. Such algebras, with a slightly more restrictive notion
than ours, were introduced in [2] as a Banach-algebraic version of strong semi-lattice
diagrams of semi-groups, cf. [10, Cpt. IV]. They form a framework incorporating
many examples of semi-group algebras, notably Clifford semi-group algebras. Finite
semi-lattice graded algebras have also been studied by Ghandehari et al. in their
work on amenability constants ([7]). Our main result characterises biflatness and
biprojectivity of certain semi-lattice �1-graded Banach algebras in terms of the
constituents (Theorems 4.4 and 4.6). Our techniques require a condition that facilitates
passing from the constituents to the full �1-graded algebra. With this condition
biflatness and biprojectivity can be viewed as local amenability respectively local
contractibility. The results of [7] on amenability constants for finite semi-lattices of
Banach algebras are instrumental in this.

As an application, we prove that if S is commutative, then �1(S) is biflat if and only
S is a Clifford semi-group on a uniformly locally finite semi-lattice, and biprojective if
and only if in addition each (maximal) subgroup of S is finite.

Note: After this work was completed the paper [13] has come to our knowledge.
In this Ramsden establishes the above mentioned uniform local finiteness as a general
necessary condition for biflatness of discrete convolution algebras and gives a complete
characterisation of biflatness in the case of inverse semi-groups.

2. Preliminaries. In this section, we establish notation and define basic concepts.
For Banach spaces X and a subset M ⊆ X the closed linear span of M is cl(M).
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For a Banach space Y , the Banach space of bounded operators X → Y is B(X, Y )
with the uniform norm. We use X∗ for B(X, �), the dual space, and use 〈x, x∗〉, x ∈
X, x∗ ∈ X∗ to denote the duality.

A (closed) subspace E ⊆ X is weakly complemented if E⊥ = {x∗ ∈ X∗ | 〈e, x∗〉 =
0 ∀e ∈ E} is complemented in X∗. This is equivalent to the existence of r ∈ B(E∗, X∗)
such that ι∗ ◦ r = idE∗ , where ι : E → X is the inclusion.

The projective tensor product is denoted X⊗̂Y and there are isometric
identifications (X⊗̂Y )∗ ∼= B(X, Y∗) ∼= B2(X, Y ), the latter being the bounded bilinear
forms on X × Y . According to this identification, we write

〈x ⊗ y,�〉 = 〈y,�(x)〉 = �(x, y), x ∈ X, y ∈ Y

for � ∈ (X⊗̂Y )∗.
If (fγ )� is a bounded net in a dual Banach space it has a w∗-cluster point. To avoid

tedious repetitions of the phrase ‘by passing to a subnet, if necessary, we may assume
that (fγ )� is w∗-convergent’, we shall make the tacit assumption that all bounded
nets have been chosen to be w∗-convergent, and thus without further comment write
w*- limγ fγ . For example, for a bounded net φγ ∈ B(X, Y∗) we have(

w*- lim
γ

φγ

)
(x) = w*- lim

γ
(φγ (x)), x ∈ X

where w*- limγ on the left refers to the X⊗̂Y -topology on B(X, Y∗) and on the right
to the Y -topology on Y∗. Thus we may without ambiguity write w*- limγ φγ (x). This
will also be used without further comment.

We shall use κ for the canonical embedding X → X∗∗ given by 〈x∗, κ(x)〉 =
〈x, x∗〉, x ∈ X, x∗ ∈ X∗ and, if necessary for emphasis, κX .

For a Banach algebra A we denote the category of left Banach A-modules and
bounded module homomorphisms by Amod. The Banach space of bounded left module
homomorphisms N → M, N, M ∈ Amod is Ah(N, M). The corresponding right and
bi- module versions are modA, hA(N, M) and AmodA, AhA(N, M), respectively. If
X ∈ Amod the dual action of A gives X∗ ∈ modA and similarly for right and bi-
modules.

The multiplication on a Banach algebra A is denoted 	 : A⊗̂A → A or, if needed
for emphasis, 	A.

We recall the basic homological concepts and facts needed for the paper. For
details we refer to [9].

DEFINITION 2.1. A Banach A algebra is biprojective if 	A is a retraction in AmodA,
i.e. if there is ρ ∈ AhA(A,A⊗̂A) such that 	A ◦ ρ = idA. Such a map will be termed a
splitting of the multiplication on A.

A Banach A algebra is biflat if 	∗
A

is a coretraction in AmodA, i.e. if there is
ρ ∈ AhA((A⊗̂A)∗,A∗) such that ρ ◦ 	∗

A
= idA∗ . This is equivalent to the existence of

ρ ∈ AhA(A, (A⊗̂A)∗∗) such that 	∗∗
A

◦ ρ = κA. In either version we shall refer to ρ as a
weak splitting of the multiplication on A.

For X ∈ AmodA the closed subspace ofB(A, X) consisting of module derivations is
denotedZ1(A, X). The Hochschild coboundary map δ : X → Z1(A, X) is x �→ (δx : a �→
a.x − x.a). The image of δ is precisely the subspace of inner derivations.

The Banach algebra A is amenable if δ(X∗) = Z1(A, X∗) for all X ∈ AmodA. This
is equivalent to ‘ A has a virtual diagonal’, i.e. an element � ∈ (A⊗̂A)∗∗ such that

a.� − �.a = 0, a.	∗∗(�) = κ(a), a ∈ A.
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It is also equivalent to ‘ A is biflat and has a bounded approximate identity’.

These concepts will in particular be studied in the context of semi-group algebras.
We recall the well-known definition.

DEFINITION 2.2. Let S be a semi-group. We consider elements of the Banach space
�1(S) as formal power series with exponents in S

�1(S) =
{∑

s∈S

asXs |
∑
s∈S

|as| < ∞
}

,

and define multiplication as power series multiplication

∑
s∈S

asXs ·
∑
s∈S

bsXs =
∑
s∈S

(∑
ut=s

aubt

)
Xs.

Very often the semi-group structure gives rise to a grading of the semi-group
algebra. Such a grading is of some interest in itself and has been considered by several,
see for instance Y. Choi [2] and Ghandehari et al. [7]. Recall that a semi-lattice is an
abelian semi-group in which each element is idempotent.

DEFINITION 2.3. Let A be a Banach algebra and assume that A as a Banach space
is an �1-direct sum of Banach subalgebras A = ⊕

α∈� Aα. If

∀α, β ∈ �∃ν ∈ � : AαAβ + AβAα ⊆ Aν,

then obviously for given α, β ∈ � the corresponding ν is uniquely determined. It
follows that the mapping (α, β) �→ ν defines a semi-lattice multiplication on �. In this
situation we say that A is �1-graded over the semi-lattice �.

The grading thus defined has a universal property.

PROPOSITION 2.4. Let A = ⊕
α∈� Aα be an �1-graded Banach algebra, and let

ια : Aα → A, α ∈ � be the natural inclusions of the subalgebras Aα. Let B be a
Banach algebra. For each uniformly bounded family of Banach algebra homomorphisms
ϕα : Aα → B such that

ϕα(a)ϕβ(b) = ϕαβ(ab), a ∈ Aα, b ∈ Aβ, α, β ∈ � (†)

there is a unique Banach algebra homomorphism � : A → B such that � ◦ ια = ϕα for
all α ∈ �.

Proof. Existence and uniqueness as a bounded linear map satisfying � ◦ ια = ϕα

for all α ∈ � follow from the universal property of �1- direct sums, and (†) ensures that
� is a homomorphism. �

As indicated, our main examples of �1-graded Banach algebras come from semi-
group algebras. Other examples are

EXAMPLE 2.5. Let A be a Banach algebra and let � be a family of closed 2-sided
ideals of A. If � has the property I, J ∈ � =⇒ I ∩ J ∈ �, then the �1-sum

⊕
I∈� I is

naturally an �1-graded Banach algebra.
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If � has the property I, J ∈ � =⇒ cl(I + J) ∈ �, then the �1-sum
⊕

I∈� A/I is
an �1-graded Banach algebra, when the multiplication is given by (a + I)(b + J) =
ab + cl(I + J), a, b ∈ A, I, J ∈ �.

3. Hereditary properties. In this section we examine hereditary properties of
biprojectivity and biflatness.

In order to synthesise biflatness of a given algebra from that of its parts it is
necessary to have control of norms of weak splittings of multiplication. For this we
make the following definitions.

DEFINITION 3.1. Let A be a Banach algebra. The amenability constant ac(A) for A

is

inf{‖M‖ | M is a virtual diagonal for A}.
The biflatness constant bc(A) is

inf{‖ρ‖ | ρ : (A⊗̂A)∗ → A∗ is a weak splitting of multiplication on A}.
The generator constant gc(A) is

sup inv(δ(X∗)),

where the supremum is with respect to all contractive X ∈ AmodA. Here inv(δ(X∗))
is the inversion constant of the Hochschild coboundary map δ : X∗ → Z1(A, X∗). i.e.
the norm of the inverse of the the map X∗/ ker δ → Z1(A, X∗) (or +∞ if δ is not
surjective).

In other words, the generator constant is the infimum of numbers C > 0 so that for
all X ∈ AmodA with ‖a.x‖, ‖x.a‖ ≤ ‖a‖‖x‖, a ∈ A, x ∈ X and all derivations D : A →
X∗ there is x∗ ∈ X∗ with ‖x∗‖ ≤ C‖D‖ and D(a) = a.x∗ − x∗.a, a ∈ A.

We have adopted the usual convention that inf ∅ = +∞, so that ac(A) = +∞
means that A is not amenable etc.

We have the following relations between these numbers.

LEMMA 3.2. Let A be a Banach algebra with an approximate identity of bound
β ∈ [1,+∞] (with β = +∞ meaning that A does not have a bounded approximate
identity). Then

bc(A) ≤ ac(A) ≤ β bc(A), gc(A) ≤ ac(A) + (1 + 2 ac(A))(β2 + 2β), and
bc(A) ≤ 1 + 2 gc(A).

Proof. Let ρ : A → (A⊗̂A)∗∗ be a weak splitting of multiplication and let eλ be a
bounded approximate identity for A. Any w∗-cluster point of the net ρ(eλ) will be a
virtual diagonal for A, so ac(A) ≤ β bc(A). Conversely, if � is a virtual diagonal for
A, then a �→ a.� is a weak splitting of multiplication, so that bc(A) ≤ ac(A). If X is
neo-unital and D : A → X∗ is a derivation, then D is generated by the functional

x �→ 〈(a, b) �→ 〈x.a, D(b)〉,�〉
(cf. [12]), so that we have a generator of norm not exceeding ac(A)‖D‖. In general,
by looking at successive restrictions of D(a) ∈ X∗, a ∈ A to the modules AXA ⊆
AX ⊆ X as in Proposition 1.8 of [11] we get gc(A) ≤ ac(A) + (1 + 2 ac(A))(β2 + 2β).
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Finally, consider the derivation D(a) = a ⊗ 1 − 1 ⊗ a : A → ker 	 and let � ∈ ker 	∗∗

be a generator. Then ρ(a) = a.(1 ⊗ 1 − �), a ∈ A defines a w∗-splitting of the
multiplication. Since ‖D‖ = 2, we get bc(A) ≤ 1 + 2 gc(A). �

We now consider a short exact sequence

0 → I
ι→ A

q→ B → 0, (E)

where I is a closed 2-sided ideal of the Banach algebra A.

PROPOSITION 3.3. Assume that I = cl(AI + IA). If A is biflat (biprojective), then B

is biflat (biprojective). Precisely, bc(B) ≤ ‖q‖ bc(A).

Proof. The argument for the biprojective case is given in [14]. A similar argument
gives the biflat case as follows: Let ρ : (A⊗̂A)∗ → A∗ be a weak splitting of the
multiplication on A. We want to complete the diagram

(B⊗̂B)∗
(q⊗̂q)∗ ��

τ

���
�
� (A⊗̂A)∗

ρ

��
B∗ q∗

�� A∗

so that τ ◦ 	∗
B

= 1B∗ . Let φ ∈ (B⊗̂B)∗ and put ψ = φ ◦ q⊗̂q. In order to define τ (φ)
we must show that ρ(ψ)(I) = {0}. Let i = α′i′ + i′′α′′ where i′, i′′ ∈ I and α′, α′′ ∈ A.
Then

ρ(ψ)(i) = ρ(ψ)(α′i′ + i′′α′′)
= ρ(i′.ψ)(α′) + ρ(ψ.i′′)(α′′).

But i′.ψ(a′, a′′) = ψ(a′, a′′i′) = φ(q(a′), q(a′′i′)) = 0, a′, a′′ ∈ A so i′.ψ = 0. Similarly
ψ.i′′ = 0. Since cl(AI + IA) = I we get ρ(ψ)(I) = {0} as desired. Hence there is a
map τ : (B⊗̂B)∗ → B∗ making the diagram commutative. By injectivity of the maps
q∗, (q⊗̂q)∗ and the closed graph theorem τ is a bounded B-bimodule homomorphism.
Finally

q∗ ◦ τ ◦ 	∗
B = ρ ◦ (q⊗̂q)∗ ◦ 	∗

B

= ρ ◦ 	∗
A ◦ q∗

= q∗,

so, since q∗ is injective, we get τ ◦ 	∗
B

= 1B∗ . �
Amenability is inherited by weakly complemented ideals. The situation is similar

for biflatness. In order to deal with this we first need

LEMMA 3.4. Let Y be a Banach space and let X be a closed subspace. If X is weakly
complemented in Y, then X⊗̂X is weakly complemented in Y⊗̂Y.

Proof. Let λ be a right inverse to the dual of the inclusion X ↪→ Y , i.e. 〈x, λ(x′)〉 =
〈x, x′〉, ∀x ∈ X∀x′ ∈ X∗. For F ∈ (X⊗̂X)∗ define �(F) ∈ (Y⊗̂Y )∗ by

�(F)(y, y′) = 〈y′, λ(ξ �→ 〈y, λ(F(·, ξ ))〉)〉, y, y′ ∈ Y.
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Then

�(F)(x, x′) = 〈x′, λ(ξ �→ 〈x, λ(F(·, ξ ))〉〉 = 〈x, λ(F(·, x′))〉 = F(x, x′)

for all x, x′ ∈ X . �
PROPOSITION 3.5. Suppose in addition to (E) that I is weakly complemented in A, say

ι∗ ◦ r = idI∗ . If A is biflat, then cl(AIA) is a weak retract of A. In particular it is biflat,
and we have the estimate bc(cl(AIA)) ≤ ‖r‖2(bc(A))3.

Proof. Consider the inclusion ι| cl(IA) : cl(IA) → A. First we prove that cl(IA) is
a weak retract of A as right modules, i.e. ι∗| cl(IA) is a retraction in Amod. Define
R : cl(IA)∗ → (A⊗̂A)∗ by

〈a ⊗ b, R(m)〉 = 〈a, r(b.m̃)〉, a, b ∈ A, m ∈ cl(IA)∗.

where m̃ ∈ I∗ is some Hahn-Banach extension of m ∈ cl(IA)∗. Since 〈ξ, b.m̃〉 = 〈ξb, m〉,
for all ξ ∈ I, b ∈ A, this definition unambigously defines a bounded linear map.
Actually, R is a left-module homomorphism:

〈a ⊗ b, R(c.m)〉 = 〈a, r(b.c̃.m〉 = 〈a, r(bc.m̃〉
= 〈a ⊗ bc, R(m)〉 = 〈a ⊗ b, c.R(m)〉, a, b, c ∈ A,

since we may choose c̃.m = c.m̃.
Put r̂ = ρ ◦ R, where ρ is a weak splitting of the multiplication on A. Then r̂ ∈

Ah(cl(IA)∗,A∗) since R and ρ both are left-module homomorphisms. For a, a′ ∈ A, ξ ∈
I, m ∈ cl(IA)∗ we have in turn

〈a ⊗ a′, R(m).ι(ξ )〉 = 〈ι| cl(IA)(ξa) ⊗ a′, R(m)〉
= 〈ι| cl(IA)(ξa), r(a′.m̃)〉
= 〈ξa, a′.m̃〉
= 〈a ⊗ a′,	∗(m̃.ι(ξ ))〉

and

〈ξa, ι∗| cl(IA)(r̂(m))〉 = 〈ι| cl(IA)(ξa), ρ(R(m))〉
= 〈a, ρ(R(m).ι(ξ ))〉
= 〈a, ρ(	∗(m̃.ι(ξ )))〉
= 〈a, m̃.ι(ξ )〉
= 〈ξa, m〉.

It follows that ι∗| cl(IA) ◦ r̂ = 1cl(IA)∗ .
Either by repeating the construction with respect to the module multiplication

on the right with r̂ replacing r, or by using that A⊗̂A is biflat when A is, we obtain
λ ∈ AhA(cl(AIA)∗,A∗) so that (ι| cl(AIA))∗ ◦ λ = 1cl(AIA)∗ . Let � be as in the proof of
Lemma 3.4 with X = cl(AIA) and Y = A. Then it is easy to check that � is a bimodule
homomorphism and that (ι| cl(AIA))∗ ◦ ρ ◦ � is a weak splitting of the multiplication
on cl(AIA). The estimate of bc(cl(AIA)) follows directly from the construction of the
weak splitting as a composition of linear maps. �
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We have the following strengthening of hereditarity of amenability.

COROLLARY 3.6. If I is a closed ideal of a biflat Banach algebra A, then I is amenable
if (and only if) I has a bounded approximate identity.

Proof. Let (eγ )� be a bounded approximate identity for I . We must prove that I is
biflat. For each γ ∈ � let rγ ∈ B(I∗,A∗) be defined as

rγ (f )(a) = f (eγ a), f ∈ I∗, a ∈ A.

Then r = w*- limγ rγ satisfies ι∗ ◦ r = idI∗ as required for I to be weakly complemented.
Clearly cl(AIA) = I , so we may invoke 3.5. �

Under certain conditions biflatness is actually biprojectivity.

PROPOSITION 3.7. Suppose that multiplication on A is approximable, i.e. the linear
maps A → A

a �→ ab, a �→ ba

are approximable operators for all b ∈ A. If A is biflat, then it is in fact biprojective.

Proof. Let ρ : (A⊗̂A)∗ → A∗ be a weak splitting of the multiplication. Since
cl(A2) = A it follows from compactness that ρ∗ ◦ κ maps A into κ(A⊗̂A). Specifically,
since the operators τ �→ a.τ.b : A⊗̂A → A⊗̂A, a, b ∈ A are all approximable and
hence compact, we have A.(A⊗̂A)∗∗.A ⊆ κ(A⊗̂A) by Theorem VI.4.2 of [6]. Identifying
A⊗̂A with κ(A⊗̂A) the co-restriction of ρ∗ ◦ κ is a splitting of the multiplication
on A. �

REMARK 3.8. One may suspect that weak compactness of multiplication is sufficient
for the conclusion. However, it is not true that weak compactness or even compactness
is preserved with respect to the projective tensor product.

PROPOSITION 3.9. Let 0 → I
ι→ A

q→ A/I → 0 be an extension of Banach algebras
as in (E), and suppose that A/I is amenable. Let D : A → X∗ be a derivation. For each
m ∈ X∗ such that D|I = δm there is k ∈ annI (X∗) such that D = δm + δk. In particular
gc(A) ≤ gc(I) + gc(A

/
I) + gc(I) gc(A

/
I).

Proof. The decomposition D = δm + δk follows from the proof of [11, Propo-
sition 5.1]. Since ‖D|I‖ ≤ ‖D‖ and D − δm drops to a derivation on A

/
I , we obtain the

estimate on gc(A). �

4. Banach algebras graded over a semi-lattice. In order to study algebras graded
over a semi-lattice we shall use the result [1, Theorem 5.6]. Choi exploits the
Schützenberger representation in his proof. We give a proof without specific reference
to combinatorial results thus keeping a more Banach-algebraic approach. This is at
the cost of an estimate on the supremum in 4.1 below.

PROPOSITION 4.1 (Y. Choi). Let � be a semilatice. If �1(�) is biflat, then

sup{#(s�) | s ∈ �} < ∞.

Proof. Clearly �2 = �. For each s ∈ � we may view �1(s�) as a complemented
ideal in �1(�) and since, with appropriate identifications, cl(�1(�)�1(s�)) = �1(s�2) =
�1(s�) it follows from 3.5 that bc(�1(s�)) ≤ bc(�1(�)). As �1(s�) is unital with unit s,
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we further get ac(�1(s�)) ≤ bc(�1(�)). From the main result of [5] we first conclude
that s� is finite for each s ∈ � and next that sup(#(s�)) < ∞. In fact, by the details
of the proof in [5], for finite semi-lattices E we have ac(�1(E)) → ∞ as #E → ∞.
Alternatively we may refer to Corollary 1.8 of [7] for a more precise estimate. �

We recall some concepts and definitions for semi-lattices.

DEFINITION 4.2. Let � be a semi-lattice. The partial order on � is defined by s ≤ t
if and only if st = s. We write s < t when s ≤ t and s �= t.

Following [1] � is locally C-finite if sup{#(s�) | s ∈ �} = C and � is uniformly
locally finite if � is locally C-finite for some constant C > 0. Note that s� = {t ∈ � |
t ≤ s}.

The chain length of � is

Chl � = sup{n ∈ � | e1 < · · · < en is a chain in �}.
We adopt a terminology from [5]. For u, s ∈ �

u covers s ⇐⇒ {t | s ≤ t ≤ u} = {s, u},
and we define the covering number

cov u = #{s | u covers s}

For clarity we stipulate that Chl(�) = ∞ and cov u = ∞ if for each n ∈ � there
are chains of length n respectively there are n distinct elements covered by u.

In [7] the authors study how amenability of a Banach algebra graded over a finite
semi-lattice depends on the amenability of its summands and of the semi-lattice. It
seems necessary to require some compatibility conditions in order to obtain results.
We shall adapt the conditions of [7] to deal with infinite semi-lattices.

DEFINITION 4.3. Let A = ⊕
α∈� Aα be a semi-lattice graded Banach algebra.

(LA1) There are C > 0 and for each α ∈ � a bounded approximate identity
(eα

γ )γ∈� for Aα of bound not exceeding C.
(LA2) For each α ∈ � there is a character χα : Aα → �, α ∈ � such that

χαβ(aαaβ) = χα(aα)χβ(aβ) α, β ∈ �, aα ∈ Aα, aβ ∈ Aβ,

and cl(A ker χα) ⊇ ker χα.

First we introduce notation: For β ∈ �

Aβ =
⊕
α∈β�

Aα and A(β) =
⊕

α∈β�\{β}
Aα.

We shall regard Aβ and A(β) as ideals of A, complemented as Banach subspaces. We
shall also need the observation that if φ : � → M is a semi-lattice homomorphism,
then Bm = ⊕

φ(α)=m Aα is a Banach subalgebra of A and there is a natural isometric
isomorphism of semi-lattice graded Banach algebras⊕

m∈M

Bm ∼=
⊕
α∈�

Aα.

We leave the details to the reader.
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THEOREM 4.4. Let A be as above and assume that cl(AAαA) = Aα for all α ∈ �. If
A is biflat (biprojective), then each Aα is biflat (biprojective). If A further satisfies one
of (LA1) or (LA2), then � is uniformly locally finite.

Proof. By 3.5 Aα is biflat (biprojective), and by 3.3 applied to

0 → A(α) → Aα → Aα → 0

we obtain the first conclusion.
Assume that (LA1) holds. Then Aα is biflat and has a bounded approximate

identity, hence is amenable for each α ∈ A. We shall utilise the argument of [5, Lemma 9]
by exploiting the sub-semilattices En = {e1, . . . , en} and Fn = {f0, f1, . . . , fn, f } of
{0, 1}� with pointwise multiplication, where

ei = (1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . ) i = 1, . . . , n, . . .

fi = (1, 0, . . . , 0, 1︸ ︷︷ ︸
i+1

, 0, . . . ), i = 0, . . . , n, . . .

f = en+2.

First, assume that there is a chain α1 < · · · < αn in �. Then, as in [5], there is a
semi-lattice homomorphism of αn� onto En (if α1 is minimal) or En+1. To be explicit
let us assume onto En. By the observation above we may write

Aαn =
⊕
e∈En

Be

From [7, Theorem 2.2 and Example 1.3] we conclude that ac(Aαn ) ≥ ac(�1(En)) =
4n + 1. Then bc(A)3 ≥ bc(Aαn ) ≥ 4n+1

C , where C is the constant in the definition of
(LA1). It follows that Chl � < +∞.

Let u ∈ � and choose n ≤ cov u, say u covers s1, . . . , sn. Since Chl � < +∞ there
is a minimal element ω of u�, namely the first element of a chain in u� of maximal
length. The map φ : u� → Fn given by

φ(s) =
⎧⎨⎩

f if s = u
fi if s = si, i = 1, . . . n
f0 else

, s ∈ u�,

is a semi-lattice homomorphism. As above we get bc(A)3 ≥ ac(�1(Fn))
C . As

limn→∞ ac(�1(Fn)) = +∞ we obtain that K = sup{cov s | s ∈ �} < ∞. Setting L =
Chl � an easy argument gives the estimate

sup{#s� | s ∈ �} ≤ KL−1 − 1
K − 1

+ 1,

i.e. � is uniformly locally finite.
Assume that (LA2) holds. Since characters are bounded by 1, the universal

property 2.4 of semi-lattice graded Banach algebras gives a Banach algebra
epimorphism � : A → �1(�). By explicit assumption in (LA2) we have cl(A ker � A) =
ker �, so an appeal to 3.3 establishes biflatness of �1(�), from which the claim follows
through 4.1. �
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It may seem unsatisfactory that amenability enters the picture, since amenability
is biflatness plus bounded approximate identities. One might hope that biflatness of
semi-lattice graded Banach algebras could be described solely in terms of biflatness of
the constituents. The following simple example shows why this hope is too ambitious,
the problem being that the hereditary properties of biflatness are effectively weaker
than those of amenability.

EXAMPLE 4.5. Let A be a biflat, non-amenable Banach algebra and consider the
{0, 1} graded Banach algebra A+ = A ⊕ �. Then obviously the constituents of A+ are
biflat. However, were A+ biflat, it would in fact be amenable, being unital. Then in turn
its complemented ideal A would be amenable, contrary to the choice of A. Note that
A+ does not satisfy (LA1).

Our next result gives sufficient conditions for biflatness. We remind the reader
that for Banach algebras B ⊆ A a bounded approximate identity (eγ )� for B is called
quasi-central for A if

lim
γ

‖eγ a − aeγ ‖ = 0, a ∈ A.

THEOREM 4.6. Let A = ⊕
α∈� Aα and assume

(i) � is locally C-finite for some C > 0;
(ii) the Aα’s are uniformly biflat;

(iii) the Aα’s have uniformly bounded approximate identities, say (eα
γ )γ , bounded by

D > 0;
(iv) each (eα

γ )γ is quasi-central for A.
Then A is biflat.

Proof. We start by proving that for each finite sub-semilattice F ⊆ � the Banach
subalgebra

⊕
α∈F Aα has a bounded approximate identity which is quasi-central for A.

In particular A satisfies (LA1). Let F = {β1, . . . , βk} and put

Eγ1,...,γk = 1 − (
1 − eβ1

γ1

)
. . .

(
1 − eβk

γk

)
.

Then order γ = (γ1, . . . , γk) by the product order. It follows, using the quasi-central
property of the eβi

γi
’s, that (Eγ )γ is a quasi-central bounded approximate identity for⊕

α∈F Aα. In the special case F = α� \ {α} this bounded approximate identity will be
denoted by (Eα

γ )γ . We have uniform boundedness

‖Eα
γ ‖ ≤ 1 + (1 + D)C−1

of these approximate identities.
We shall prove our statement by induction on n = Chl(�). For n = 1 there is

nothing to prove, since in this case � is a singleton. Assume that the result is true
for Chl(�) = n and let Chl(�) = n + 1. Let � be the set of maximal elements in �.
Then � \ � is an ideal of � with Chl(� \ �) = n, so

⊕
β∈�\� Aβ is biflat, say with

weak splitting of multiplication ρ0. To ease the notation in the remainder of the proof
we set B = ⊕

β∈�\� Aβ . For α ∈ � choose a weak splitting ρα of the multiplication
on Aα such that the family (ρα)α∈� is uniformly bounded. Since B and each Aα are
(1-complemented) subspaces of A we may regard the maps ρ0 and ρα, α ∈ � as maps
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into (A⊗̂A)∗∗. We shall do so in the following. Now define ρ̃α : Aα → (A⊗̂A)∗∗ by

ρ̃α(aα) = w*- lim
γ

ρ0
(
Eα

γ aα

)
+ w*- lim

γ

(
w*- lim

γ ′

(
1 − Eα

γ

)
.ρα(aα).

(
1 − Eα

γ ′
))

for aα ∈ Aα, α ∈ �. By construction the ρ̃α’s are uniformly bounded and hence, by
the universal property of �1-sums, together with ρ0 define a bounded linear map
ρ : A → (A⊗̂A)∗∗ which extends ρ0.

We next prove that

ρ(xy) = ρ(x)y and ρ(yx) = yρ(x) (§)

for all x ∈ Aβ, y ∈ Aβ ′ , β, β ′ ∈ �. It will then follow from linearity and continuity
that ρ is a bimodule map.

It will be convenient to single out some of the arguments in

LEMMA 4.7. Suppose that α ∈ � and that β �= α. Then

w*- lim
γ

(
w*- lim

γ ′
y
(
1 − Eα

γ

)
ρα(x)

(
1 − Eα

γ ′
)) = 0 (1)

w*- lim
γ

(
w*- lim

γ ′

(
1 − Eα

γ

)
ρα(x)

(
1 − Eα

γ ′
)
y
)

= 0 (2)

xρ(u) = ρ(xu), ρ(u)x = ρ(ux) (3)

for all x ∈ Aα, y ∈ Aβ, u ∈ B.

Proof of lemma. First note that module multiplication is w∗-continuous. We shall
use this without further mentioning.

Since Aα has a bounded approximate identity we may write x = x′x′′ for
appropriate x′, x′′ ∈ Aα. Then

w*- lim
γ

(
w*- lim

γ ′
y
(
1 − Eα

γ

)
ρα(x′x′′)

(
1 − Eα

γ ′
))

= w*- lim
γ

(
w*- lim

γ ′
y
(
1 − Eα

γ

)
x′ρα(x′′)

(
1 − Eα

γ ′
))

= w*- lim
γ

(
y
(
1 − Eα

γ

)
x′ w*- lim

γ ′
ρα(x′′)

(
1 − Eα

γ ′
)) = 0,

since yx′ ∈ A(α) and (Eα
γ ) is a quasi-central bounded approximate identity for A(α) so

that limγ ‖y(1 − Eα
γ )x′‖ = 0. This proves (1). The statement (2) is proved likewise.

To prove (3) it suffices, since cl(B2) = B, to prove it for u = vw; but in this case
the result follows easily from the B-module property of ρ0, viz.

xρ0(vw) = xvρ0(w) = ρ0(xvw),

ρ0(vwx) = ρ0(v)wx = ρ0(vw)x.

�
We now proceed with the proof of (§). There are several cases.
Case β ∈ � \ �: This case follows directly from (3).
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Case β ∈ �, β �= β ′: Let x ∈ Aβ, y ∈ Aβ ′ . To be consistent with nomenclature
above, set α = β. Then ββ ′ < α and

ρ(yx) = ρ0(yx)

(since yx ∈ A(α)) = lim
γ

ρ0(Eα
γ yx)

(by quasi-centrality) = lim
γ

ρ0(yEα
γ x)

(by (3)) = y lim
γ

ρ0(Eα
γ x)

(by (1)) = y
(

w*- lim
γ

ρ0(Eα
γ x)

+ w*- lim
γ

(
w*- lim

γ ′
((1 − Eα

γ )ρα(x)(1 − Eα
γ ′)

))
= yρ(x)

The statement about module multiplication on the right is proved by using (2)
rather than (1).

Case β = β ′ ∈ �: Let α be the common value of β and β ′. Then for all x, y ∈ Aα

ρ(xy) = w*- lim
γ

ρ0(Eα
γ xy)

+ w*- lim
γ

(
w*- lim

γ ′
(1 − Eα

γ )ρα(xy)(1 − Eα
γ ′ )

)
.

By quasi-centrality and (3) the first term equals x w*- limγ ρ0(Eα
γ y).

For the second term:

w*- lim
γ

(
w*- lim

γ ′
(1 − Eα

γ )xρα(y)(1 − Eα
γ ′)

)
= w*- lim

γ

(
w*- lim

γ ′
x(1 − Eα

γ )ρα(y)(1 − Eα
γ ′)

)
= x w*- lim

γ

(
w*- lim

γ ′
(1 − Eα

γ )ρα(y)(1 − Eα
γ ′)

)
,

by quasi-centrality. Adding the two terms we get

ρ(xy) =x w*- lim
γ

ρ0(Eα
γ y)

+ x w*- lim
γ

(
w*- lim

γ ′
(1 − Eα

γ )ρα(y)(1 − Eα
γ ′)

)
=xρ(y),

and, working similarly on the right, ρ(xy) = ρ(x)y.
Finally, let 	 : A⊗̂A → A be the multiplication. For a ∈ B we clearly have

	∗∗(ρ(a)) = κ(a), since ρ extends ρ0. For a ∈ Aα, α ∈ � we have

	∗∗(ρ(a)) = 	∗∗
(

w*- lim
γ

(ρ0(Eα
γ a))

)
+ 	∗∗

(
w*- lim

γ
(w*- lim

γ ′
(1 − Eα

γ )ρα(a)(1 − Eα
γ ′))

)
.

By w*-continuity of 	∗∗ the first term equals w*- limγ Eα
γ a, since ρ0 splits

multiplication weakly. Using w*-continuity and that ρα splits multiplication weakly,
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we calculate the second term

w*- lim
γ

(
w*- lim

γ ′
(1 − Eα

γ )	∗∗(ρα(a))(1 − Eα
γ ′ )

)
= w*- lim

γ

(
w*- lim

γ ′
(1 − Eα

γ )a(1 − Eα
γ ′)

)
= w*- lim

γ

(
w*- lim

γ ′
(a − Eα

γ a − aEα
γ ′ + Eα

γ aEα
γ ′ )

)
= a − w*- lim

γ
Eα

γ a − w*- lim
γ ′

aEα
γ ′ + w*- lim

γ

(
w*- lim

γ ′
Eα

γ aEα
γ ′

)
(4)

= a − w*- lim
γ

Eα
γ a − w*- lim

γ ′
aEα

γ ′ + w*- lim
γ

Eα
γ a

= a − w*- lim
γ ′

aEα
γ ′ ,

where for the identity (4) we have used that Eα
γ a ∈ A(α) and that (Eα

γ ′) is a bounded
approximate identity for A(α). Adding the two terms we obtain, using quasi-centrality

	∗∗ ◦ ρ(a) = w*- lim
γ

Eα
γ a + a − w*- lim

γ ′
aEα

γ ′

= κ(a)

altogether proving that ρ splits multiplication weakly on A. �

5. Applications. We shall now apply the previous section to discrete convolution
algebras. Our first application is to note that Choi’s result ([1, Theorem 6.1]) for discrete
convolution algebras on Clifford semi-groups is a special case of the general results in
Section 4. Recall that a Clifford semi-group is a semi-group S which is a disjoint union

S =
∨
α∈�

Gα,

where � is a semi-lattice and the multiplication satisfies: each Gα is a group with the
semi-group multiplication and GαGβ ⊆ Gαβ, α, β ∈ �. For details see [3]. It is clear
that we may then view �1(S) as an �1-graded Banach algebra

�1(S) =
⊕
α∈�

�1(Gα),

and we get

COROLLARY 5.1 (Y. Choi). Let S = ∨
α∈� Gα be a Clifford semi-group. Then �1(S) is

biflat (biprojective) if and only if � is uniformly locally finite and each group Gα, α ∈ �,
is amenable (finite).

Proof. For each α ∈ � the unit of Gα is denoted eα. If β < α, then (eαeβ)2 = eαeβ

so that eαeβ = eβ . It further follows that the net of units (eα)� is in the center of S and
that �1(S) satisfies (LA1).

Since a discrete convolution algebra on a group is unital, it is amenable if and only
if it is biflat. It is easy to show that ac(�1(G)) = 1 for an amenable group and hence by
3.2 we have bc(�1(G)) = 1.

It now follows by 4.4 that the condition is necessary for biflatness and by 4.6 that
it is sufficient.
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If �1(S) is biprojective, it is in particular biflat, so � is uniformly locally finite. For
each unit eα ∈ Gα, α ∈ � we have eαgβ = gβeα, gβ ∈ Gβ, β ∈ �, so �1(eαS) is a unital
biprojective Banach algebra possesing Grothendieck’s approximation property, thus is
finite dimensional ([15]). Hence each group Gα is finite.

Conversely, if � is uniformly locally finite and each group is finite, then �1(S) is
biflat by what we have already proved. The finiteness of the groups further implies that
multiplication is approximable, so that biprojectivity now follows from 3.7. �

In the remainder of this section we will consider discrete convolution algebras on
abelian semi-groups. As with the case of amenability ([8]), the structure theorem for
abelian semi-groups will be the door of attack on the problem. We cite it in a form
convenient to our purpose. First we recall that an abelian semi-group S is archimedean
if

∀s, t ∈ S∃n ∈ � : sn ∈ tS.

THEOREM 5.2 (Structure theorem for abelian semi-groups). Let S be an abelian
semi-group. Then S is a disjoint union of archimedean semi-groups

S =
∨
α∈�

Sα

The index set � is equipped with a semi-lattice multiplication such that

SαSβ ⊆ Sαβ α, β ∈ �.

If S = ∨
α′∈�′ Sα′ is another such decomposition, then � and �′ are isomorphic, say via

a semi-lattice isomorphism φ : � → �′ and Sα is isomorphic to Sφ(α) for all α ∈ �.

Proof. See [3, Theorem 4.13]. �
We shall refer to this result as the archimedean decomposition of the semi-group

and Sα’s as archimedean components. Note that if T is an archimedean sub-semigroup
of S then there is α ∈ � such that T ⊆ Sα.

We will prove

THEOREM 5.3. Let S be an abelian semi-group with archimedean decomposition
S = ∨

α∈� Sα. Then �1(S) is biflat if and only if � is uniformly locally finite and each Sα

is a group.

Proof. If S = ∨
α∈� Sα and each Sα a group, then S is an abelian Clifford semi-

group. Since abelian groups are amenable, we may appeal to 5.1 to establish sufficiency.
The proof of the converse consists of several steps. We start by doing away with

the case #� = 1:

LEMMA 5.4. If S is archimedean and �1(S) is biflat, then S is a group.

Proof. Using biflatness cl(�1(S)2) = �1(S), so S2 = S. Hence by 3.5 �1(sS) is
biflat for each s ∈ S. So s2S = s2S2 = (sS)2 = sS for each s ∈ S. Let s, t ∈ S. By the
archimedean property there is n ∈ � such that tn ∈ sS. So tS = tnS ⊆ sS. It follows
that sS = tS for all s, t ∈ S. As S2 = ⋃

s∈S sS we further conclude that S = sS for
all s ∈ S. For a given s we may thus write s = se for appropriate e ∈ S. Then, given
t ∈ S = sS we may write t = su for appropriate u ∈ S, whence et = esu = su = t; thus
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e is a unit for S. One more application of sS = S for all s ∈ S gives that e ∈ sS for all
s, i.e. each element has an inverse. �

The next lemma may be seen as doing away with the case #� = 2.

LEMMA 5.5. Suppose that � has a maximal element α0. Then Sα0 is a group.

Proof. Since α0 is maximal the sub-semigroup T = ∨
α �=α0

Sα is an ideal of S. Since
S2 = S we obtain ST = T and hence cl(�1(S)�1(T)) = �1(T), so that �1(S)/�1(T) =
�1(Sα0 ) is biflat by 3.3. By 5.4 Sα0 is a group. �

We now proceed with the proof of the theorem. First we produce a family of
idempotents eα ∈ Sα so that eαeβ = eαβ for all α, β ∈ �. Then we use this family to
show that � is uniformly locally finite, so in particular Chl(�) < ∞. Finally we prove
inductively on n = Chl(�) that each archimedean component is a group.

Let α ∈ � be arbitrary and let T = S(
∨

β≤α Sβ). Then �1(T) is (isometrically
isomorphic to) a closed ideal in �1(S) with cl(�1(S)�1(T)) = �1(T), so �1(T) is biflat
by 3.5. As T is a sub-semigroup of S, its archimedean components are subsets of the
archimedean components of S. Let T = ∨

β∈M Tβ be the archimedean decomposition
of T . We prove below that T ∩ Sα is archimedean. It then follows that M has a maximal
element β0 and that T ∩ Sα = Tβ0 . By 5.5 then Tβ0 = S(

∨
β≤α Sβ) ∩ Sα is a group. In

particular Sα contains an idempotent, eα and S(
∨

β≤α Sβ) ∩ Sα = eαSα. Note that,
being archimedean, Sα contains at most one idempotent. Hence eαeβ = eαβ for all
α, β ∈ �.

To argue that T ∩ Sα is archimedean, first observe that

T ∩ Sα = {sαsβ | sα ∈ Sα, sβ ∈ Sβ, β ≥ α}.

Let sαsβ, uαuβ ′ , β, β ′ ≥ α be arbitrary elements of T ∩ Sα. By the archimedean
property of Sα there is n ∈ � such that (sαsβ)n ∈ uαuβ ′Sα. But then (sαsβ)n+1 ∈
uαuβ ′sαsβSα ⊆ uαuβ ′(T ∩ Sα), thus establishing the defining property of being
archimedean.

To see that � is uniformly locally finite, let φα : �1(Sα) → � be the augmentation
maps. Let � : �1(S) → �1(�) be the corresponding surjection. Then ker � =⊕

α∈� ker φα. Now ker φα is generated by elements of the form sα − eα. Since S2 = S
we may write sα = sβsγ . Using eα = eβeγ we get

sα − eα = (sβ − eβ)sγ + eβ(sγ − eγ ) ∈ �1(S) ker φβ + �1(S) ker φγ ,

so that cl(�(S) ker �) = ker �. It follows from 3.3 that �1(�) is biflat and hence � is
uniformly locally finite.

Finally, to see that each Sα, α ∈ � is a group, we use induction on n = Chl(�).
For n = 1 this is just 5.4. Assume that the result is true for n, n ≥ 1 and suppose that
Chl(�) = n + 1. Let � be the set of maximal elements in �. By 5.5 Sα is a group for
each α ∈ �. Let T = ∨

α/∈� Sα. Then T is a sub-semigroup of S and has archimedean
components Sα, α /∈ �. Since Chl(� \ �) = n we finish the induction step by proving
that �1(T) is biflat. Now T is an ideal in S, so we can conclude this from 3.5 provided
ST = T . Since S2 = S each element t ∈ T is a product t = sαsβ . The only possibility
for t /∈ ST is if both α, β ∈ �. But in this case both Sα, Sβ are groups. In particular,
sα = eαsα and sβ = eβsβ , so that t (= eαeβt) ∈ ST also in this case. The induction step
is hereby completed. �
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COROLLARY 5.6. �1(S) is biprojective if and only if � is uniformly locally finite and
each group Sα, α ∈ � is finite.

Proof. If �1(S) is biprojective then it is biflat, so S is a Clifford semi-group. The
rest follows from 5.1. �
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