A CHARACTERISATION OF CENTRAL ELEMENTS IN C^{*}-ALGEBRAS
 LAJOS MOLNÁR

(Received 29 June 2016; accepted 12 July 2016; first published online 19 October 2016)

Abstract

Wu ['An order characterization of commutativity for C^{*}-algebras', Proc. Amer. Math. Soc. 129 (2001), 983-987] proved that if the exponential function on the set of all positive elements of a C^{*}-algebra is monotone in the usual partial order, then the algebra in question is necessarily commutative. In this note, we present a local version of that result and obtain a characterisation of central elements in C^{*}-algebras in terms of the order.

2010 Mathematics subject classification: primary 46L05; secondary 47B49.
Keywords and phrases: C^{*}-algebra, central element, order, exponential function.

1. Introduction

Let \mathcal{A} be a (unital) C^{*}-algebra and denote by \mathcal{A}_{s} the space of all of its self-adjoint elements. An element $x \in \mathcal{A}_{s}$ is called positive, $x \geq 0$, if its spectrum $\sigma(x)$ lies in the nonnegative part of the real line. The set of all positive elements of \mathcal{A} is denoted by \mathcal{A}_{+}. The usual partial order \leqon \mathcal{A}_{s} is then defined in the following way: for any $x, y \in \mathcal{A}_{s}$ we write $x \leq y$ if and only if $y-x \in \mathcal{A}_{+}$.

There are some classical results in the literature which characterise the commutativity of C^{*}-algebras in terms of certain properties of the order. For example, a result of Sherman [7] says that a C^{*}-algebra \mathcal{A} is commutative if and only if \mathcal{A}_{s} is a lattice (compare with [1]). Another famous result, due to Ogasawara [4], says that squaring is monotone on \mathcal{A}_{+}if and only if \mathcal{A} is commutative. The slightly more general result [5, Proposition 1.3.9] shows that if the power function $t \mapsto t^{\beta}$, where $\beta>1$ is monotone with respect to the usual order on \mathcal{A}_{+}(meaning that $x, y \in \mathcal{A}_{+}, x \leq y$ implies $x^{\beta} \leq y^{\beta}$), then the algebra \mathcal{A} is necessarily commutative. Wu [8] presented a similar statement saying that the same conclusion holds if the power function is replaced by the exponential function.

[^0]In this note we present a local version of Wu's result. Namely, we show that the 'points of monotonicity' of the exponential function on \mathcal{A}_{s} necessarily belong to the centre of \mathcal{A}. This implies Wu's result as an immediate consequence.

2. The result

Theorem 2.1. Let \mathcal{A} be a C^{*}-algebra and $x \in \mathcal{A}_{s}$. The following assertions are equivalent:
(i) $e^{x} \leq e^{y}$ for every $y \in \mathcal{A}_{s}$ with $x \leq y$;
(ii) $\int_{0}^{1} e^{t x} z e^{(1-t) x} d t \in \mathcal{A}_{+}$for all $z \in \mathcal{A}_{+}$; and
(ii) x is a central element of \mathcal{A}.

For the proof of the theorem, we need the following auxiliary lemma.
Lemma 2.2. Let H be a complex Hilbert space and denote by $B(H)$ the algebra of all bounded linear operators on H. Let $T \in B(H)$ be self-adjoint. Assume that $0=\min \sigma(T)$ and $r=\max \sigma(T)$. For every $\epsilon>0$, we can choose orthogonal unit vectors $\xi, \eta \in H$ such that, for any $A \in B(H)$ with the properties $\|A\| \leq \sqrt{2}, A \xi=A \eta$ and $\|A \xi\|=\|A \eta\|=1$, if

$$
\int_{0}^{1} \exp (t T) A^{*} A \exp ((1-t) T) d t \geq 0
$$

then

$$
\left(\frac{e^{r}-1}{r}\right)^{2} \leq(1+2 \epsilon)\left(e^{r}+2 \epsilon\right)
$$

Proof. It is easy to see that, for any pair $f, g:[0,1] \rightarrow B(H)$ of continuous functions, the transformation

$$
X \mapsto \int_{0}^{1} f(t) X g(t) d t
$$

is a bounded linear map on $B(H)$ and its norm is majorised by the product of the supremum norms of f and g. It follows that the above integral depends continuously on the functions f and g, meaning that if $f_{n}, g_{n}:[0,1] \rightarrow B(H)$ are sequences of continuous functions uniformly converging to f and g, respectively, then the corresponding sequence

$$
X \mapsto \int_{0}^{1} f_{n}(t) X g_{n}(t) d t
$$

of bounded linear maps on $B(H)$ converges to the map

$$
X \mapsto \int_{0}^{1} f(t) X g(t) d t
$$

in the operator norm.
It is also easy to see that if $\left(T_{k}\right)$ is a sequence in $B(H)$ which converges in norm to T, then the sequence $t \mapsto \exp \left(t T_{k}\right)$ of operator valued functions converges to $t \mapsto \exp (t T)$
uniformly in $t \in[0,1]$. It follows that, given $T \in B(H)$, for every real number $\epsilon>0$ there is a real number $\delta>0$ such that

$$
\begin{equation*}
\sup _{\|X\| \leq 1}\left\|\int_{0}^{1} \exp (t T) X \exp ((1-t) T) d t-\int_{0}^{1} \exp \left(t T^{\prime}\right) X \exp \left((1-t) T^{\prime}\right) d t\right\| \leq \epsilon \tag{2.1}
\end{equation*}
$$

holds whenever $T^{\prime} \in B(H)$ with $\left\|T-T^{\prime}\right\| \leq \delta$. Obviously, we may assume that $2 \delta<r$. Consider a continuous function $h:[0, r] \rightarrow[0, r]$ which is zero on the interval $[0, \delta]$, it equals r on $[r-\delta, r]$ and its distance to the identity function on $[0, r]$ in the supremum norm is not greater than δ. Then $\|T-h(T)\| \leq \delta$ and hence we obtain from (2.1) that

$$
\begin{align*}
& \mid \int_{0}^{1}\left\langle\exp (t T) A^{*} A \exp ((1-t) T) \zeta, \zeta\right\rangle d t \\
& \quad-\int_{0}^{1}\left\langle\exp (t h(T)) A^{*} A \exp ((1-t) h(T)) \zeta, \zeta\right\rangle d t \mid \leq \epsilon\|A\|^{2}\|\zeta\|^{2} \tag{2.2}
\end{align*}
$$

holds for every operator $A \in B(H)$ and vector $\zeta \in H$. Observe that, by elementary change of variables, for any self-adjoint operator $S \in B(H)$,

$$
\int_{0}^{1} \exp (t S) A^{*} A \exp ((1-t) S) d t=\int_{0}^{1} \exp ((1-t) S) A^{*} A \exp (t S) d t, \quad A \in B(H)
$$

implying that the values of these integrals are self-adjoint operators. Therefore, if

$$
\begin{equation*}
\int_{0}^{1} \exp (t T) A^{*} A \exp ((1-t) T) d t \geq 0 \tag{2.3}
\end{equation*}
$$

then it follows from (2.2) that

$$
\begin{aligned}
0 & \leq \int_{0}^{1}\left\langle\exp (t T) A^{*} A \exp ((1-t) T) \zeta, \zeta\right\rangle d t \\
& \leq \int_{0}^{1}\left\langle\exp (t h(T)) A^{*} A \exp ((1-t) h(T)) \zeta, \zeta\right\rangle d t+\epsilon\|A\|^{2}\|\zeta\|^{2} \\
& =\int_{0}^{1}\langle A \exp ((1-t) h(T)) \zeta, A \exp (t h(T)) \zeta\rangle d t+\epsilon\|A\|^{2}\|\zeta\|^{2}
\end{aligned}
$$

Denote by E the spectral measure of T on the Borel subsets of [0, r]. Pick a unit vector ξ from the range of $E([0, \delta])$ and another one η from the range of $E([r-\delta, r])$. Clearly, ξ is orthogonal to η. Let s be an arbitrary real number and set $\zeta=s \xi+\eta$. We compute

$$
A \exp ((1-t) h(T)) \zeta=A\left(s \xi+e^{(1-t) r} \eta\right), \quad A \exp (t h(T)) \zeta=A\left(s \xi+e^{t r} \eta\right)
$$

Hence, for any $A \in B(H)$ satisfying (2.3), $\|A\| \leq \sqrt{2}, A \xi=A \eta$ and $\|A \xi\|=\|A \eta\|=1$, we obtain

$$
0 \leq \int_{0}^{1}\left(s+e^{(1-t) r}\right)\left(s+e^{t r}\right) d t+\epsilon 2\left(s^{2}+1\right)
$$

for every real number s. This implies that

$$
0 \leq s^{2}+e^{r}+2 s \frac{e^{r}-1}{r}+\epsilon 2\left(s^{2}+1\right)
$$

for every real number s. Examining the discriminant of the corresponding quadratic equation, yields

$$
4\left(\frac{e^{r}-1}{r}\right)^{2}-4(1+2 \epsilon)\left(e^{r}+2 \epsilon\right) \leq 0
$$

which gives the statement of the lemma.
We are now in a position to prove the theorem.
Proof of Theorem 2.1. According to the bottom line on [6, page 148], the (Fréchet-) derivative of the exponential function $T \mapsto \exp T$ on $B(H)$ at the point T is the linear map

$$
X \mapsto \int_{0}^{1} \exp (t T) X \exp ((1-t) T) d t
$$

This implies that the function $x \mapsto e^{x}$ on the C^{*}-algebra \mathcal{A} is differentiable at x and its derivative is the linear map

$$
z \mapsto \int_{0}^{1} \exp (t x) z \exp ((1-t) x) d t
$$

Now, assuming (i), we clearly obtain (ii).
Suppose (ii) holds. Select an irreducible representation π of \mathcal{A} on a Hilbert space H. Then

$$
\int_{0}^{1} \exp (t \pi(x)) \pi(z)^{*} \pi(z) \exp ((1-t) \pi(x)) d t \geq 0
$$

holds for all $z \in \mathcal{A}$. Since $\pi(1)=I$, adding a real constant times the identity to x, if necessary, we may assume that the operator $\pi(x)$ is positive, zero belongs to its spectrum and the largest element of the spectrum is r. By Lemma 2.2, for every $\epsilon>0$, we can choose orthogonal unit vectors $\xi, \eta \in H$ such that, for any $A \in B(H)$ with the properties $\|A\| \leq \sqrt{2}, A \xi=A \eta$ and $\|A \xi\|=\|A \eta\|=1$, the positivity of the operator

$$
\int_{0}^{1} \exp (t \pi(x)) A^{*} A \exp ((1-t) \pi(x)) d t
$$

implies that

$$
\left(\frac{e^{r}-1}{r}\right)^{2} \leq(1+2 \epsilon)\left(e^{r}+2 \epsilon\right) .
$$

Pick a unit vector $v \in H$ and define the operator $A \in B(H)$ by $A \zeta=\langle\zeta, \xi+\eta\rangle v$ for all $\zeta \in H$. Clearly, $\|A\|=\sqrt{2}, A \xi=A \eta$ and $\|A \xi\|=\|A \eta\|=1$. Since π is an irreducible representation, by a sharper version of the Kadison transitivity theorem (see [2,

Exercise 5.7.41.(ii) on page 379]), there is an element $z \in \mathcal{A}$ such that $\|\pi(z)\| \leq \sqrt{2}$ and $\pi(z) \xi=A \xi, \pi(z) \eta=A \eta$. It then follows that

$$
\left(\frac{e^{r}-1}{r}\right)^{2} \leq(1+2 \epsilon)\left(e^{r}+2 \epsilon\right)
$$

But here $\epsilon>0$ is arbitrary, so, consequently,

$$
\left(\frac{e^{r}-1}{r}\right)^{2} \leq e^{r}
$$

It is easy to check that for a nonnegative real number r this holds only if $r=0$. Therefore, $\pi(x)=0$. Since we may have added a constant multiple of the identity to x, this means, for the original element x, that $\pi(x)=\lambda I$ holds for some real number λ. We know that this is true for all irreducible representations π of \mathcal{A} and claim that x is central. Indeed, if $a \in \mathcal{A}$ is an element and $x a-a x \neq 0$, then, by [3, Corollary 10.2.4], we have an irreducible representation π such that $0 \neq \pi(x a-a x)=\pi(x) \pi(a)-\pi(a) \pi(x)$, which is clearly a contradiction.

Finally, to see the implication (iii) \Rightarrow (i), let $x \in \mathcal{A}_{s}$ be central and select an arbitrary element $y \in \mathcal{A}_{s}$ such that $y \geq x$. Since $x, y-x$ commute and $y-x \geq 0$,

$$
e^{x}=e^{x / 2} 1 e^{x / 2} \leq e^{x / 2} e^{y-x} e^{x / 2}=e^{x / 2+(y-x)+x / 2}=e^{y}
$$

The proof of the theorem is complete.
As an immediate corollary we obtain the following statement which is formally stronger than Wu's original theorem.

Corollary 2.3. Let \mathcal{A} be a C^{*}-algebra such that the exponential function is monotone on a nongenerate interval I of the real line, meaning that I is of positive length and, for any $x, y \in \mathcal{A}_{s}$ with $\sigma(x), \sigma(y) \subset I$ and $x \leq y$, we have $e^{x} \leq e^{y}$. Then \mathcal{A} is commutative.

Proof. Let I^{\prime} be a nongenerate compact interval in the interior of I. Select $x \in \mathcal{A}_{s}$ such that $\sigma(x) \subset I^{\prime}$. For any element $z \in \mathcal{A}_{+}$, the inclusion $\sigma(x+t z) \subset I$ holds for small enough $t>0$. It follows that the directional derivative of the exponential function on \mathcal{A}_{s} at x along z, that is, the limit $\lim _{t \rightarrow 0+}\left(e^{x+t z}-e^{x}\right) / t$, belongs to \mathcal{A}_{+}. As mentioned in the proof of Theorem 2.1, the (Fréchet-) derivative of the exponential function at x is the linear transformation

$$
z \rightarrow \int_{0}^{1} e^{t x} z e^{(1-t) x} d t
$$

on \mathcal{A}. It follows that

$$
\lim _{t \rightarrow 0+} \frac{e^{x+t z}-e^{x}}{t}=\int_{0}^{1} e^{t x} z e^{(1-t) x} d t
$$

belongs to \mathcal{A}_{+}for every $z \in \mathcal{A}_{+}$. By the implication (ii) \Rightarrow (iii) in Theorem 2.1, x is central in \mathcal{A}. We then easily obtain the desired conclusion.

Acknowledgement

The author is grateful to the reviewer for the careful reading of the manuscript and for the comments which helped to improve the presentation of the paper.

References

[1] M. Fukamiya, Y. Misonou and Z. Takeda, 'On order and commutativity of B^{*}-algebras', Tôhoku Math. J. (2) 6 (1954), 89-93.
[2] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I (Academic Press, New York, 1983).
[3] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. II (Academic Press, New York, 1986).
[4] T. Ogasawara, 'A theorem on operator algebras', J. Sci. Hiroshima Univ. Ser. A. 18 (1955), 307-309.
[5] G. K. Pedersen, C^{*}-Algebras and Their Automorphism Groups, London Mathematical Society Monographs, 14 (Academic Press, London, New York, 1979).
[6] G. K. Pedersen, 'Operator differentiable functions', Publ. Res. Inst. Math. Sci. 36 (2000), 139-157.
[7] S. Sherman, 'Order in operator algebras', Amer. J. Math. 73 (1951), 227-232.
[8] W. Wu, 'An order characterization of commutativity for C^{*}-algebras', Proc. Amer. Math. Soc. 129 (2001), 983-987.

LAJOS MOLNÁR, Department of Analysis, Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1, Hungary
and
MTA-DE ‘Lendület' Functional Analysis Research Group, Institute of Mathematics, University of Debrecen, H-4010 Debrecen, PO Box 12, Hungary
e-mail: molnarl@math.u-szeged.hu

[^0]: The author was supported by the 'Lendület' Program (LP2012-46/2012) of the Hungarian Academy of Sciences and by the Hungarian Scientific Research Fund (OTKA) Reg. No. K115383.
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

