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Abstract

Wu [‘An order characterization of commutativity for C∗-algebras’, Proc. Amer. Math. Soc. 129 (2001),
983–987] proved that if the exponential function on the set of all positive elements of a C∗-algebra is
monotone in the usual partial order, then the algebra in question is necessarily commutative. In this note,
we present a local version of that result and obtain a characterisation of central elements in C∗-algebras
in terms of the order.
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1. Introduction

Let A be a (unital) C∗-algebra and denote by As the space of all of its self-adjoint
elements. An element x ∈ As is called positive, x ≥ 0, if its spectrum σ(x) lies in the
nonnegative part of the real line. The set of all positive elements of A is denoted by
A+. The usual partial order ≤ on As is then defined in the following way: for any
x, y ∈ As we write x ≤ y if and only if y − x ∈ A+.

There are some classical results in the literature which characterise the
commutativity of C∗-algebras in terms of certain properties of the order. For example,
a result of Sherman [7] says that a C∗-algebra A is commutative if and only if As

is a lattice (compare with [1]). Another famous result, due to Ogasawara [4], says
that squaring is monotone on A+ if and only if A is commutative. The slightly more
general result [5, Proposition 1.3.9] shows that if the power function t 7→ tβ, where
β > 1 is monotone with respect to the usual order onA+ (meaning that x, y ∈ A+, x ≤ y
implies xβ ≤ yβ), then the algebra A is necessarily commutative. Wu [8] presented
a similar statement saying that the same conclusion holds if the power function is
replaced by the exponential function.
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In this note we present a local version of Wu’s result. Namely, we show that the
‘points of monotonicity’ of the exponential function on As necessarily belong to the
centre ofA. This implies Wu’s result as an immediate consequence.

2. The result

Theorem 2.1. Let A be a C∗-algebra and x ∈ As. The following assertions are
equivalent:

(i) ex ≤ ey for every y ∈ As with x ≤ y;
(ii)

∫ 1
0 etxze(1−t)x dt ∈ A+ for all z ∈ A+; and

(ii) x is a central element ofA.

For the proof of the theorem, we need the following auxiliary lemma.

Lemma 2.2. Let H be a complex Hilbert space and denote by B(H) the algebra of
all bounded linear operators on H. Let T ∈ B(H) be self-adjoint. Assume that
0 = minσ(T ) and r = maxσ(T ). For every ε > 0, we can choose orthogonal unit
vectors ξ, η ∈ H such that, for any A ∈ B(H) with the properties ‖A‖ ≤

√
2, Aξ = Aη

and ‖Aξ‖ = ‖Aη‖ = 1, if ∫ 1

0
exp (tT )A∗A exp ((1 − t)T ) dt ≥ 0,

then (er − 1
r

)2
≤ (1 + 2ε)(er + 2ε).

Proof. It is easy to see that, for any pair f , g : [0, 1]→ B(H) of continuous functions,
the transformation

X 7→
∫ 1

0
f (t)Xg(t) dt

is a bounded linear map on B(H) and its norm is majorised by the product of the
supremum norms of f and g. It follows that the above integral depends continuously
on the functions f and g, meaning that if fn, gn : [0, 1] → B(H) are sequences
of continuous functions uniformly converging to f and g, respectively, then the
corresponding sequence

X 7→
∫ 1

0
fn(t)Xgn(t) dt

of bounded linear maps on B(H) converges to the map

X 7→
∫ 1

0
f (t)Xg(t) dt

in the operator norm.
It is also easy to see that if (Tk) is a sequence in B(H) which converges in norm to T ,

then the sequence t 7→ exp(tTk) of operator valued functions converges to t 7→ exp(tT )
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uniformly in t ∈ [0, 1]. It follows that, given T ∈ B(H), for every real number ε > 0
there is a real number δ > 0 such that

sup
‖X‖≤1

∥∥∥∥∥ ∫ 1

0
exp (tT )X exp ((1 − t)T ) dt −

∫ 1

0
exp (tT ′)X exp ((1 − t)T ′) dt

∥∥∥∥∥ ≤ ε (2.1)

holds whenever T ′ ∈ B(H) with ‖T − T ′‖ ≤ δ. Obviously, we may assume that 2δ < r.
Consider a continuous function h : [0, r]→ [0, r] which is zero on the interval [0, δ], it
equals r on [r − δ, r] and its distance to the identity function on [0, r] in the supremum
norm is not greater than δ. Then ‖T − h(T )‖ ≤ δ and hence we obtain from (2.1) that∣∣∣∣∣ ∫ 1

0
〈exp (tT )A∗A exp ((1 − t)T )ζ, ζ〉 dt

−

∫ 1

0
〈exp (th(T ))A∗A exp ((1 − t)h(T ))ζ, ζ〉 dt

∣∣∣∣∣ ≤ ε‖A‖2‖ζ‖2 (2.2)

holds for every operator A ∈ B(H) and vector ζ ∈ H. Observe that, by elementary
change of variables, for any self-adjoint operator S ∈ B(H),∫ 1

0
exp (tS )A∗A exp ((1 − t)S ) dt =

∫ 1

0
exp ((1 − t)S )A∗A exp (tS ) dt, A ∈ B(H)

implying that the values of these integrals are self-adjoint operators. Therefore, if∫ 1

0
exp (tT )A∗A exp ((1 − t)T ) dt ≥ 0, (2.3)

then it follows from (2.2) that

0 ≤
∫ 1

0
〈exp (tT )A∗A exp ((1 − t)T )ζ, ζ〉 dt

≤

∫ 1

0
〈exp (th(T ))A∗A exp ((1 − t)h(T ))ζ, ζ〉 dt + ε‖A‖2‖ζ‖2

=

∫ 1

0
〈A exp ((1 − t)h(T ))ζ, A exp (th(T ))ζ〉 dt + ε‖A‖2‖ζ‖2.

Denote by E the spectral measure of T on the Borel subsets of [0, r]. Pick a unit vector
ξ from the range of E([0, δ]) and another one η from the range of E([r − δ, r]). Clearly,
ξ is orthogonal to η. Let s be an arbitrary real number and set ζ = sξ + η. We compute

A exp ((1 − t)h(T ))ζ = A(sξ + e(1−t)rη), A exp (th(T ))ζ = A(sξ + etrη).

Hence, for any A ∈ B(H) satisfying (2.3), ‖A‖ ≤
√

2, Aξ = Aη and ‖Aξ‖ = ‖Aη‖ = 1, we
obtain

0 ≤
∫ 1

0
(s + e(1−t)r)(s + etr) dt + ε2(s2 + 1)
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for every real number s. This implies that

0 ≤ s2 + er + 2s
er − 1

r
+ ε2(s2 + 1)

for every real number s. Examining the discriminant of the corresponding quadratic
equation, yields

4
(er − 1

r

)2
− 4(1 + 2ε)(er + 2ε) ≤ 0,

which gives the statement of the lemma. �

We are now in a position to prove the theorem.

Proof of Theorem 2.1. According to the bottom line on [6, page 148], the (Fréchet-)
derivative of the exponential function T 7→ exp T on B(H) at the point T is the linear
map

X 7→
∫ 1

0
exp (tT )X exp ((1 − t)T ) dt.

This implies that the function x 7→ ex on the C∗-algebraA is differentiable at x and its
derivative is the linear map

z 7→
∫ 1

0
exp (tx)z exp ((1 − t)x) dt.

Now, assuming (i), we clearly obtain (ii).
Suppose (ii) holds. Select an irreducible representation π of A on a Hilbert space

H. Then ∫ 1

0
exp (tπ(x))π(z)∗π(z) exp ((1 − t)π(x)) dt ≥ 0

holds for all z ∈ A. Since π(1) = I, adding a real constant times the identity to x,
if necessary, we may assume that the operator π(x) is positive, zero belongs to its
spectrum and the largest element of the spectrum is r. By Lemma 2.2, for every ε > 0,
we can choose orthogonal unit vectors ξ, η ∈ H such that, for any A ∈ B(H) with the
properties ‖A‖ ≤

√
2, Aξ = Aη and ‖Aξ‖ = ‖Aη‖ = 1, the positivity of the operator∫ 1

0
exp (tπ(x))A∗A exp ((1 − t)π(x)) dt

implies that (er − 1
r

)2
≤ (1 + 2ε)(er + 2ε).

Pick a unit vector ν ∈ H and define the operator A ∈ B(H) by Aζ = 〈ζ, ξ + η〉ν for all
ζ ∈ H. Clearly, ‖A‖ =

√
2, Aξ = Aη and ‖Aξ‖ = ‖Aη‖ = 1. Since π is an irreducible

representation, by a sharper version of the Kadison transitivity theorem (see [2,
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Exercise 5.7.41.(ii) on page 379]), there is an element z ∈ A such that ‖π(z)‖ ≤
√

2
and π(z)ξ = Aξ, π(z)η = Aη. It then follows that(er − 1

r

)2
≤ (1 + 2ε)(er + 2ε).

But here ε > 0 is arbitrary, so, consequently,(er − 1
r

)2
≤ er.

It is easy to check that for a nonnegative real number r this holds only if r = 0.
Therefore, π(x) = 0. Since we may have added a constant multiple of the identity
to x, this means, for the original element x, that π(x) = λI holds for some real number
λ. We know that this is true for all irreducible representations π ofA and claim that x is
central. Indeed, if a ∈ A is an element and xa − ax , 0, then, by [3, Corollary 10.2.4],
we have an irreducible representation π such that 0 , π(xa − ax) = π(x)π(a) − π(a)π(x),
which is clearly a contradiction.

Finally, to see the implication (iii)⇒(i), let x ∈ As be central and select an arbitrary
element y ∈ As such that y ≥ x. Since x, y − x commute and y − x ≥ 0,

ex = ex/21ex/2 ≤ ex/2ey−xex/2 = ex/2+(y−x)+x/2 = ey.

The proof of the theorem is complete. �

As an immediate corollary we obtain the following statement which is formally
stronger than Wu’s original theorem.

Corollary 2.3. LetA be a C∗-algebra such that the exponential function is monotone
on a nongenerate interval I of the real line, meaning that I is of positive length and, for
any x, y ∈ As with σ(x), σ(y) ⊂ I and x ≤ y, we have ex ≤ ey. ThenA is commutative.

Proof. Let I′ be a nongenerate compact interval in the interior of I. Select x ∈ As such
that σ(x) ⊂ I′. For any element z ∈ A+, the inclusion σ(x + tz) ⊂ I holds for small
enough t > 0. It follows that the directional derivative of the exponential function on
As at x along z, that is, the limit limt→0+(ex+tz − ex)/t, belongs to A+. As mentioned
in the proof of Theorem 2.1, the (Fréchet-) derivative of the exponential function at x
is the linear transformation

z→
∫ 1

0
etxze(1−t)x dt

onA. It follows that

lim
t→0+

ex+tz − ex

t
=

∫ 1

0
etxze(1−t)x dt

belongs to A+ for every z ∈ A+. By the implication (ii) ⇒ (iii) in Theorem 2.1, x is
central inA. We then easily obtain the desired conclusion. �
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