
J. Austral. Math. Soc. (Series A) 30 (1980), 187-200

SEMI-MARKOV PROCESSES ON A GENERAL STATE
SPACE: a-THEORY AND QUASI-STATIONARITY

E. ARJAS. E. NUMMELIN and R. L. TWEEDIE

(Received 23 July; revised 1 December 1979)

Communicated by J. B. Miller

Abstract

By amalgamating the approaches of Tweedie (1974) and Nummelin (1977), an a-theory is developed for
general semi-Markov processes. It is shown that x-transient, 2-recurrent and 2-positive recurrent
processes can be denned, with properties analogous to those for transient, recurrent and positive
recurrent processes. Limit theorems for a-positive recurrent processes follow by transforming to the
probabilistic case, as in the above references: these then give results on the existence and form of quasi-
stationary distributions, extending those of Tweedie (1975) and Nummelin (1976).

1980 Mathematics subject classification (Amer. Math. Soc): 60 K 15.

0. Introduction

The analytic properties of the transition probabilities of Markov chains and semi-
Markov processes, and the application of these properties to the investigation of
quasi-stationary behaviour of such chains and processes, have been explored in a
variety of contexts in recent years. For Markov chains in discrete time, and with a
countable state space, the analytic behaviour ('R-theory') of the transition prob-
abilities is investigated by Vere-Jones (1962) and (1967), and the application to
quasi-stationary problems is given by Seneta and Vere-Jones (1966), following the
initial work by Darroch and Seneta (1965) on quasi-stationarity for finite state space
chains. The R-theory and quasi-stationarity for general state space is developed by
Tweedie (1974a) and (1975). and the basic results of Vere-Jones are shown to hold
without more than technical changes when the state space is generalized.

For Markov processes with continuous time parameter and countable state space
the analytic properties (in this context called 'a-theory') of the transition pro-
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babilities are studied by Kingman (1963), and some quasi-stationary results are
described by Vere-Jones (1969) and Tweedie (1974b).

Finally, the a-theory and quasi-stationary behaviour of semi-Markov processes
with a countable state space are considered by Cheong (1968) and (1970) and by
Flashpohler and Holmes (1972); and further results in those areas are presented by
Nummelin (1976) and (1977).

This paper is intended to complete this set of results by presenting the important
aspects of an a-theory for semi-Markov processes whose state space is general rather
than countable: this can then be seen as extending both the R-theory of Tweedie
(1974a) and the countable space results of Nummelin (1976) and (1977), whose
approach we follow quite closely here. From this a-theory we then deduce some
quasi-stationarity results which again complement those previously discovered
under restrictions on either the space or the time behaviour of the process.

1. Preliminaries

Suppose (E,$) is an arbitrary measurable space, and write (R+, ,^+) for the set
[0, DO) and its Borel <x-field; we shall write J5" for the product-ir-neld 3 ® ?A + . The
basic object we shall study is a semi-Markov kernel Q(x,B), xeE, Be.^\ this is
assumed to be such that K(i): for every Be. f , Q(-, B) is an ^-measurable function
from E to R + ; K(ii): for every xeE, Q(x, •) is a measure on &, and K('ni): for every
xeE, Q(X,EXR + ) sj 1.

We shall use A to denote a point not in E, E to denote E u {A}, and R^ to denote
R+ u {oc}; £ denotes the extension of $ to Eu A, §t, the extension of .3?+ to 31 ̂ ,
and <W the extension of J* to Ex R+ in the obvious way. Let Q^x, F), xeE, Fe J? + ,
be a transition kernel from E into J?+, called the absorption law. We assume that
Q(-, E x R + ) + QA{-, R + ) = 1. Any measure fj. on ^?_ is extended to ( - x , x ) by
se t t ing^-oo ,0) = 0. Let \(Xn, Tn); n ^ 0} be a Markov chain on (Ex R ^ . F ) with
the transition probabilities

P((x, t), A x F) = Q(x, Ax{r- r)),

P( (x , ( ) ,{A}xD=Q A (x , r - ( ) ,

P((A,t),{A}x{oc})= 1, xeE, AeS, teR + , F e ^ + .

We denote by Px the probability on the space ((£ x R . ) 1 , , ? x ) associated with the
transition probabilities P( •, •) and the initial conditions Xo = x, To = 0; the
corresponding expectation is denoted by Ex. If !Fn = o{X0,Xx,...,Xn; T0,...,TJ,
then clearly the collection

(X, T) = {(E x R + r , ^ « , &„ Xn, Tn, (Px)xeE}
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[3] Semi-Markov processes on a general state space 189

is a Markov renewal process in the sense of Cinlar (1974). If we let
M(t) = sup {n $: 0: Tn ̂  t} and Z = sup {Tn; n ̂  0} then the semi-Markov process
corresponding to this Markov renewal process can be defined by

X(t) = Xmt) for t < Z and X(t) = A for t ̂  Z.

We shall let, for any set AeS, zA = inf{« > 0: XneA), and work with the
following quantities:

R(x..

= E\ J \AXX(Xn,Tn) .

Both «(•, •) and BR (•, •) satisfy K(i) and X(ii) above. If K: E x & -> R+ satisfies
(i) and K(ii) we call K a ^rnW.
Let K and Lbe arbitrary kernels, n a measure on J*, g a measurable function

£ x R+ ->R + , / . a real number a n d / a measurable function E -> R + . We shall use
the following notation throughout this paper:

K*L{x,AxY)= K(x,dyxdt)L(y,Ax(r-t)),
)E JR .

H*K{AxT)= n(dxxdt)K(x,Ax(r-t)\
JE JR

K*g(x,t)= K(x,dyxdu)g(y,t-u),
JE JR.

If g(x, t) = f(x) g(x, t), nlf(dy x F) = fi(dy x

x dt) = ekl fi(A x dt), g\x, t) = eXt g(x, t),

+ \ g{x)= g(xj)dt.
JR.

(We write JiA instead of (/JA)~, and similarly for g.)
For any transition kernel N{x,A) on (£, <f) we denote the H-step iterates by

Nl"\x, A); otherwise we use the standard operator-theoretic notation of Revuz
(1975).

We now concentrate on the embedded chain Xn, whose one-step transition kernel
is g i v e n b y Q(x, A ) , d e f i n e d t o b e Q(x, A x R + ). O u r first basic assumption throughout ,
this paper will be that, for some tr-finite measure cp on £, {Xn] is (^-irreducible: that is
(p(A) > 0 implies Ln

x= j QM(x,A) > 0 for all xeE. From Tweedie (1974a) and (1976)
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there is then at least one maximal irreducibility measure M satisfying

I(i): M(A) > 0 => £ Qin\x, A)>0 for all x,

r oo 1
M(A) = 0 => Mix: Y.£>""(x,A)>0> = 0,

I ' J
I(iii): if {Xn} is (^-irreducible, then <p<< M.

We shall use M to denote a fixed finite measure satisfying I(i)-I(iii), and put
<g+ ={Ae<S: M{A)>0}.

The semi-Markov kernel Q will be called Af-irreducible, M-recurrent, and so on,
according as Q has these properties. For details of the classifications of general state-
space chains, the reader can consult, for example, Jain and Jamison (1967),
Tuominen (1976) or Tweedie (1976).

Our second basic assumption throughout this paper will be that the semi-Markov
kernel is nondegenerate:

r
M(dx)Q(x,Ex(O,ac))> 0.

2. Solidarity properties and oc-recurrent processes

Our first step in describing the a-properties of a semi-Markov process is a
solidarity theorem (see Theorem 1 of Tweedie (1974a). and Theorem 1 of Nummelin
(1977)).

THEOREM 1. Suppose Q is M-irreducible. For any fixed /. ̂  0, either

(i) R\x,A) = x for all xeE and AeS + \or

(ii) there exists a countable partition {A(j}} for E and an M-null set N ; such
that R\x, A(j)) < x for all x£Nx and all j .

P R O O F . Suppose (i) does no t hold, and let S e r f * and zeE be such that
RHz,B) < x . Wri te , for nj ^ 1,

B(n,j) = {yeE: (QT{\\B) = 0, m < n; (Qif{\\B)e[_(j+ir\riVh

N,(B)= {yeE: R\y,B)= x}.

As in Theorem 1 of Tweedie (1974a), it can be shown that [B{n, j)} is the required
partition and NX(B) the required M-null set for (ii) to hold.

From Theorem 1 it is now possible to define a, the convenience parameter ofQ. as

(2.1) a = sup {/. > 0: R'ix.A) < x , some A e E, A e <?T}.
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The nondegeneracy assumption guarantees that a is finite. We shall call Q '/.-
transient if RA(x, A) < x for some x and some A e $+, and call Q a-recurrent if it is
not a-transient. If Q is O-transient (O-recurrent) we shall merely call Q transient
(recurrent).

In our next theorem we give the connection between the a-properties of Q and the
properties of Qx considered as a transition kernel on (E, $). For the latter we use the
nomenclature of Theorem 1 of Tweedie (1974a). We omit the proof, which is fairly
straightforward.

THEOREM 2. The semi-Markov kernel Q is /.-transient if and only if the transition
kernel Qx is l-transient; and Q is ^.-recurrent if and only if Q* is {-recurrent.

The main use of Theorem 2 is in providing an easy route to the existence of a-
invariant measures and functions: the results of Section 3 of Tweedie (1974a), applied
to the kernels Qx, allow us to assert immediately

THEOREM 3. (i) IfQ is ̂ .-recurrent, there exists a a-finite measure nonS satisfying (in
the notation of Revuz (1975))

(2.2) n Ss nQ\

The measure n is unique up to constant multiples, satisfies (2.2) with equality, and is
equivalent to M. For any set A e £ +, n is connected to the taboo renewal measures AR
by

(2.3) n = nlAAR\

(ii) IfQ is ̂ .-recurrent, there exists a strictly positive finite measurable function h on
E satisfying

(2.4) /i(x) ^ Q*h(x), M-almost every xeE.

The function h is unique up to constant multiples and definition on null sets, and
satisfies (2.4) with equality M-almost everywhere. For any set AeS', h satisfies

(2.5) h = {R*IAh, M-almost everywhere.

In the discrete state space case, it is often convenient to use the representation
(Theorem 2 of Nummelin 11977)) of n and h in terms of last exit and first entrance
distributions to some fixed reference state. Note that when some fixed state zeE is
such that n(z) > 0, then (2.3) and (2.5) with A = {z} have this useful form. When no
such state exists then one can use the splitting technique of Nummelin (1978) to
derive a similar relationship.
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We will use n to denote the invariant measure of Theorem 3(i), and h to denote one
version of the invariant function; if we denote the Af-null set on which this version of
the invariant function fails to satisfy (2.4) with equality by N, and write
N' = {y: R(y, N) > 0}, then we will use Nh to denote N u AT. From I(ii), M(Nh) = 0.

We now use h to define a transform Q of Q; we write (when Q is oe-recurrent)

and

Q(x, ) = Q(x0, •), xeNh,

where x0 is an arbitrary but fixed point not in Nh.
In a straightforward manner we get

THEOREM 4. Suppose Q is ^.-recurrent. Then Q is also an M-irreducible semi-Markov
kernel, and Q is 0-recurrent.

The kernel Q is more useful than Q* precisely because it is semi-Markov as well as
0-recurrent; this enables us to exploit known results for 0-recurrent processes when
deriving a-limit properties for Q.

Finally in this section we shall delineate the relationship between our definition of
a in terms of R", and a convergence norm for the transition probabilities

P,(x,A) = Px{X(t)eA}, AeS,

where {A"(f)} is the semi-Markov process associated with Q.
Let us call P, /.-transient if there is a partition {C(j)} of E such that

P'ix,C(j))= Pt(x,C(j))e''dt
i) K +

is finite for M-almost all x; call P, a-recurrent if P, is /.-transient for /. < a and if, for
all xeE and AeS+, P*(x, A) diverges. Writing

Q(x, E x •) = Q(x, E x •) + QA(x, •), f(x, f) = 1 - Q(x, E x [0, r])

we have

(2.6) P,(x,A)= \ R(x,dyxds)f(y,t-s) = R*lJ(x,t),
JA JO

hence

From the definitions and (2.7) we get easily by using Fubini's theorem
THEOREM 5. Suppose that Q(x,E x (0, x)) > Ofor each xeE (that is, there are no

instantaneous states).
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(i) If Pt is /.-transient, then so is Q, and

(2.8) for M-almost all x: Q\x,E) < x (if/. > 0) and

tQ(x,Exdt)< x (if/. = 0).

Conversely, if (2.8) holds and Q is /.-transient, so is Pt.
(ii) IfP, is ^.-recurrent and (2.8) holds with /. = a, then Q is ^.-recurrent; conversely, if

(2.8) holds for all /. < a, and Q is a-recurrent then so is P,.

REMARKS. In the Marko\ case with countable state space (2.8) always holds, since
/ =g; a < qi for all i, where Q(i,Ex •) is exponential with parameter qt (Kingman
(1963)). For /. > 0 (2.8) is in any case automatically satisfied if Q is /.-transient and
admits the decomposition

(2.9) Q(x, AxF) = Q(x, ExT) £(x, A);

that is, the semi-Markov process has holding times in state x with distribution
function Q(x, Ex •) independent of the next state to be visited. This follows easily
from the inequality

R'(x,A) ^ Q\x,E)QRx(x,A).

Convergence norms for \P,{x,A)} are studied by Kingman (1963) in the countable
space Markov case, and by Cheong (1968) in the countable space semi-Markov case:
it is clear that our definition of a corresponds with that of Kingman, and when (2.9)
holds with that of Cheong. However, Cheong's (1968) work contains an error:
equation (1), on which much of his analysis is based, is valid only if (2.9) holds. It is
not obvious in general, however, that a convergence norm exists for {P,(x, A)}, even
on a countable space with Q{x,E x R^) = 1, and certainly our results show that if
Q(x. £ x R . ) < 1 then the transition probabilities {P,(x,A)} need not have the same
type of solidarity properties exhibited by the kernels R*.

3. Limit theorems for a-positive recurrent processes

In this section our basic aim is to find limit theorems for terms of the form

(3.1) e*<n*R

where a is the convergence parameter of Q,f is a function from £ x R + into R+ and \i
is a measure on 3F. As in Nummelin (1976) this will enable us to deduce, in the next
section, quasi-stationary results for Pt(x, A) conditional on X{t) not being absorbed
in A until some time later than f.
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As in Tweedie (1974a) and Nummelin (1976), our method involves using the limit
theorems for the transformed kernel Q, shown in Theorem 4 to be O-recurrent.
Unfortunately, in the context of Markov renewal processes with a general state
space, a wholly satisfactory version of the key renewal theorem does not yet exist,
although many partial results are known; the reader is referred to Jacod (1974),
Kesten (1974), Arjas et al. (1978), McDonald (1978) or Nummelin (1978) for some of
these.

Since such key renewal theorems are the a = 0 case of our a-limit theorems, it is
clear that the a-theorems cannot be developed more completely than the key
renewal theorems. We wish to highlight the fact that both the a-theory and the
probabilistic theory can be developed essentially to exactly the same stage, and so we
take the perhaps unusual step of assuming the existence of a 'global theorem': the
above references all give examples of this global theorem for different sets of
conditions H and correspondingly different classes of measures J?(Z) and functions

KEY RENEWAL THEOREM FOR MARKOV RENEWAL PROCESSES. Let M denote the

irreducibility measure of Section 1, and assume that Q is M-recurrent (or equivalently,
that the embedded Markov chain {Xn} is recurrent in the sense of Harris; the reader
should not confuse this with tx-recurrence). Let n be the invariant measure ofQ. ifQ
satisfies a certain set E of conditions, then there exists a class of finite measures „#(£)
and a class of functions 3>(E) such that for \ie.Jt^E) and fe SHE),

(3.2) lim ii * R * f(t) = O(m)] " ' /i(£ x R .) n( J),

where

m(x) = tQ(x, £ x dt)

denotes the mean sojourn time in state x e E.

Assuming the existence of the preceding type of key renewal theorem we now turn
to applying it to derive an a-limit theorem for our semi-Markov processes.

From now on we shall assume that the a-field S is cotoitubly generated, that is that
there is a sequence {£„} such that S - <r(En; n = 0 ,1 . . . ) .

We first note that if Q is x-recurrent, then Q is recurrent, from Theorem 4; and

hence (as is well known; see, for example. Jain and Jamison (1967)) by the preceding

assumption on S there is an M-null subset N of £ such that E\ N is stochastically

closed and Q restricted to E\N is Af-recurrent.
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THEOREM 6. Suppose that Q is a-recurrent; let n and h be the left and right invariant
vectors ofQx, respectively, and denote by C the transition kernel

C(x,A)= te*'Q(x,Axdt).
JR

Suppose further that Q satisfies the set of conditions H in the key renewal theorem
above. Let y. be such that fi(N x R + ) = 0 and fi = fiaIh is in JfCE); and f be such that
?=Il/hf

xis in ®(=). Then

lim e" n * R *f(t) = (nCh)~ ' fi*(h) n(f*).

PROOF. By simple calculations and by the key renewal theorem

e™ ji * R *f(t) = fi* R *f(t) -> [n(rh)~\~ ' (i{E x R + )n((f) ), as t -> x ,

where n = nlh is the unique invariant measure of (Q) . Now

(3.3) m(x)= tQ(x.Exdt)= te* I llhQIh(x,Exdt) = I vhCh(x),
JR JR

(3.4) / i | £xRJ = fixIh(ExR + ) = {ix(h)

and

(3.5) ( / f = IllhJ'.

Hence

This result covers Theorems 6 and 7 of Nummelin (1977) as special cases, and the
proof is similar. Note that in the special case of /.i = c(x0), the Dirac measure at (x, 0),
the term fi2(h) becomes merely /?(x).

4. Quasi-stationary distributions

We define the epoch of absorption by

(4.1) r = inf{/eR.: \'{t) = A]

(note that T = Z = sup {!„: n ^ 0] on the set Q ; = o |.V,,e £j and
r = inf j Tn. Xn = Aj on the set '[J,Uo \Xn

 = ^! )• Denote for all .xe E the probability
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of ultimate absorption from state x by

(4.2) p(x) = P , { t < x } .

It is easy to see that p satisfies

(4.3) p(x)= Q(xjy)p(y\ xeE; p(A) = 1.

We are interested in the following two types of quasi-stationary distributions
(provided they exist independently of the starting point v e t ' iV):

(4.4) n{1\A) = UmPx{X(t)eA\t < x < /]

(I-type quasi-stationary distribution),

and

(4.5) na\A) = lim(limPx{A'(f)e/4|f-Ks < T < x ) )

(II-type quasi-stationary distribution).

We use the notation

(4.6) ^(x,^) = Vx{X(t)eA,x < x},

/ ( x , f ) = \ Q(x,dyx{t, x))p(y), xeE. Aef>, f e R + .
£

THEOREM 7. Suppose that Q is a-positive recurrent and that Q satisfies i . Suppose

that for all Ae6,JA defined by

is in £?(E) and that n(J') is finite. Suppose further that for all xe E\ N, K(V _0) belongs to

,//(E). Then the I-type quasi-stationary distribution exists, and is given by

PROOF. We have P,{x,A) = RIA * / (x , r). By our assumptions and by Theorem 6

lim e" P',(x, A) = (nCh)~ ' /i(x) nl, ~f*

r-» x

so that the assertion follows from

pM P't v A )
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Before stating the result about the I [-type quasi-stationary distribution, we prove
the following interesting result which gives a probabilistic characterization for the
semi-Markov process j.YUl} associated with the transformed kernel Q.

THFOREM 8. Let x e E A'. t e R ^ he fixed. Suppose that Q is y.-positice recurrent and
that Q satisfies =.. Suppose further that R(x, E x [0, f]) is finite; that fin (4.6) satisfies
the regularity conditions/' hounded, nif1) finite, and lims^x f(\\s) = 0 for all ye E;
and that f = /, hf* belongs to (/{=.) and for all AeS.fi4 defined hy

fi4\d\xdu) = c'"h(\)\ R(x,d:xdv)Q{:.dvxd(u + t-v))
Jo JA

belonas to //{=.). Then for all A

lim Pv| V(f)e,4 \t + s <i < x } = Pv[.\'(f)e.4j

= P,(x.A),

where j-V(f)} is the semi-Markov process associated with Q.

PRCX)F. Denote the residual holding time at t by

V~U)= Tmt)+l-t

and let

a(A,s) = t - " ' " s l \ \ [ X ( t ) e A , X(t + s)eE, V'(t)^ s . r < x }.

We have

(4.7) e*"s)Px{X(t)eA, V (t) > s, x < x j

I ' R{x.dYxdr)f(\;t-v + s)^e*' fi(x,Jvx[0,(])f(v,s)
Jo., .* JA

The right-hand side of (4.7) converges by dominated convergence to zero as s -> x .
Hence

(4.8) linit'1" s)Pv;.V(f)e/l, X(t + s)eE,r < x}

= lim a{A,s)

= \<me*'*s)nA*R*f{s)

= e1!iJiChy ' fiA(h)n(J2) (by Theorem 6),
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where fiA is defined by

HA(d\<xdu) = R(x,dzxdv)Q(z,dvxd(u + t
Jo JA

We have

f I x

v=O Ju = O JZEA JyeE

\ R'{x,dzxdv)Q'i:,dyx[t-v.
O J/l j£

- r , x

from which we get by (4.8)

\im e2it + s) Px{X{t)e A . X(t + s)e E, x < x j

s-.x At ' lim e1<r s )Pv{A(f + .s)e£,T < x |

*
lim

s -* y

lim

Now it is easy to get the following theorem which gives sufficient conditions for
the Il-type quasi-stationary distribution to exist. We abbreviate
B(x,t) = 0(x,£x[O,r]).

THEOREM 9. Suppose that the assumption ofThorem 8 are satisfied for any xe E \ N.
f e R + . Suppose further that for all A e S, I A{ I - B) bcloini*. to 9(E). Then the 11-type
quasi-stationary distribution exists, and is given by

PROOF. Denote by n = nlh the unique invariant measure of the recurrent
transition kernel (Q) and by m(x) the function given by (3.3). By the preceding
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theorem and by (3.2) for any xeE\N

na\A)= lim P,(x,A)

= [n(m)] ~ ' n(IA( 1 - B) ) (by assumption and by the

key renewal theorem),

= {nCh)-'nlh(lA{\-B)~) (by (3.3)).

The assertion follows after observing that

(1 - B)~(x) = m(x) = IllhCh.
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