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1. Introduction

The aim of this paper is to provide an intrinsic characterization of the smooth manifolds
endowed with two equidimensional supplementary foliations which admit a closed embed-
ding into an affine space R

2N = R
N × R

N , equipped with its natural pair of foliations
corresponding to 〈

∂

∂x1
, . . . ,

∂

∂xN

〉
and

〈
∂

∂y1
, . . . ,

∂

∂yN

〉
.

Such a class of manifolds appears in a natural way in different geometric settings, and
they are designated by distinct names in the specialized literature as paracomplex man-
ifolds, hyperbolic complex manifolds, etc. (see, among others, the survey paper [2] and
the references mentioned therein, and for the corresponding homogeneous and symmet-
ric spaces see also [1,4,9,10,12]). In studying these manifolds, we obtain an interest-
ing relationship between B-holomorphy and foliations, B being the quadratic algebra of
double numbers (see § 2). For the theory of A-holomorphy and A-analyticity on a finite-
dimensional commutative R-algebra A, we refer the reader to [5,11,15,16,19,20]. Such
notions allow one to define the category of A-manifolds of class Cr, r ∈ N or r ∈ {∞, ω},
which are Cr manifolds endowed with a subsheaf of A-algebras of the sheaf of germs of
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A-valued smooth functions (see [14] for a general exposition on the topic, and also [6]
for the particular case A = B).

On a manifold M , the structure given by two equidimensional supplementary distri-
butions T−(M) and T+(M) defines a sheaf of B-algebras, denoted by B∞

M and called
the sheaf of J-holomorphic B-valued functions on M (see § 2.4), which in the integrable
case (i.e. when T−(M), T+(M) are involutive) completely determines both distributions.
Hence a manifold equipped with two equidimensional supplementary foliations can be
understood as a sort of complex manifold over B.

Quite surprisingly, the original topological embedding problem can then be reformu-
lated in terms of the ringed manifold (M, B∞

M ) by imposing three conditions, which—at
least formally—exactly coincide with Stein’s conditions for a complex manifold. The
geometric meaning of such conditions is, however, rather different, as they refer to the
topology of the underlying foliations; especially, the notion of convex holomorphy needs
to be suitably translated to B-manifolds.

Accordingly, our main result (Theorem 4.1) is stated as an analogue of Stein’s
theorem—intrinsically characterizing closed analytic submanifolds of C

2n+1 (see, for
example, [8, Theorem 5.3.9] and [7, Theorem VII.C.10])—for the category of such doubly
foliated manifolds. Nevertheless, its proof is completely different to that of the complex
case, because the basic tools of the standard proof (such as [8, Lemmas 5.3.4, 5.3.5]) do
not work at all in the present setting, as the ground ring B is not a field. In fact, the
version of Stein’s theorem for B-manifolds M presented below can basically be under-
stood as a criterion for the quotients M/T−(M), M/T+(M) to exist (see § 3), and this
criterion is expressed in terms of the intrinsic properties of the ring of B-holomorphic
functions on the B-manifold M , even in the case of non-compact leaves.

2. Definitions and preliminaries

In this section we give the definition of B-manifolds and several results (without proof)
concerning their rings of functions: B-differentiable, B-holomorphic and B-analytic func-
tions. Let B = R[x]/(x2 − 1) = {z = x + jy : x, y ∈ R, j2 = 1} be the algebra of double
numbers (see [2]). We denote by z̄ = x − jy the conjugate of the element z = x + jy ∈ B,
and by |z| its Euclidean norm.

2.1. B-differentiability and B-holomorphy

Definition 2.1. Let U ⊆ B be an open subset. A function F : U → B is said to be
B-differentiable if for every z0 ∈ U the following limit exists in B:

lim
z→z0

z−z0∈B
∗

F (z) − F (z0)
z − z0

,

where B
∗ = {z ∈ B : x2 �= y2} is the group of invertible elements. More generally, a

function F : U → B, defined on an open subset U ⊆ B
n, is said to be B-differentiable

if the function z �→ F (z1, . . . , zi−1, z, zi+1, . . . , zn), is B-differentiable on its domain for
every i = 1, . . . , n. The function F : U → B is said to be B-holomorphic if it is of class
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C∞ and B-differentiable. We denote by B∞(U) the algebra of B-holomorphic functions
on U .

We have the following proposition.

Proposition 2.2. A basis of the module of B-derivations of the ring C∞(U, B) =
C∞(U) ⊗R B is the following:

∂

∂zi
=

1
2

(
∂

∂xi
+ j

∂

∂yi

)
,

∂

∂z̄i
=

1
2

(
∂

∂xi
− j

∂

∂yi

)
, 1 � i � n,

where zi = xi + jyi. This is the basis dual to (dzi, dz̄i), 1 � i � n.

Proposition 2.3. A function F ∈ C∞(U, B) is B-holomorphic if and only if, for every
1 � i � n, we have ∂F/∂z̄i = 0; or, equivalently, dF =

∑n
i=1(∂F/∂zi)dzi.

2.2. B-analyticity

Definition 2.4. A function F : U → B on an open subset U ⊆ B
n is said to be

B-analytic if for every z0 = (z0
1 , . . . , z0

n) ∈ U there exists a series∑
α∈Nn

bαzα1
1 · · · zαn

n ∈ B[[z1, . . . , zn]]

that is absolutely convergent in a polydisk |zi| � ri, 1 � i � n, such that

F (z) =
∑

α∈Nn

bα(z1 − z0
1)α

1 · · · (zn − z0
n)αn ,

for every z = (z1, . . . , zn) ∈ U , |zi − z0
i | < ri, 1 � i � n. We denote by A(U) the algebra

of B-analytic functions on U .

We have the following proposition (see [5, Proposition 2.5]).

Proposition 2.5. A B-holomorphic function F : U → B on an open subset U ⊆ B
n

is B-analytic if and only if it is of class Cω; that is, A(U) = B∞(U) ∩ Cω(U, B).

2.3. B-manifolds

Definition 2.6. An almost-B-manifold of class C∞ (respectively, Cω) is a C∞ (respec-
tively, Cω) manifold and a tensor field J on M of class C∞ (respectively, Cω) and type
(1, 1) such that: (1) J2 = id, (2) the subbundles of J-eigenvectors, T−(M) and T+(M), of
eigenvalues −1 and +1, respectively, have the same rank. An almost-B-manifold is said
to be a B-manifold if the distributions defined by T−(M) and T+(M) are involutive.
A map f : (M, J) → (M ′, J ′) between almost-B-manifolds is said to be J-holomorphic
(cf. [10]) if f∗ ◦ Jx = J ′

f(x) ◦ f∗ for all x ∈ M .
Almost-B-manifolds (respectively, B-manifolds) are usually called almost paracomplex

(respectively, paracomplex) manifolds. The terminology in the present paper is due to the
fact that we would like to emphasize that they are manifolds modelled over free modules
over the ring B (see [6]).
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Example 2.7. We define two B-manifold structures on an open subset U ⊆ B
n. The

first canonical B-structure is

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
=

∂

∂xi
, 1 � i � n;

the second canonical B-structure is (see [10])

I

(
∂

∂xi

)
=

∂

∂xi
, I

(
∂

∂yi

)
= − ∂

∂yi
, 1 � i � n.

They are distinct but isomorphic, as the map Ψ : B
n = R

n × R
n → B

n, Ψ(u, v) =
1
2 (u + v) + 1

2 j(u − v), transforms I into J ; that is, Ψ∗ ◦ I = J ◦ Ψ∗.
Note that in Theorem 3.5 below the first canonical B-structure above J is used, whereas

in Theorem 3.9 below the second one I appears.

2.4. B-manifolds as ringed spaces

Proposition 2.8. Let (M, J) be a smooth almost-B-manifold. A map F from (M, J)
to (B, J) is J-holomorphic if and only if there exist functions f, g ∈ C∞(M) such that
(1) F = (1 + j)f + (1 − j)g and (2) f and g are first integrals of T−(M) and T+(M),
respectively; that is, X−(f) = 0, X+(g) = 0, for all X− ∈ Γ (T−(M)), X+ ∈ Γ (T+(M)).
We denote by B∞

M the sheaf of germs of J-holomorphic B-valued functions on M .

This notion is consistent with § 2.1 by virtue of the following result.

Proposition 2.9. A 2n-dimensional almost-B-manifold (M, J) of class C∞ is a B-
manifold if and only if its sheaf of germs of J-holomorphic functions is locally isomorphic
to the sheaf of germs of B-holomorphic functions on B

n; that is, if and only if M admits
an open covering {Uα}α∈A such that there exists an isomorphism ϕα : Uα → B

n of
almost-B-manifolds between Uα and an open subset of B

n, for each α.

Therefore, we can conclude the following proposition.

Proposition 2.10. A differentiable map f : M → M ′ between smooth B-manifolds
is J-holomorphic if and only if for every open subset U ′ ⊆ M ′ and every F ′ ∈ B∞(U ′),
the composite map F ′ ◦ f belongs to B∞(f−1U ′).

Example 2.11. Let X, Y be two C∞ differentiable manifolds of the same dimension
n. In M = X × Y there exists a unique B-manifold structure such that for each pair of
open subsets U ⊂ X, V ⊂ Y , the ring of B-holomorphic functions on M defined on U ×V

is {(1 + j)f ◦ p− + (1 − j)g ◦ p+ : f ∈ C∞(U), g ∈ C∞(V )}, where p− : M = X × Y → X

and p+ : M = X × Y → Y are the canonical projections.

2.5. B-complexification

If (M, J) is a 2n-dimensional B-manifold of class C∞, for every x ∈ M we set
T B

x (M) = Tx(M) ⊗R B, and extend J to T B
x (M) by simply setting JB(X + jY ) =
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JX+jJY . Dually, we set T ∗B
x (M) = T ∗

x (M) ⊗R B, and extend J∗ to T ∗B
x (M), accordingly.

We define

T 1,0
x (M) = {Z ∈ T B

x (M) : JB(Z) = jZ},

T 0,1
x (M) = {Z ∈ T B

x (M) : JB(Z) = −jZ}.

We then have the following.

(1) T B
x (M) = T 1,0

x (M) ⊕ T 0,1
x (M).

(2) If (zi)1�i�n is a B-coordinate system on an open neighbourhood U of x ∈ M ,
then ((∂/∂zi)x)1�i�n (respectively, ((∂/∂z̄i)x)1�i�n) is a basis of T 1,0

x (respectively,
T 0,1

x ) (see Propositions 2.2 and 2.9).

(3) T ∗B
x (M) = T ∗1,0

x (M) ⊕ T ∗0,1
x (M).

(4) If (zi)1�i�n is as in item (2), then (dxzi)1�i�n (respectively, (dxz̄i)1�i�n) is a basis
of T ∗1,0

x (M) (respectively, T ∗0,1
x (M)).

(5) If F ∈ B∞(M), then dxF ∈ T ∗1,0
x (M) (cf. Proposition 2.3).

3. Stein B-manifolds

Theorem 3.1. Let (M, J) be a C∞
B-manifold such that the quotient manifolds

M− = M/T−(M), M+ = M/T+(M) exist in the category of C∞ manifolds. For every
x ∈ M , let F−

x (respectively, F+
x ) be the leaf of T−(M) (respectively, of T+(M)) through

x, and let us endow M− ×M+ with the B-structure given in Example 2.11. We have the
following.

(1) The map ϕ : M → M− × M+ defined by ϕ(x) = (F−
x , F+

x ) is an open immersion
of B-manifolds.

(2) If either every F+
x is compact and M− is simply connected or every F−

x is compact
and M+ is simply connected, then ϕ is an open embedding.

(3) If for every couple x �= y ∈ M , there is F ∈ B∞(M) such that F (x) �= F (y), then
ϕ is an open embedding.

Proof. (1) Let p− : M → M− and p+ : M → M+ be the quotient mappings. As
is well known, p+ and p− are submersions of C∞ manifolds [13, I.§ 5.Theorem X] such
that Ker p−

∗ = T−(M) and Ker p+
∗ = T+(M). We have ϕ = (p−, p+). Hence ϕ∗X = 0 for

X ∈ T (M) implies p−
∗ (X) = 0 and p+

∗ (X) = 0, and consequently X = 0. It thus follows
that ϕ is an immersion and since dim M = dim(M− × M+), we conclude that ϕ is an
open immersion.

(2) Assume that every leaf F+
x is compact and M− is simply connected. Let π :

F+
x → M− be the restriction to the leaf of the quotient mapping p− : M → M−. Since

Ker p−
∗ = T−(M), π is a local diffeomorphism, and since F+

x is connected and compact,
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it follows that π is surjective; hence π is a covering map and by virtue of the hypothesis,
π is a global diffeomorphism. Accordingly, the relations F−

x = F−
y (i.e. y ∈ F−

x ) and
F+

x = F+
y (i.e. π(x) = π(y)), imply x = y. Therefore, ϕ is injective.

(3) We only need to prove that either F−
x �= F−

y or F−
x = F−

y . Consider the function
F = (1+j)f+(1−j)g, where f and g are first integrals of T−(M) and T+(M), respectively.
Assume F−

x = F−
y (or, equivalently, y ∈ F−

x ). Then g(x) = g(y). Similarly, F+
x �= F+

y

implies f(x) = f(y), and the result follows from our hypothesis. �

Remark 3.2. The quotient manifolds M− and M+ may exist, however ϕ may not be
injective. For example, take M = {(z, w) ∈ C

2 : w �= 0}, endowed with the B-structure
defined by the fibres of the projections p− : M → C and p+ : M → C defined by
p−(z, w) = z and p+(z, w) = z + w2. Then M− and M+ exist and both coincide with
C. Nevertheless, F−

(z,w) ∩ F+
(z,w) = {(z, w), (z, −w)} for every (z, w) ∈ M . In the general

case, F−
x ∩F+

x is a discrete subset of M , since F−
x and F+

x cut transversally at each point
x ∈ F−

x ∩ F+
x , and Tx(F−

x ) ∩ Tx(F+
x ) = {0}. We set ν(M) = supx∈M #(F−

x ∩ F+
x ) (this

is a positive integer or ∞). Assume M/T−(M) and M/T+(M) exist in the category of
C∞-manifolds. Then a necessary and sufficient condition for M to be an open subset of
the product B-structure defined in Theorem 3.1 is ν(M) = 1.

Corollary 3.3. Under the hypotheses of Theorem 3.1 (1), M admits a compatible
structure of a B-analytic manifold.

Proof. From Whitney’s Theorem on Cω analytization and Proposition 2.5 it follows
that M− × M+ has a compatible structure of a B-analytic manifold. Then it is not
difficult to see that there exists a unique structure of a B-analytic manifold on M such
that a B-holomorphic mapping f : N → M of B-analytic manifolds is B-analytic if and
only if the composite map ϕ ◦ f (ϕ being as in Theorem 3.1) is B-analytic. �

Lemma 3.4. Let V be a free B-module of rank N . Every system of B-linearly inde-
pendent vectors (v1, . . . , vn) can be extended to a basis of V .

Proof. We proceed by induction on n. If n = 1 and N = 1, it is immediate that v1

is linearly independent if and only if v1 is invertible. If n = 1 and N � 2, then either
v1 has an invertible component or it can be written as v1 = (1 + j)u1 + (1 − j)u2 in a
basis (u1, . . . , uN ) of V . In both cases we can conclude the proof. In the general case the
above argument proves that V/B · v1 is a free B-module of rank N − 1, and the cosets
(v̄2, . . . , v̄n) are linearly independent. The proof is thus finished by simply applying the
induction hypothesis. �

Theorem 3.5. If a 2n-dimensional B-manifold M admits a B-immersion into an affine
space (BN , J), then for every x ∈ M , global functions F1, . . . , Fn ∈ B

∞(M) exist such
that (dxF1, . . . ,dxFn) is a basis of T ∗1,0

x (M). If M is compact, the converse is also true.

Proof. Let Fi = Pi +jQi, 1 � i � N , be the components of a B-holomorphic mapping
F : M → B

N . According to Proposition 2.9, for every x ∈ M , we can consider a system

https://doi.org/10.1017/S0013091502000597 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000597


Stein embedding theorem for B-manifolds 495

of B-coordinates zh = xh + jyh, 1 � h � n, around x. Let A be the N × n matrix
A = (∂Pi/∂xh(x)), and let B be the N × n matrix B = (∂Pi/∂yh(x)). The Jacobian of
F at x is

Λ =

(
A B

B A

)
,

since F is B-holomorphic. Hence F is an immersion if and only if rankΛ = 2n.
Moreover, the matrix of the covectors dxF1, . . . ,dxFN in the basis (dxz1, . . . ,dxzn) is
tA + j tB, thus proving that the columns of A + jB are B-linearly independent. We con-
clude by applying Lemma 3.4. Conversely, if M is compact, there are a finite open
covering (U1, . . . , Ur) of M , and functions Fα

1 , . . . , Fα
n ∈ B∞(M) such that for every

α = 1, . . . , r, (Fα
1 |Uα , . . . , Fα

n |Uα) is a B-holomorphic coordinate system. It follows that
the B-holomorphic mapping F : M → B

rn, whose components are Fα
h , is an immer-

sion. �

Remark 3.6. Wazewsky [17, 18] obtained a one-dimensional C∞-foliation F+ on
R

2 such that every global first integral of F+ is a constant. Let F− be the orthogonal
foliation with respect to the Euclidean metric. We thus define a B-structure on the plane
which does not admit any immersion into B

N , as follows from § 2.4 and Theorem 3.5.

Remark 3.7. Compact examples are easy to show: the torus S1×S1 with the foliations
spanned by

X1 =
∂

∂θ1
+ α1

∂

∂θ2
, X2 =

∂

∂θ1
+ α2

∂

∂θ2
,

where α1, α2 are two distinct irrational numbers.

Proposition 3.8. If ϕ : M → M ′ is a J-holomorphic map of B-manifolds, then for
every x0 ∈ M we have ϕ(F−

x0
) ⊆ F−

ϕ(x0)
, ϕ(F+

x0
) ⊆ F+

ϕ(x0)
.

Proof. We first prove that there exists an open neighbourhood U of x0 ∈ M such that
ϕ(F−

x0
∩ U) ⊆ F−

ϕ(x0)
. From § 2.4 and Proposition 2.9 it follows that an open neighbour-

hood V of ϕ(x0) and functions Fi = (1 + j)fi + (1 − j)gi ∈ B∞
M ′(V ), 1 � i � n, exist such

that F−
ϕ(x0)

∩ V = {y ∈ V : fi(y) = 0, 1 � i � n}, and from § 2.4 and Proposition 2.10 we
know that fi(ϕ(x)) = fi(ϕ(x0)) for x ∈ F−

x0
∩ U , where U is the connected component of

ϕ−1(V ) through x0. Let x1 be another arbitrary point in F−
x0

, and let σ : [0, 1] → F−
x0

be
a continuous arc such that σ(0) = x0, σ(1) = x1. We denote by S the subset of t ∈ [0, 1]
such that ϕ(σ[0, t]) ⊂ F−

ϕ(x0)
. By virtue of the first part of the proof, S contains the ori-

gin and it is open, as t0 ∈ S implies ϕ(σ(t0)) ∈ F−
ϕ(x0)

= F−
ϕ(σ(t0))

, and hence for small
enough ε > 0 each σ(t) with |t − t0| < ε lies on a neighbourhood of σ(t0) in the leaf F−

σ(t0)
,

which is mapped by ϕ into F−
ϕ(x0)

. Moreover, S is also closed. In fact, assume that t0 ∈ S̄.
If ϕ(σ(t0)) /∈ F−

ϕ(x0)
, then for every small enough ε > 0, we have ϕ(σ(t)) ∈ F−

ϕ(σ(t0))
for

|t − t0| < ε; but we know that a point t0 − ε exists such that ϕ(σ(t0 − ε)) belongs to
F−

ϕ(x0)
. As F−

ϕ(x0)
∩ F−

ϕ(σ(t0))
= ∅, this leads one to a contradiction. The proof for the

positive leaf is similar. �
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Theorem 3.9. Let M be a B-manifold of real dimension 2n. We have the following.

(1) If for every x ∈ M there exist global functions F1, . . . , Fn ∈ B∞(M) such that
(dxF1, . . . ,dxFn) is a basis of T ∗1,0

x (M), then the foliations T−(M) and T+(M)
are regular. Hence, the leaves of T−(M) and T+(M) are closed submanifolds of M .

(2) If M is an embedded B-submanifold of an affine space (BN , I), then the quotient
manifolds M/T−(M), M/T+(M) are Hausdorff spaces.

Proof. (1) By virtue of the hypothesis, for every x ∈ M there exist an open neigh-
bourhood U of x, and global functions Fi ∈ B∞(M), 1 � i � n, such that (Fi|U ) is a
B-coordinate system. From § 2.4, we can write Fi = (1+ j)fi +(1− j)gi, 1 � i � n, where
fi and gi are first integrals of T−(M) and T+(M), respectively. Since

dF1 ∧ · · · ∧ dFn = 2n−1(1 + j)df1 ∧ · · · ∧ dfn + 2n−1(1 − j)dg1 ∧ · · · ∧ dgn,

substituting fi − fi(x) for fi and gi − gi(x) for gi, and shrinking U if necessary, we
can assume that (f1, . . . , fn, g1, . . . , gn) is a cubic coordinate system centred at x ∈ M ,
which is flat [13, I.§ 2] with respect to T+(M). Similarly, (g1, . . . , gn, f1, . . . , fn) is a cubic
coordinate system centred at x ∈ M , which is flat with respect to T−(M). We have to
prove that if a leaf F+ of T+(M) intersects U , then F+ ∩ U is contained in a unique n-
dimensional slice of (U ; f1, . . . , fn, g1, . . . , gn). As F+ is connected and g1, . . . , gn are first
integrals of T+(M), we conclude that gi|F+ is constant, i.e. there exist λ1, . . . , λn ∈ R

such that gi|F+ = λi, 1 � i � n, and the result follows. The last assertion follows
from [13, I.§ 4.Theorem VII].

(2) Let φ : M → B
N be a B-embedding. By virtue of Theorem 3.5 and part (1) of the

present theorem, we know that the foliations induced by T−(M), T+(M) are regular. Let
p∓ : B

N → B
N/T∓(BN ) = R

N be the canonical projections. We prove that p∓(φ(M))
are embedded submanifolds of R

N . In fact, as φ is an embedding, for every z0 ∈ M there
exist open neighbourhoods U , V = V − × V + of z0, φ(z0) in M , B

N , respectively, and a
B-coordinate system F1, . . . , FN ∈ B∞(V ) such that φ(U) = {w ∈ V : Fn+1(w) = · · · =
FN (w) = 0}. From § 2.4 we have Fi(u, v) = (1 + j)fi(u) + (1 − j)gi(v), so

p−(φ(U)) = {u ∈ V − : fn+1 = · · · = fN (u) = 0}. (3.1)

Hence with the topology induced from that of R
N , p−(φ(M)) can be covered by coordi-

nate open subsets (V −; f1, . . . , fN ) so that (3.1) holds true, thus proving that p−(φ(M)) is
an embedded submanifold in R

N [3, 16.8.1.1], and similarly for p+(φ(M)). Moreover, the
maps p∓ ◦φ : M → (p∓ ◦φ)(M) are surjective submersions as φ∗ transforms T∓(M) into
T∓(BN ), hence Ker(p− ◦φ)∗ = T+(M), and thus dim Im(p− ◦φ)∗ = n = dim(p− ◦φ)(M).
As φ(F∓

z ) ⊆ F∓
φ(z), we conclude that p∓(φ(M)) can be identified with the quotient man-

ifolds M/T∓(M). �
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Definition 3.10. A B-manifold is said to be a Stein B-manifold if M satisfies the
following three conditions (cf. [8, 5.1.3]):

(α) M is B-convex, i.e. K̂ = {x ∈ M : |F (x)| � supK |F |, ∀F ∈ B∞(M)} is compact
for every compact subset K ⊆ M ;

(β) if x1 �= x2 are two points in M , then there exists F ∈ B∞(M) such that F (x1) �=
F (x2); and

(γ) for every x ∈ M , there exist n functions F1, . . . , Fn ∈ B∞(M) which form a coor-
dinate system at x.

Remark 3.11. From Theorem 3.5, it follows that every B-manifold M admitting an
immersion into an affine space B

N , satisfies the condition (γ).

Remark 3.12. (BN , I) is a Stein B-manifold: (β) and (γ) are trivial and (α) follows
from the formula K̂ = p−(K) × p+(K), where p∓ : B

N = R
N × R

N → R
N are the

canonical projections, as follows from Example 2.11.

Remark 3.13. As in the complex case (see, for example, [7, VII.A.Examples (6)])
and taking the first remark above into account, it follows that any closed B-submanifold
of B

N is a Stein B-submanifold.

4. The embedding theorem

Theorem 4.1. A connected B-manifold M is embeddable as a closed B-submanifold of
an affine space (BN , I) if and only if M is a Stein B-manifold and the quotient manifolds
M− = M/T−(M), M+ = M/T+(M) are Hausdorff spaces.

Proof. Assume that M is a closed B-submanifold of B
N . From Remark 3.13 above

it follows that M is a Stein B-manifold and from Theorem 3.9 (2) we also conclude that
M∓ are Hausdorff spaces. Conversely, assume that both conditions of the statement
hold true for M . Then, by virtue of Theorem 3.1 we know that the map ϕ : M− × M+,
ϕ(x) = (F−

x , F+
x ) is an open B-embedding. We first prove that ϕ is a B-diffeomorphism.

For every subset S ⊂ M , we set S− = p−(S), S+ = p+(S), where p∓ : M → M∓ stand
for the canonical mappings. As ϕ is an open embedding, we identify M to ϕ(M),
thus assuming that ϕ is the inclusion. If there exists a relatively compact open subset
U ⊂ M , such that Ū− × Ū+ �⊂ M (and hence (Ū− × Ū+) ∩ M �= ∅, as Ū ⊂ Ū− × Ū+

and (Ū− × Ū+) ∩ (BN − M) �= ∅), then M is not B-convex. In fact, picking a point
x ∈ ∂M ∩ (Ū− × Ū+) we obtain a sequence xi ∈ (Ū− × Ū+) ∩ M converging to x. There-
fore, we have a sequence in ˆ̄U that has no convergent subsequence in ˆ̄U , and, accordingly,
ˆ̄U is not compact. It thus follows that for every relatively compact open subset U ⊂ M ,
we have Ū− × Ū+ ⊆ M . Let (Ui)i∈N be a sequence of relatively compact subsets such
that Ūi ⊂ Ui+1, M =

⋃
i∈N

Ūi. Given x− ∈ M−, y+ ∈ M+, let x, y ∈ M be two points
such that p−(x) = x−, p+(y) = y+, so that x = (x−, x+), y = (y−, y+). For a large
enough i, we have x, y ∈ Ūi, and since Ū−

i × Ū+
i ⊂ M , we conclude that (x−, y+) ∈ M ,

and hence M = M− ×M+. According to Whitney’s Embedding Theorem, M− and M+
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can be embedded as closed submanifolds of R
2n+1. We then have a closed B-embedding

M → B
2n+1 defined as the composite map M

ϕ−→ M− × M+ ↪→ R
2n+1 × R

2n+1 = B
2n+1,

thus finishing the proof. �

Remark 4.2. If the real dimension of M is 2n, then we can take N = 2n + 1.

Remark 4.3. As an example, it follows from the above theorem that the unit open
disc ∆(0, 1) in B and the unit open square (−1, 1)2 in B are not B-diffeomorphic as
∆(0, 1) cannot be embedded into any B

N for condition (α) in Definition 3.10 does not
hold true for ∆(0, 1), whereas (−1, 1)2 is evidently B-diffeomorphic to B.

Remark 4.4. We also remark that, as the above proof shows, every closed B-
submanifold of (BN , I) is a product manifold X×Y , dim X = dim Y , with the B-structure
given in Example 2.11.
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