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Abstract

The convergence and stability analysis of a simple explicit finite difference method is
studied in this paper. Conditional convergence and stability theorems for this method are
given. We have also proved that this scheme is stable in a much stronger sense.

1. Introduction

We consider the following 2-dimensional reaction-diffusion equation

du d2u d2u

0<t<T, (x,y)e£l,

u(x, y, 0) = n°(x, y),

u{x,y, 0 = 0, (x,y)edQ,

where
a={(x,y)\\x\<a,\y\<b}

and

satisfying
/(0) = / ( I ) = 0.

The above equation states that the rate of increase of a quantity u (x, y, t) depends on
the effects of diffusion and reaction. This interaction between diffusion and reaction
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occurs in many natural phenomena such as the propagation of a virile mutant in an
infinitely long habitat, the evolution of a neutron population in a nuclear reactor, the
spreading of flames in a burning forest or in a chamber of combustion (see [14], [2]
and [17]). Recently the above equation has been used as a model equation to study
the phenomena of bifurcation, self-organization and chaos for complex nonlinear
dynamic systems [7]. For this reason the reaction-diffusion equation constitutes
an important area of mathematical research. Aronson and Weinberger first studied
this multidimensional nonlinear equation and obtained many significant theoretical
results [2].

Various numerical methods for solving the equation such as the pseudo- spectral
method and the alternating group explicit iterative method [4] [3], have been applied,
however both are quite complicated and the former approach always causes instability.
Several finite element methods have been employed [1] [8] with excellent accuracy
and stability, but they take quite a long CPU time. In order to obtain an efficient and
stable method, Tang et al. [15] recently had no other recourse but to reinvoke the
finite difference method. This method, although regarded by some as unsophisticated,
works quite fast since it does not need the inverses of large matrices. Their numerical
experiments show that the scheme is numerically stable, without any theoretical justi-
fication. It is the object of this paper to provide a rigorous mathematical justification
for using FDM to solve the 2-D reaction-diffusion equation, and at the same time
derive simple conditions on the space-time grid which will guarantee its convergence
and stability to a practical solver of this equation at a glance.

The concepts of consistency, convergence and stability have provided the necessary
basis for wide research of efficient difference schemes for problems of mathematical
physics. A lot of significant work regarding the convergence and stability of FDM has
been done for linear problems. There is a well known Lax's equivalence theorem that
is for a consistent finite difference scheme, stability is equivalent to convergence [13].
This theorem is only valid for linear equations. So, for our problem we have to
investigate both the convergence and the stability of the scheme separately.

We give a conditional convergence theorem in Section 3 and a conditional stability
theorem in Section 4. The concept of stability of a difference scheme with respect to
rounding errors, for given initial conditions, was first described by von Neumann and
Richtmeyer in 1950 [16]. Later on, several slightly different definitions of stability
were presented (see [5] pages 475-476). In this paper we use the one presented by
Lax and Richtmeyer [13] in which the boundedness of a difference operator is the
criterion. The von Neumann condition for stability is applied for the proof of the
stability theorem.

Surprisingly, our theorems show that even for this nonlinear problem the conditions
for convergence and stability are identical. At the end of Section 4 we give a result
that with suitable choice of parameters, the scheme is stable even in a much stronger
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sense.
The above, somewhat restrictive, assumptions about the nonlinear term / («) are

justified because in most applications

However, our results are also valid if / is Lipschitz, instead of C1.
The stability and convergence of FDM for systems of nonlinear reaction-diffusion

equations have been already considered by Hoff [9] in an arbitrary number of space
dimensions, on an arbitrary domain, with coefficients general functions of space,
time and unknown, for a system of equations, and for implicit as well as the explicit
algorithm. However, Hoff's paper is too theoretical and it does not prescribe readily
amenable conditions sought by a practical solver of the widely used 2-D reaction-
diffusion equation considered here. Moreover his definition of stability is also stronger
than the commonly accepted definitions used in our paper, hence more difficult to
achieve in practice. Furthermore, our analysis is intentionally restricted to a simple
but commonly used explicit scheme which requires much less CPU time than an
implicit one.

The necessary description of the difference scheme and notations are given in
Section 2.

2. Scheme and notations

We divide the £2 into mn Ax x Av small rectangles, where Ax = 2a/n and
Ay = 2b/m. The node points (x,, v;) in the grids are

Xj = —a + iAx i = 0, 1,...,«,

yj = -b + jAy j = 0, l,...,m.

The notations

and
ufj = u(Xi,yj,tp)

are used to denote the approximate and exact solutions respectively at (*,, v;), at the
time t =tp = pAt.

The simple explicit difference scheme then can be described by the following
equations

Zj+i ~ W?; + £/£_,) + AtfiU'j) (2)
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for / = 1, 2 , . . . , / ! — 1 and j = 1, 2, . . . , m — 1, where

a = XiAt/Ax2 and /3 = 2

237

In the computation grid in the xj-plane, the nodes inside the region are ordered in
a natural way — from the top left to the bottom right. The corresponding U values
at these nodes at time pAt in the same order form the vector

ilp — rriP TIP TIP \r
U — \-U\ ' U2 ' • • • ' U(n-\)(m-\)l

= \TIP IIP IIP

— L l.m-1' U2.m-l' • • • ' un-\,m-\'
TIP IIP TIP
U\,m-2> U2,m-2' • • • > un-\.m-2>

Then the scheme can be expressed in the matrix form

Up+l = AU" + At diag{f(Un, /(£//)> • • •.

where

r =

A

l ) ( m -

1 - 2 a
a

0
0

r
fih-x

0
0

1) x (n -

-2f$
1 -

O T

n / _
r

0
0

l)(ro-

a
- 2 a -

0
0

-1 )

2p

0

0
0

mi

0
a

0
0

0
0

r

0
0

0
0

PL-X

r

0
0

1 - 2a - 2/3 a

(3)

a 1 - 2a - 2/3 _

is an (n — 1) x (n - 1) matrix and /n_i is the (n - 1) x (« — 1) identity matrix. We
use p(.) to denote the spectral radius of a matrix (see [6, page 508]).

3. A convergence theorem

The local truncation error of our scheme at (xt, yjy tp) is

,,''+1 _ ,.P
_P _ uf+hj -f+hj

At Ax2

uf^, -

Ay1 (4)
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Considering u is the exact solution of (1) and using Taylor's series expansion, we
have

(5,

We assume that u,,, uxxxx and uyyyy are continuous in £2 x [0, T]. So there are
constants Kt, K2 and K3 such that

|r,.p,.| < K,A? + A:2Ax2 + K3Ay2 = £.

Rearranging the terms of (4), we have

0(ufJ+1 - 2uf

Let

fJ+1 - 2ufj + <,._,) + /« , . )Ar + T^A*. (6)

<j = <j - ui,j-

We subtract (2) from (6) and assume 1 - 2a - 2)3 > 0.
After taking magnitudes of both sides of the new equation, the following inequality

is then obtained

\eff\ < (1 - 2a - 2P)\e?J\+a\e?_iJ\+a\e?+1J\

+ P\efj.i I + P\e?j+l | + K4\e
Pj\At + EAt,

where K4 is the maximum magnitude of / '(«)• If we let

ep = max kf,l>

then the above inequality becomes

ep+l < (1 + K4At)ep + EAt,

showing that

ep<(l + K4At)"e° + [l + (1 + K4At) + • • • + (1 + K4At)"-l]E At.

Since e° = 0 and pAt < T, we have

K4At

K4

exp(K4T) -
K4

Thus we have proved the following theorem .

E -y 0 as Ax, Ay and At -+ 0. (7)

https://doi.org/10.1017/S0334270000010377 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010377


[6] Convergence and stability analysis for reaction-diffusion equations 239

THEOREM 1. If the solution of (1) has continuous u,,, uxxxx and uyyyy in Q , then the
approximate solution generated by the simple difference scheme (2) converges to the
exact one as At, Ax and Ay tend to zero, keeping a + /} < 1/2.

4. Stability analysis

Applying the Mean Value Theorem to the difference operator (3) we get

U»+i = {A + At diag{f\Up
x), f'(Up),..., f'{U^_n(fH.l))})U"

or
Up+i = APU",

where

Ap = A + AAP

= A + At diag{f'(Up), f'(Up),.... /'(tfS-DO-o)}- (8)

It is easy to verify that if 1 - 2a - 2)3 > 0 then || AW^ = 1.
So the spectral radius of A, p(A) < \\A\\X = 1. Since both A and AAP are sym-

metric and p{AAp) < K4At, we have the following inequalities (see [6, page 411])

p(Ap) = p(A + AAP) < p(A) + p(AAp) < 1 + KAAt.

Therefore the von Neumann necessary condition for stability is satisfied, that is

p{Ap) < 1 + K,At.

Since Ap is symmetric the condition is also sufficient if the matrix 2-norm is used [13].
The following theorem is then proved.

THEOREM 2. The difference scheme (2) is stable if a + fi < 1/2.

The essence of stability is that there should be a limit to the extent to which any
initial error can be amplified in the numerical procedure. It is easy to see that if the
scheme satisfies a stronger condition

P(AP) < 1,

then the initial error will not be amplified at all, in fact it tends to zero if p{Ap) is
strictly less than one. This kind of stability was first studied by O'Brien, Hyman and
Kaplan [12]. The following theorem shows that the simple explicit scheme is also
conditionally stable in the sense of B-H-K.
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THEOREM 3. ffa + 0 < 1/2 and At < (1 - p(A))/K4, then p(Ap) < 1.

PROOF OF THEOREM 3. The key point of the proof is to show that p (A) is strictly less
than 1. Let k and / be two positive integers less than n and m respectively, and Vkl an
(n — \){m — 1)-dimensional vector having

kin Ijn
sin sin

n m

as the (/ + (j — / ) (« — l ) ) - th component for / = 1 , . . . , « — 1 and j = 1,... ,m — I.
It is easy to see that the (/ + (j — l)(n — l ) ) - th component of A Vkl is

. kinl(j-l)n . k(i-l)n . Ijn . kin . Ijn
0 sin (- a sin sin 1- (l—2a—2p) sin sin

n m n m n m
. k(i + l)n . Ijn . kin . l{j + \)n

+ a sin sin 1- p sin sin ,
n m n m

which can be simplified to

( 7 kn , In \ kin Ijn
1 — 4a sin Ap sin — I sin sin .

2« 2m) n m

Thus A Vkl = [ikl Vkl, showing that Vkl is an eigenvector of A with eigenvalue /x*',
where

Hu = 1 - 4 a sin2 — -40 s in 2 —
In 2m

for 1 < k < n - 1 and 1 < / < m - 1. Therefore, if a + 0 < 1/2 then

p(A) = fiu = 1 - 4a sin2 — - 40 sin2 ~ < 1.
2n 2m

The rest of the proof is just reapplying the inequality p (Ap) < p(A) + p(AAp) which
is used in the proof of Theorem 2.

Thus the proof is completed.

REMARK. We can see if p(Ap) < 1 the numerical solution Up will tend to the one of
the nonlinear algebraic system

U = AU + *t diag{f{Ux), f(U2), ..., /(£/(„_„(„,_,>}

as p tends to infinity. By the well known Contraction Mapping Theorem, such a non-
zero solution is unique. This coincides with the result obtained by Tang etal. [15] that
claims that various local initial disturbances will lose their own colourful structure.
This means that the steady state solution is independent of the initial u°.
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