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I. If n is a non-negative integer, define pr(n) by 

E PrMxn = Il (1 - *")'; 
otherwise define pr(n) as 0. (Here and in what follows all sums will be extended 
from 0 to oo and all products from 1 to œ unless otherwise stated.) pr(n) is 
thus generated by the powers of X~1/24T)(T), where 

T)(T) = exp(7rir/12) IT (1 — xn),x = exp 2-KIT, 

is the Dedekind modular form. In (1) it was shown that recurrence formulas 
for these coefficients depending on a parameter p, p a prime, exist for all 
positive integral r. The number of terms in these recurrence formulas is in 
general a function of r and p, which is determined in (1). If r is even, 0 < r 
< 26, it was shown in (2), (3) that three term recurrence formulas exist for 
these coefficients for p satisfying appropriate congruence conditions with 
respect to 24 as modulus. These include, for example, Mordell's identity for 
T{U) = p2*(n — 1): 

r(np) = T(U)T(P) — pnr(n/p). 

pr(n) bears some relation to the function qT{n), the number of representations 
of n as a sum of r squares. If 

r 

k=l 

is a representation of n as a sum of r pentagons, then pT(n) is the excess of 
the number of those representations of n in which 

T 

is even over those in which it is odd. Since the associated modular form is of 
fractional dimension when r is odd and of integral dimension when r is even, 
identities for odd r lie deeper than identities for even r; and indeed quadratic 
reciprocity symbols appear. A good example is furnished by the identity 

(1) «(np*) ={p+l- (=?)}*(*) ~{p- ( î r ) M ? ) 
given by G. Pall in (7). 
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In this paper we study the coefficients pr(n) for r odd, 0 < r < 24. We shall 
demonstrate the existence of identities of type (1) for all primes p > 3, and 
for p = 3 when r is a multiple of 3. Most of the discussion that follows de
pends upon (1), and we assume familiarity with the contents of this paper. 

After this paper was written the author received from J. H. van Lint a 
copy of his dissertation, "Hecke Operators and Euler Products" (October 
1957, University of Utrecht), which contains a proof of formulas (5) and (11) 
of the next section. (There are minor inaccuracies in van Lint's expression for 
formula (5).) van Lint's proof is based upon properties of modular forms 
while the author's is based upon properties of modular functions. The methods 
are quite different and yield different results in general. 

II. Let p be a prime. If g(r) is a function on To(p), we say that g(r) is 
entire if it is regular in the interior of the upper r half-plane and has polar 
singularities at most in appropriate uniformizing variables at the two parabolic 
vertices r = 0, i °° of the fundamental region of To(p). We require the following 
lemma: 

LEMMA 1. If g(r) is a function on T0(p), then so is g( — l/pr). If in addition 
g(r) is entire, then so is g( — l/pr). 

Proof. The second statement is clear, since the substitution r' = — 1/pr 
permutes the parabolic points r = 0, i°° and takes interior points of the upper 
r half-plane into interior points of the upper r half-plane. To prove the first, 
let 

J a b\ 
Lpc d\ M . j , -Pc 

belong to To(p), and let 

r - t -J] 
be the matrix of the transformation T' = —1/pr. Then 

TVMT^X = 
aj 

Mo, 
d 

L-pb 
where Mo also belongs to T0(p). 

Suppose now that g(r) is a function on To(p), and put f(r) = g( — l/pr) 
= g(TPr). Then f(Mr) = g(TpMr) = g(M0TPr) = g(Tvr) = / ( r ) , so t ha t / ( r ) 
is also a function on To{p). The lemma is therefore proved. 

As in (1) we write Tpg(r) = g{Tpr). 
Following the notation of (1), let p be a prime > 3, and Q a power of p. 

Define 
\p Ç a square 

otherwise, 

and set 
- { Î 
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7} ( e r ) 

r i o] 
L-np 1J 

Let 

Rn L-np 

Then if r is an integer, it is shown in (1) that the function 

F(r,p,Q;T) = £ h'(Rnr) 

is an entire modular function on T0(p). Define 

G(r,p,Q;r) = TpF(r, p9 Q; r). 

By Lemma 1, G(r, p, Q; r) is also an entire modular function on To(p). It is 
shown in (1) that 

^ . ^ = (f)-V(^)§\<^). 
We write n:Q in a summation to indicate that ^ runs over a reduced set of 

residues mod Q. We shall prove the following lemma: 

LEMMA 2. Suppose that Q is a square, and put Q' = Q/p. Then 

Fir, p, <2; r) + G(r, p, Q'; r) = F(r, p, Q'; pT) + G(r, p, Q; pT). 

Proof. Put 

Then 

Now 

Q - l Q ' - l 

^ 0 , P , Q \ T ) = YJ g n = H g n + YJ gnv 
n=0 n'-Q n=0 

n(pQRnvr) _ r,{pQ'RnpT) 
y(pRnpT) v(Rnpr) ' 

which implies that 

F(f, p, Q; r) = £ gn + F(r, p, Q'; pT). 
n'-Q 

Thus we need only consider Y,n:Qgn- This sum is treated in (1), where it is 
shown by means of the transformation formula for the Dedekind ^-function 
that 

Z ên = <r"n-'M z i-f*2^5). 
n-Q n'-Q \ V ' 

Transforming this sum by means of the identity 
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£/(»)= Z / ( » ) - ILfiflP) 
n'-Q w=0 n=0 

we find easily that 

Z & = G(r, p, Q; pr) - G(r, p, Q'; r ) . 
n'-Q 

The lemma is thus proved. 

The functions so defined are also entire modular functions on To(p) when 
p = 3, if r is a multiple of 3. We assume from now on that r is odd, 0 < r < 24; 
and that p is a prime such that p > 3 when (r, 3) = 1 and p > 2 when 3|r. 
We put 

(P2 -1) M 

and define 

/ l /> = 1 (mod 4) 
a*> \i p = 3 (mod 4) * 

LEMMA 3. The function 

/ = F(r,p,p*;r) + G(r, p, P; r) 

is constant. 

Proof. From (3), formula (2.5.2) and (1), page 354 we have 

(2) F(r, p,p;r)= XTV \ \ (1 - *»'')'(1 - * V ' + 

^(i-r)/2 n a - **r E (c^Mn)*, 
where a — av exp { —iirr(p — l ) / 4} , and 

\ P / 
is the Legendre-Jacobi symbol of quadratic reciprocity; and 

(3) G(r, p, p; r) = ^ V " R (1 - x"V E i>,(^ + «)*"• 
Similarly, from (1, p. 354) we have (since rv < p2) 

(4) Gif, p, p2; T) = p*~r I I (1 - xnrr E ^(«i>2 + rv)x\ 

(We take this opportunity to correct an error in the second displayed formula 
for TPF on page 354 of (1). The coefficient should be Q(pQ/e)~T/2 instead of 
P(pQ/t)-m.) 

From Lemma 2 with Q = p2 we have that 

/ = F(r, p, p; pr) + G(r, p, p2; pT), 

which is regular at r = i<» by formulas (2) and (4). In addition, 

TJ= F(r,p,p;r) + G(r, p, p>; r) 
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so that (2) and (4) imply t h a t / is regular at r = 0 as well. Since/ is an entire 
modular function on To(p), this implies t h a t / i s constant, proving the lemma. 

If we consider the expansion of Tvf in powers of x as in (1) we obtain our 
principal result, by comparing coefficients of like powers of x: 

THEOREM 1. For all integral n, 

(5) pr(np2 + rv) - ynpr(n) + p^pi^j^) = 0, 

where 

7-_e_("ZL»)p<-»/»a and c = pT<r,) + (g)p™»a. 

If in this identity n is replaced by np + <5 = np + rv — pu, 

fry — n\ 
\ ~~P~ / 

vanishes since p\rv — n and we obtain 

COROLLARY 1. Put A = p2d + rv. Then for all integral n, 

(6) pr(np* + A) - cpr(np + Ô) + pr~%(~^ = 0. 

This identity is equivalent to the statement that the functions 1, F(r, p> p; r), 
F(r, p, pd; T) are linearly dependent. Another expression for c, obtained by 
choosing n = 0 in (6), is 

Pr(8) • 

We also have 

COROLLARY 2. If n — rv is not divisible by p2 then 

pr(np2 + rv) = ynpr(n). 

We go on now to some applications of Theorem 1. Suppose that r > 5. 
Then yn = c = £r(n>)(mod p), so that 

(7) Pr(np2 + rv) = pr(rv)pr(n) (mod p), r > 5. 

We choose r = 11, £ = 13 in (7) as a significant example. Then from (4), 
pr{rv) = pu(77) = -16257 = 6 (mod 13), so that 

(8) puilVn + 77) = 6pu(n) (mod 13). 

It is known (5; 8) that 

(9) p(13n + 6) s 11/>U(») (mod 13). 

Combining (8) and (9), we obtain the following congruence for the partition 
function mod 13, already given in (5): 
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COROLLARY 3. If n = 6 (mod 13), then 

p{\Z2n - 7) = 6p(n) (mod 13). 

We can also obtain a general congruence mod p from (7), similar to those 
given in (5; 6). 

THEOREM 2. Suppose that r > 5. Let q be an arbitrary integer, and set R = 
qp2 + r. Then for all integral n, 

(10) pB(np2 + rv) = pr(rv)pq+T(n) (mod p). 

Proof. We have 

E pnin)xn = n a - xnrp2+r 

= El (1 -xnp*)9(l -xn)r (moAp). 

Thus 

/>*(*)= E PÀk)pr{n - p2k) (modp). 
0<k<n/p2 

Replace w by np2 + rv. Since rv < p2, we obtain 
n 

pR{np2 + rv) s= E Pa(k)pr((n - £)£2 + rv) (mod£). 

Formula (7) now implies that 
n 

pR(np2 + rv) = pT(rv) E Pa(k)pT{n - k) (modp), 

so that pitinp2 + rv) = pr(rv)pq+r(n) (mod p), which is just (10). 
As another application we prove 

THEOREM 3. For all odd n, 

(11) M 5 3 * 2 + f (*2 - 1)) = 0 . 

Proof. The proof is by induction on the total number of prime factors of n. 
For n = 1, (11) states that £15(53) = 0, which is actually the case (4). Suppose 
(11) proved for all integers with not more than t prime factors. Let p be an 
odd prime. Then if n has precisely / prime factors, it will suffice to prove (11) 
for pn. Put 

an = 53n2 + -(n2 - 1). 

Then 

apn = p2On + g(p2 — 1)» 

and Theorem 1 implies (with r = 15) that pn(apn) is linear in pi*>(an) and 
pib(an/P)> Now pis(an) vanishes by the induction hypothesis, and so does 
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pih{dn/v) if P\n- H p X n, however, an/p is not an integer (since 429 is square-
free) and so pis(an/p) vanishes in this instance as well. Thus pn(apn) = 0 and 
the proof is complete. 

We now prove 

THEOREM 4. Suppose that a is such that for the mod m, pr{o) = 0 (mod m). 
Suppose further that 24a + r is square-free. Then 

(12) pr(an2 + ^(n2 - 1)) s 0 (mod m), 

where (n, 2) = 1 if 3\r and (n, 6) = 1 otherwise. 

Proof. As in Theorem 3, the proof is by induction on the total number of 
prime factors of n. If n = 1, (12) states that pT{a) = 0 (mod m), which is 
true by hypothesis. Suppose (12) proved for all integers with not more than 
/ prime factors. Let p be a prime such that p > 3 when (r, 3) = 1 and p > 2 
otherwise. Then if n has precisely t prime factors, it will suffice to prove (12) 
for pn. Put 

Then 

Xn = an2 + ^(n2 - 1). 

Kn = p \ + 2 4 ^ 2 "" !)» 

and Theorem 1 implies that pr(\pn) is linear in pr(^n) and pTQ^n/p)> Now pr(^n) 
= 0 (mod m) by hypothesis, and the same is true for pTQ^niv) it p\n> \i p K n 
however, \n/v is not at integer since 24a + r is square-free, and so pr(\i/p) 
vanishes. Thus pr(^Pn) = 0 (mod m) in either case, and the proof of Theorem 
4 is complete. 

Theorem 4 can be strengthened slightly by discarding the condition that 
24a + r be square-free and restricting n to be divisible only by primes p such 
that p > 2 when 3|r, p > 3 when (r, 3) = 1, and p2 \ 24a + r. 

If we choose r = 11, m = 13 and a = 6 we find from (4) that pT(a) = />n(6) 
= —143 = 0 (mod 13), while 24a + r = 155 is square-free. Theorem 4 
applies and we have 

(13) Pn($n2 + | | ( n 2 - 1)) s 0 (mod 13), (n, 6) = 1. 

Using formula (9) once again, we obtain the following interesting congruence 
for the partition function mod 13: 

(14) p(S±n2 - ±(n2 - 1)) s 0 (mod 13), (n, 6) = 1. 

Formula (14) is a Ramanujan congruence for the partition function, with 
the difference that the terms form a quadratic, rather than an arithmetic, 

progression. 
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More generally, we have 

THEOREM 5. Suppose that pn{a) = 0 (mod 13), and that 24a + 11 is square-
free. Then 

(15) pn(an2 + | | ( rc 2 - 1)) s 0 (mod 13), (», 6) = 1, 

(16) p((lZa + 6 > 2 - -^-{n2 - 1)) = 0 (mod 13), (n, 6) = 1. 

The first few admissible a1 s are 6, 10, 17, 18, 24, 27, 57, 68, 69, 74, 90, 95. 
(This information is extracted from (4).) It is of interest to note that two 
progressions 

\ain<l + 2 4 ^ 2 ~ 1 ) j » \a2n2 + 2 4 ^ 2 " ^ ) 

or 

{(13a! + 6)n2 - ~{n' - 1)} , {(13a2 + 6)«2 - ^ ( « 2 - 1)} 

have no integers in common, since 24ai + 1 1 and 24a2 + 1 1 are square-
free. 

III. In this section Table I gives pr(rv) for r odd, 5 < r < 23 and for 
3 < p < 23. We exclude r = 1, 3 from the table since pi(n), pz(n) are known 
explicitly. For p = 3 there is no entry unless r is a multiple of 3. Using Table 1 
we can construct Table II of values of c, and we do so for r odd, 5 < r < 23 
and for p = 3, 5, 7. The values of pr(rv) were extracted from (4) and some 

TABLE II 

3 5 7 

5 -6 16 
7 66 -176 
9 -12 -210 -1016 
11 -2694 3544 
13 11730 50008 
15 1836 3990 4 33432 
17 1 14810 30 34528 
19 -6 45150 -39 74432 
21 53028 -55 56930 444 96424 
23 232 45050 13229 77768 

unpublished tables in the author's possession giving the first 1000 coefficients 
of pr(n) for r odd, 5 < r < 23. These were computed by means of a double 
precision program on the IBM 704 of the National Bureau of Standards in 
Washington, D.C. 
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