FURTHER IDENTITIES AND CONGRUENCES FOR THE COEFFICIENTS OF MODULAR FORMS

MORRIS NEWMAN

I. If n is a non-negative integer, define $p_{r}(n)$ by

$$
\sum p_{r}(n) x^{n}=\Pi\left(1-x^{n}\right)^{r} ;
$$

otherwise define $p_{r}(n)$ as 0 . (Here and in what follows all sums will be extended from 0 to ∞ and all products from 1 to ∞ unless otherwise stated.) $p_{r}(n)$ is thus generated by the powers of $x^{-1 / 24} \eta(\tau)$, where

$$
\eta(\tau)=\exp (\pi i \tau / 12) \Pi\left(1-x^{n}\right), x=\exp 2 \pi i \tau
$$

is the Dedekind modular form. In (1) it was shown that recurrence formulas for these coefficients depending on a parameter p, p a prime, exist for all positive integral r. The number of terms in these recurrence formulas is in general a function of r and p, which is determined in (1). If r is even, $0<r$ $\leqslant 26$, it was shown in (2), (3) that three term recurrence formulas exist for these coefficients for p satisfying appropriate congruence conditions with respect to 24 as modulus. These include, for example, Mordell's identity for $\tau(n)=p_{24}(n-1)$:

$$
\tau(n p)=\tau(n) \tau(p)-p^{11} \tau(n / p)
$$

$p_{r}(n)$ bears some relation to the function $q_{r}(n)$, the number of representations of n as a sum of r squares. If

$$
n=\sum_{k=1}^{r} \frac{1}{2}\left(3 x_{k}^{2} \pm x_{k}\right)
$$

is a representation of n as a sum of r pentagons, then $p_{\tau}(n)$ is the excess of the number of those representations of n in which

$$
\sum_{k=1}^{r} x_{k}
$$

is even over those in which it is odd. Since the associated modular form is of fractional dimension when r is odd and of integral dimension when r is even, identities for odd r lie deeper than identities for even r; and indeed quadratic reciprocity symbols appear. A good example is furnished by the identity

$$
\begin{equation*}
q_{3}\left(n p^{2}\right)=\left\{p+1-\left(\frac{-n}{p}\right)\right\} q_{3}(n)-\left\{p-\left(\frac{-n}{p}\right)\right\} q_{3}\left(\frac{n}{p^{2}}\right) \tag{1}
\end{equation*}
$$

given by G. Pall in (7).

[^0]In this paper we study the coefficients $p_{r}(n)$ for r odd, $0<r<24$. We shall demonstrate the existence of identities of type (1) for all primes $p>3$, and for $p=3$ when r is a multiple of 3 . Most of the discussion that follows depends upon (1), and we assume familiarity with the contents of this paper.

After this paper was written the author received from J. H. van Lint a copy of his dissertation, "Hecke Operators and Euler Products" (October 1957, University of Utrecht), which contains a proof of formulas (5) and (11) of the next section. (There are minor inaccuracies in van Lint's expression for formula (5).) van Lint's proof is based upon properties of modular forms while the author's is based upon properties of modular functions. The methods are quite different and yield different results in general.
II. Let p be a prime. If $g(\tau)$ is a function on $\Gamma_{0}(p)$, we say that $g(\tau)$ is entire if it is regular in the interior of the upper τ half-plane and has polar singularities at most in appropriate uniformizing variables at the two parabolic vertices $\tau=0, i \infty$ of the fundamental region of $\Gamma_{0}(p)$. We require the following lemma:

Lemma 1. If $g(\tau)$ is a function on $\Gamma_{0}(p)$, then so is $g(-1 / p \tau)$. If in addition $g(\tau)$ is entire, then so is $g(-1 / p \tau)$.

Proof. The second statement is clear, since the substitution $\tau^{\prime}=-1 / p \tau$ permutes the parabolic points $\tau=0, i \infty$ and takes interior points of the upper τ half-plane into interior points of the upper τ half-plane. To prove the first, let

$$
M=\left[\begin{array}{ll}
a & b \\
p c & d
\end{array}\right]
$$

belong to $\Gamma_{0}(p)$, and let

$$
T_{p}=\left[\begin{array}{rr}
0 & -1 \\
p & 0
\end{array}\right]
$$

be the matrix of the transformation $\tau^{\prime}=-1 / p \tau$. Then

$$
T_{p} M T_{p}^{-1}=\left[\begin{array}{cc}
d & -c \\
-p b & a
\end{array}\right]=M_{0}
$$

where M_{0} also belongs to $\Gamma_{0}(p)$.
Suppose now that $g(\tau)$ is a function on $\Gamma_{0}(p)$, and put $f(\tau)=g(-1 / p \tau)$ $=g\left(T_{p} \tau\right)$. Then $f(M \tau)=g\left(T_{p} M \tau\right)=g\left(M_{0} T_{p} \tau\right)=g\left(T_{p} \tau\right)=f(\tau)$, so that $f(\tau)$ is also a function on $\Gamma_{0}(p)$. The lemma is therefore proved.

As in (1) we write $T_{p} g(\tau)=g\left(T_{p} \tau\right)$.
Following the notation of (1), let p be a prime >3, and Q a power of p. Define

$$
\epsilon= \begin{cases}p & Q \text { a square } \\ 1 & \text { otherwise },\end{cases}
$$

and set

$$
h(\tau)=\frac{\eta(p Q \tau)}{\eta(\epsilon \tau)} .
$$

Let

$$
R_{n}=\left[\begin{array}{cc}
1 & 0 \\
-n p & 1
\end{array}\right]
$$

Then if r is an integer, it is shown in (1) that the function

$$
F(r, p, Q ; \tau)=\sum_{n=0}^{Q-1} h^{r}\left(R_{n} \tau\right)
$$

is an entire modular function on $\Gamma_{0}(p)$. Define

$$
G(r, p, Q ; \tau)=T_{p} F(r, p, Q ; \tau)
$$

By Lemma $1, G(r, p, Q ; \tau)$ is also an entire modular function on $\Gamma_{0}(p)$. It is shown in (1) that

$$
G(r, p, Q ; \tau)=\left(\frac{p Q}{\epsilon}\right)^{-\tau / 2} \eta^{-\tau}\left(\frac{p \tau}{\epsilon}\right) \sum_{n=0}^{Q-1} \eta^{\tau}\left(\frac{\tau+24 n}{Q}\right)
$$

We write $n: Q$ in a summation to indicate that n runs over a reduced set of residues mod Q. We shall prove the following lemma:

Lemma 2. Suppose that Q is a square, and put $Q^{\prime}=Q / p$. Then

$$
F(r, p, Q ; \tau)+G\left(r, p, Q^{\prime} ; \tau\right)=F\left(r, p, Q^{\prime} ; p \tau\right)+G(r, p, Q ; p \tau)
$$

Proof. Put

$$
g_{n}=h^{\tau}\left(R_{n} \tau\right)=\left\{\frac{\eta\left(p Q R_{n} \tau\right)}{\eta\left(p R_{n} \tau\right)}\right\}^{r}
$$

Then

$$
F(r, p, Q ; \tau)=\sum_{n=0}^{Q-1} g_{n}=\sum_{n: Q} g_{n}+\sum_{n=0}^{Q^{\prime}-1} g_{n p} .
$$

Now

$$
\frac{\eta\left(p Q R_{n p} \tau\right)}{\eta\left(p R_{n p} \tau\right)}=\frac{\eta\left(p Q^{\prime} R_{n} p \tau\right)}{\eta\left(R_{n} p \tau\right)},
$$

which implies that

$$
F(r, p, Q ; \tau)=\sum_{n: Q} g_{n}+F\left(r, p, Q^{\prime} ; p \tau\right)
$$

Thus we need only consider $\sum_{n: Q} g_{n}$. This sum is treated in (1), where it is shown by means of the transformation formula for the Dedekind η-function that

$$
\sum_{n: Q} g_{n}=Q^{-\tau / 2} \eta^{-\tau}(p \tau) \sum_{n: Q} \eta^{\tau}\left(\frac{p \tau+24 n}{Q}\right) .
$$

Transforming this sum by means of the identity

$$
\sum_{n: Q} f(n)=\sum_{n=0}^{Q-1} f(n)-\sum_{n=0}^{Q^{\prime}-1} f(n p)
$$

we find easily that

$$
\sum_{n: Q} g_{n}=G(r, p, Q ; p \tau)-G\left(r, p, Q^{\prime} ; \tau\right)
$$

The lemma is thus proved.
The functions so defined are also entire modular functions on $\Gamma_{0}(p)$ when $p=3$, if r is a multiple of 3 . We assume from now on that r is odd, $0<r<24$; and that p is a prime such that $p>3$ when $(r, 3)=1$ and $p>2$ when $3 \mid r$. We put

$$
\nu=\frac{\left(p^{2}-1\right)}{24}, \mu=\left[\frac{r \nu}{p}\right], \delta=r \nu-p \mu
$$

and define

$$
\alpha_{p}= \begin{cases}1 & p \equiv 1(\bmod 4) \\ i & p \equiv 3(\bmod 4)\end{cases}
$$

Lemma 3. The function

$$
f=F\left(r, p, p^{2} ; \tau\right)+G(r, p, p ; \tau)
$$

is constant.
Proof. From (3), formula (2.5.2) and (1), page 354 we have

$$
\begin{align*}
F(r, p, p ; \tau)= & x^{\tau \nu} \Pi\left(1-x^{n p^{2}}\right)^{\tau}\left(1-x^{n}\right)^{-\tau}+ \tag{2}\\
& a p^{(1-\tau) / 2} \Pi\left(1-x^{n}\right)^{-r} \sum\left(\frac{r \nu-n}{p}\right)_{p_{\tau}(n) x^{n}}
\end{align*}
$$

where $a=\alpha_{p} \exp \{-i \pi r(p-1) / 4\}$, and

$$
\left(\frac{r \nu-n}{p}\right)
$$

is the Legendre-Jacobi symbol of quadratic reciprocity; and

$$
\begin{equation*}
G(r, p, p ; \tau)=p^{1-r} x^{-\mu} \Pi\left(1-x^{n p}\right)^{-r} \sum p_{\tau}(n p+\delta) x^{n} . \tag{3}
\end{equation*}
$$

Similarly, from (1, p. 354) we have (since $r \nu<p^{2}$)

$$
\begin{equation*}
G\left(r, p, p^{2} ; \tau\right)=p^{2-r} \Pi\left(1-x^{n}\right)^{-r} \sum p_{r}\left(n p^{2}+r \nu\right) x^{n} \tag{4}
\end{equation*}
$$

(We take this opportunity to correct an error in the second displayed formula for $T_{p} F$ on page 354 of (1). The coefficient should be $Q(p Q / \epsilon)^{-\tau / 2}$ instead of $p(p Q / \epsilon)^{-\tau / 2}$.)

From Lemma 2 with $Q=p^{2}$ we have that

$$
f=F(r, p, p ; p \tau)+G\left(r, p, p^{2} ; p \tau\right)
$$

which is regular at $\tau=i \infty$ by formulas (2) and (4). In addition,

$$
T_{p} f=F(r, p, p ; \tau)+G\left(r, p, p^{2} ; \tau\right)
$$

so that (2) and (4) imply that f is regular at $\tau=0$ as well. Since f is an entire modular function on $\Gamma_{0}(p)$, this implies that f is constant, proving the lemma.

If we consider the expansion of $T_{p} f$ in powers of x as in (1) we obtain our principal result, by comparing coefficients of like powers of x :

Theorem 1. For all integral n,

$$
\begin{equation*}
p_{r}\left(n p^{2}+r \nu\right)-\gamma_{n} p_{r}(n)+p^{r-2} p_{r}\left(\frac{n-r \nu}{p^{2}}\right)=0 \tag{5}
\end{equation*}
$$

where

$$
\gamma_{n}=c-\left(\frac{r \nu-n}{p}\right) p^{(r-3) / 2} a \quad \text { and } \quad c=p_{r}(r \nu)+\left(\frac{r \nu}{p}\right) p^{(r-3) / 2} a .
$$

If in this identity n is replaced by $n p+\delta=n p+r \nu-p \mu$,

$$
\left(\frac{r \nu-n}{p}\right)
$$

vanishes since $p \mid r \nu-n$ and we obtain
Corollary 1. Put $\Delta=p^{2} \delta+r \nu$. Then for all integral n,

$$
\begin{equation*}
p_{r}\left(n p^{3}+\Delta\right)-c p_{r}(n p+\delta)+p^{r-2} p_{r}\left(\frac{n-\mu}{p}\right)=0 \tag{6}
\end{equation*}
$$

This identity is equivalent to the statement that the functions $1, F(r, p, p ; \tau)$, $F\left(r, p, p^{3} ; \tau\right)$ are linearly dependent. Another expression for c, obtained by choosing $n=0$ in (6), is

$$
c=\frac{p_{r}(\Delta)}{p_{r}(\delta)}
$$

We also have
Corollary 2. If $n-r \nu$ is not divisible by p^{2} then

$$
p_{r}\left(n p^{2}+r \nu\right)=\gamma_{n} p_{r}(n)
$$

We go on now to some applications of Theorem 1. Suppose that $r \geqslant 5$. Then $\gamma_{n} \equiv c \equiv p_{r}(r \nu)(\bmod p)$, so that

$$
\begin{equation*}
p_{r}\left(n p^{2}+r \nu\right) \equiv p_{r}(r \nu) p_{r}(n)(\bmod p), \quad r \geqslant 5 \tag{7}
\end{equation*}
$$

We choose $r=11, p=13$ in (7) as a significant example. Then from (4), $p_{r}(r \nu)=p_{11}(77)=-16257 \equiv 6(\bmod 13)$, so that

$$
\begin{equation*}
p_{11}\left(13^{2} n+77\right) \equiv 6 p_{11}(n)(\bmod 13) . \tag{8}
\end{equation*}
$$

It is known $(5 ; 8)$ that

$$
\begin{equation*}
p(13 n+6) \equiv 11 p_{11}(n)(\bmod 13) \tag{9}
\end{equation*}
$$

Combining (8) and (9), we obtain the following congruence for the partition function $\bmod 13$, already given in (5):

Corollary 3 . If $n \equiv 6(\bmod 13)$, then

$$
p\left(13^{2} n-7\right) \equiv 6 p(n)(\bmod 13)
$$

We can also obtain a general congruence $\bmod p$ from (7), similar to those given in (5; 6).

Theorem 2. Suppose that $r \geqslant 5$. Let q be an arbitrary integer, and set $R=$ $q p^{2}+r$. Then for all integral n,

$$
\begin{equation*}
p_{R}\left(n p^{2}+r \nu\right) \equiv p_{r}(r \nu) p_{q+r}(n) \quad(\bmod p) \tag{10}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\sum p_{R}(n) x^{n} & =\Pi\left(1-x^{n}\right)^{q p^{2}+r} \\
& \equiv \prod\left(1-x^{n p^{2}}\right)^{q}\left(1-x^{n}\right)^{r}
\end{aligned}
$$

Thus

$$
p_{R}(n) \equiv \sum_{0 \leqslant k \leqslant n / p^{2}} p_{q}(k) p_{r}\left(n-p^{2} k\right) \quad(\bmod p)
$$

Replace n by $n p^{2}+r \nu$. Since $r \nu<p^{2}$, we obtain

$$
p_{R}\left(n p^{2}+r \nu\right) \equiv \sum_{k=0}^{n} p_{q}(k) p_{r}\left((n-k) p^{2}+r \nu\right) \quad(\bmod p) .
$$

Formula (7) now implies that

$$
p_{R}\left(n p^{2}+r \nu\right) \equiv p_{r}(r \nu) \sum_{k=0}^{n} p_{q}(k) p_{r}(n-k) \quad(\bmod p)
$$

so that $p_{R}\left(n p^{2}+r \nu\right) \equiv p_{r}(r \nu) p_{q+\tau}(n)(\bmod p)$, which is just (10).
As another application we prove

Theorem 3. For all odd n,

$$
\begin{equation*}
p_{15}\left(53 n^{2}+\frac{5}{8}\left(n^{2}-1\right)\right)=0 \tag{11}
\end{equation*}
$$

Proof. The proof is by induction on the total number of prime factors of n. For $n=1$, (11) states that $p_{15}(53)=0$, which is actually the case (4). Suppose (11) proved for all integers with not more than t prime factors. Let p be an odd prime. Then if n has precisely t prime factors, it will suffice to prove (11) for $p n$. Put

$$
a_{n}=53 n^{2}+\frac{5}{8}\left(n^{2}-1\right) .
$$

Then

$$
a_{p n}=p^{2} a_{n}+\frac{5}{8}\left(p^{2}-1\right)
$$

and Theorem 1 implies (with $r=15$) that $p_{15}\left(a_{p n}\right)$ is linear in $p_{15}\left(a_{n}\right)$ and $p_{15}\left(a_{n / p}\right)$. Now $p_{15}\left(a_{n}\right)$ vanishes by the induction hypothesis, and so does
$p_{15}\left(a_{n / p}\right)$ if $p \mid n$. If $p \nmid n$, however, $a_{n / p}$ is not an integer (since 429 is squarefree) and so $p_{15}\left(a_{n / p}\right)$ vanishes in this instance as well. Thus $p_{15}\left(a_{p n}\right)=0$ and the proof is complete.

We now prove
Theorem 4. Suppose that a is such that for the $\bmod m, p_{r}(a) \equiv 0(\bmod m)$. Suppose further that $24 a+r$ is square-free. Then

$$
\begin{equation*}
p_{r}\left(a n^{2}+\frac{r}{24}\left(n^{2}-1\right)\right) \equiv 0 \quad(\bmod m) \tag{12}
\end{equation*}
$$

where $(n, 2)=1$ if $3 \mid r$ and $(n, 6)=1$ otherwise.
Proof. As in Theorem 3, the proof is by induction on the total number of prime factors of n. If $n=1$, (12) states that $p_{r}(a) \equiv 0(\bmod m)$, which is true by hypothesis. Suppose (12) proved for all integers with not more than t prime factors. Let p be a prime such that $p>3$ when $(r, 3)=1$ and $p>2$ otherwise. Then if n has precisely t prime factors, it will suffice to prove (12) for $p n$. Put

$$
\lambda_{n}=a n^{2}+\frac{r}{24}\left(n^{2}-1\right)
$$

Then

$$
\lambda_{p n}=p^{2} \lambda_{n}+\frac{r}{24}\left(p^{2}-1\right),
$$

and Theorem 1 implies that $p_{r}\left(\lambda_{p n}\right)$ is linear in $p_{r}\left(\lambda_{n}\right)$ and $p_{r}\left(\lambda_{n / p}\right)$. Now $p_{r}\left(\lambda_{n}\right)$ $\equiv 0(\bmod m)$ by hypothesis, and the same is true for $p_{r}\left(\lambda_{n / p}\right)$ if $p \mid n$. If $p \nmid n$ however, $\lambda_{n / p}$ is not at integer since $24 a+r$ is square-free, and so $p_{r}\left(\lambda_{n / p}\right)$ vanishes. Thus $p_{r}\left(\lambda_{p n}\right) \equiv 0(\bmod m)$ in either case, and the proof of Theorem 4 is complete.

Theorem 4 can be strengthened slightly by discarding the condition that $24 a+r$ be square-free and restricting n to be divisible only by primes p such that $p>2$ when $3 \mid r, p>3$ when $(r, 3)=1$, and $p^{2} \nmid 24 a+r$.

If we choose $r=11, m=13$ and $a=6$ we find from (4) that $p_{r}(a)=p_{11}(6)$ $=-143 \equiv 0(\bmod 13)$, while $24 a+r=155$ is square-free. Theorem 4 applies and we have

$$
\begin{equation*}
p_{11}\left(6 n^{2}+\frac{11}{24}\left(n^{2}-1\right)\right) \equiv 0(\bmod 13), \quad(n, 6)=1 \tag{13}
\end{equation*}
$$

Using formula (9) once again, we obtain the following interesting congruence for the partition function $\bmod 13$:

$$
\begin{equation*}
p\left(84 n^{2}-\frac{1}{24}\left(n^{2}-1\right)\right) \equiv 0(\bmod 13), \quad(n, 6)=1 \tag{14}
\end{equation*}
$$

Formula (14) is a Ramanujan congruence for the partition function, with the difference that the terms form a quadratic, rather than an arithmetic, progression.

More generally, we have
Theorem 5. Suppose that $p_{11}(a) \equiv 0(\bmod 13)$, and that $24 a+11$ is squarefree. Then

$$
\begin{array}{ll}
p_{11}\left(a n^{2}+\frac{11}{24}\left(n^{2}-1\right)\right) \equiv 0(\bmod 13), & (n, 6)=1 \\
p\left((13 a+6) n^{2}-\frac{1}{24}\left(n^{2}-1\right)\right) \equiv 0(\bmod 13), & (n, 6)=1 \tag{16}
\end{array}
$$

The first few admissible a 's are $6,10,17,18,24,27,57,68,69,74,90,95$. (This information is extracted from (4).) It is of interest to note that two progressions

$$
\left\{a_{1} n^{2}+\frac{11}{24}\left(n^{2}-1\right)\right\}, \quad\left\{a_{2} n^{2}+\frac{11}{24}\left(n^{2}-1\right)\right\}
$$

or

$$
\left\{\left(13 a_{1}+6\right) n^{2}-\frac{1}{24}\left(n^{2}-1\right)\right\}, \quad\left\{\left(13 a_{2}+6\right) n^{2}-\frac{1}{24}\left(n^{2}-1\right)\right\}
$$

have no integers in common, since $24 a_{1}+11$ and $24 a_{2}+11$ are squarefree.
III. In this section Table I gives $p_{r}(r \nu)$ for r odd, $5 \leqslant r \leqslant 23$ and for $3 \leqslant p \leqslant 23$. We exclude $r=1,3$ from the table since $p_{1}(n), p_{3}(n)$ are known explicitly. For $p=3$ there is no entry unless r is a multiple of 3 . Using Table 1 we can construct Table II of values of c, and we do so for r odd, $5 \leqslant r \leqslant 23$ and for $p=3,5,7$. The values of $p_{r}(r \nu)$ were extracted from (4) and some

TABLE II

γp	3	5	7
5		-6	16
7		66	-176
9	-12	-210	-1016
11		-2694	3544
13		11730	50008
15	1836	3990	433432
17		114810	3034528
19		-6 45150	-39 74432
21	53028	-55 56930	44496424
23		23245050	1322977768

unpublished tables in the author's possession giving the first 1000 coefficients of $p_{r}(n)$ for r odd, $5 \leqslant r \leqslant 23$. These were computed by means of a double precision program on the IBM 704 of the National Bureau of Standards in Washington, D.C.
TABLE I

p r	3		5		7		11			13			17			19			23	
5			-6		9			1			51			109			-1			191
7			41		-176			-181			-489			125			-1317			71
9	-12		-85		-673			-2423			-815			19619			46799			-80879
11			-2069		1143			29580			-16257			18413			64763		-13	92841
13			8605		33201		-3	70369			32566		65	29535		-53	77503			60657
15	1107		3990	3	15783			51789		-60	51657		847	06867		2901	77621		4580	60567
17			36685	22	10985		-839	64529		-1671	14351		-9976	89762		-40401	43705	1	17297	45647
19			54525		90369		-7144	27549		-46099	30593		124427	50399		538898	77060	50	05958	51255
21	33345	-36	03805		96424		-39627	27241	-2	25204	73725	-60	6037673	75677		899329	74081	-157	86000	80689
23		134	79425	10405	02519	-8	832370	19227	33	04666	24117	-467	707919	73011	3758	817200	49059	-21686	12339	64744

References

1. N. Newman, On the existence of identities for the coefficzents of certain modular forms, J. Lond. Math. Soc., 31 (1956), 350-359.
2. An identuty for the coefficients of certain modular forms, J. Lond. Math. Soc., 30 (1955), 488-493.
3. -_, Remarks on some modular identities, Trans. Amer. Math. Soc., 73 (1952), 313-320.
4. ——, A table of the coefficients of the powers of $\eta(\tau)$, Proc. Kon. Nederl. Akad. Wetensch., Ser. A $59=$ Indag. Math., 18 (1956), 204-216.
5. Congruences for the coefficients of modular forms and some new congruences for the partition functıon, Can. J. Math., 9 (1957), 549-552.
6. -- Some theorems about $p_{r}(n)$, Can. J. Math., 9 (1957), 68-70.
7. G. Pall, On the arthmetic of quaternions, Trans. Amer. Math. Soc., 47 (1940), 487-500.
8. H. Zuckerman, Identities analogous to Ramanujan's identities involving the partition function, Duke Math. J., 5 (1939), 88-110.

National Bureau of Standards

Washington, D. C.

[^0]: Received January 9, 1958. The preparation of this paper was supported (in part) by the Office of Naval Research.

