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Abstract

The last term of the lower central series of a finite group G is called the nilpotent residual. It is usually
denoted by γ∞(G). The lower Fitting series of G is defined by D0(G) = G and Di+1(G) = γ∞(Di(G)) for
i = 0, 1, 2, . . . . These subgroups are generated by so-called coprime commutators γ∗k and δ∗k in elements
of G. More precisely, the set of coprime commutators γ∗k generates γ∞(G) whenever k ≥ 2 while the set
δ∗k generates Dk(G) for k ≥ 0. The main result of this article is the following theorem: let m be a positive
integer and G a finite group. Let X ⊂ G be either the set of all γ∗k-commutators for some fixed k ≥ 2 or
the set of all δ∗k-commutators for some fixed k ≥ 1. Suppose that the size of aX is at most m for any a ∈ G.
Then the order of 〈X〉 is (k,m)-bounded.
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1. Introduction

All groups considered in the present article are finite. The last term of the lower central
series of a group G is called the nilpotent residual. It is usually denoted by γ∞(G).
The lower Fitting series of G is defined by D0(G) = G and Di+1(G) = γ∞(Di(G)) for
i = 0, 1, 2, . . . .

It was shown in [8] that these subgroups are generated by so-called coprime
commutators γ∗k and δ∗k in elements of G. These were introduced in [8] with the purpose
of studying properties of finite groups that can be expressed in terms of commutators
of elements of coprime orders. The definition goes as follows. Every element of G is
both a γ∗1-commutator and a δ∗0-commutator. Now let k ≥ 2 and let S be the set of all
elements of G that are powers of γ∗k−1-commutators. An element g is a γ∗k-commutator
if there exist a ∈ S and b ∈ G such that g = [a, b] and (|a|, |b|) = 1. For k ≥ 1, let T be
the set of all elements of G that are powers of δ∗k−1-commutators. The element g is
a δ∗k-commutator if there exist a, b ∈ T such that g = [a, b] and (|a|, |b|) = 1. One can
easily see that if N is a normal subgroup of G and x an element whose image in G/N
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is a γ∗k-commutator (respectively a δ∗k-commutator), then there exists a γ∗k-commutator
(respectively a δ∗k-commutator) y ∈ G such that x ∈ yN. It was shown in [8] that for
every k ≥ 2 the subgroup generated by γ∗k-commutators is precisely γ∞(G) and, for
every k ≥ 0, the subgroup generated by δ∗k-commutators is precisely Dk(G).

There are several results in the literature that show that in some situations the order
of γ∞(G) can be bounded (cf. [1, 3, 4, 6]). In particular, it was shown in [1] that if
G contains at most m γ∗k-commutators, then the order of γ∞(G) is m-bounded and,
if G contains at most m δ∗k-commutators, then the order of Dk(G) is m-bounded.
Throughout the article we use the expression ‘(m, n, . . . )-bounded’ to abbreviate
‘bounded from above in terms of m, n, . . . only’. It is interesting to note that the
bounds in this result do not depend on k. In the present article we discover a new
phenomenon that also implies bounds for the order of the subgroups Dk(G).

If X is a nonempty subset of a group G and a ∈ G, we write aX to denote the set
{x−1ax | x ∈ X}. By 〈X〉, we denote the subgroup generated by X.

Our goal in the present article is to prove the following theorem.

Theorem 1.1. Let m be a positive integer and G a group. Let X ⊂ G be either the set
of all γ∗k-commutators for some fixed k ≥ 2 or the set of all δ∗k-commutators for some
fixed k ≥ 1. Suppose that the size of aX is at most m for any a ∈ G. Then the order of
〈X〉 is (k,m)-bounded.

2. Proof of the theorem

Given a subset Y of a group G, we say that a subgroup H ≤ G has Y-index t if
Y is contained in a union of precisely t right cosets of H in G. The next lemma is
straightforward. It is similar to [5, Lemma 2.1].

Lemma 2.1. Let Y be a subset of a group G and H1, . . . ,Hs subgroups. Suppose that
H1, . . . ,Hs have Y-indexes m1, . . . ,ms, respectively. Then the intersection

⋂
i Hi has

Y-index at most m1m2 · · ·ms.

The following observation is self-evident.

Lemma 2.2. Assume the hypothesis of Theorem 1.1. For each a ∈ G, the X-index of
CG(a) is at most m.

We remark that whenever an element x is a δ∗k-commutator in a group G, there exist
at most 2k elements a1, . . . , a2k ∈ G such that x is a δ∗k-commutator in 〈a1, . . . , a2k〉.
Similarly, whenever x is a γ∗k-commutator in a group G, there exist at most k elements
a1, . . . , ak ∈ G such that x is a γ∗k-commutator in 〈a1, . . . , ak〉.

Lemma 2.3. Assume the hypothesis of Theorem 1.1. There exists a (k,m)-bounded
positive integer n such that xn ∈ Z(G) for every x ∈ X.

Proof. We will prove the lemma in the case where X is the set of all δ∗k-commutators
in G. The case where X is the set of all γ∗k-commutators can be proved in the
same manner. Choose x ∈ X. There exist 2k elements a1, . . . , a2k ∈ G such that x
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is a δ∗k-coprime commutator in 〈a1, . . . , a2k〉. Let a0 ∈ G be any element and set
E = 〈a0, a1, . . . , a2k〉. Of course, x is a δ∗k-commutator in E. For each i, we have
|aX

i | ≤ m. By Lemma 2.2, CG(ai) has X-index at most m. Since Z(E) =
⋂

i CE(ai), it
follows from Lemma 2.1 that Z(E) has X-index at most m2k+1. Therefore, there are at
most m2k+1 δ∗k-commutators in the quotient E/Z(E). The main result of [1] now tells
us that the order of δ∗k(E/Z(E)) is (k,m)-bounded. Since x is a δ∗k-commutator in E, we
conclude that the image of x in the quotient E/Z(E) has (k,m)-bounded order. Hence,
there exists a (k,m)-bounded positive integer n such that xn ∈ Z(E). It is clear that
xn commutes with a0, which was chosen in G arbitrarily. Therefore, xn ∈ Z(G). This
completes the proof. �

Let a be any element of the group G and let u1, . . . , us−1, us = 1 be elements
of X such that aX = {au1 , . . . , aus−1 , a}. Our hypotheses imply that the elements
u1, . . . , us−1, us = 1 can be chosen with s ≤ m. The next lemma and proposition mimic
parts of the proof of [2, Theorem 1.2].

Lemma 2.4. Let h be an element of 〈X〉 and write h = x1 · · · xl, where x1, . . . , xl ∈ X.
Then

ah = aui1 ui2 ···uil

for some 1 ≤ i1, i2, . . . , il ≤ s.

Proof. We argue by induction on l. If l = 1, then h = x1 and ah = ax1 = aui1 for some
1 ≤ i1 ≤ s. Suppose that the lemma holds for all elements of 〈X〉 which can be written
as products of at most l − 1 elements of X. We have ax1 = aui for some 1 ≤ i ≤ s. Write

ah = ax1···xl = aui x2···xl = ac2···clui ,

where c j = uix ju−1
i . Note that c j ∈ X since X is a normal set of G. By the inductive

hypothesis,
ac2···cl = aui1 ui2 ···uil−1

for some 1 ≤ i1, . . . , il−1 ≤ s. Consequently,

ah = ac2···clui = aui1 ui2 ···uil−1 ui ,

as desired. �

Proposition 2.5. Assume the hypothesis of Theorem 1.1. There exists a (k,m)-bounded
positive integer t such that for each a ∈ G, the index [〈X〉 : C〈X〉(a)] is at most t.

Proof. Choose arbitrarily a ∈ G and let u1, . . . , us−1, us = 1 be elements of X such that
aX = {au1 , . . . , aus−1 , a} with s ≤ m.

Define an ordering < on the set of all (formal) products ui1 ui2 · · · uil for l ≥ 1 and
1 ≤ i j ≤ s as follows. Put

ui1 ui2 · · · uil < u j1 u j2 · · · u jl′

if and only if one of the following conditions is satisfied:
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(i) l < l′; or
(ii) l = l′ and there is an index r ≤ l such that ir < jr and iv = jv for all v > r.

For an element h ∈ 〈X〉, let ui1 ui2 · · · uil be the smallest product of the elements
u1, . . . , us such that ah = aui1 ui2 ···uil . Let us show that i1 ≥ · · · ≥ il.

Indeed, suppose that there exists n such that in < in+1. Then

ah = aui1 ···uin−1 uin uin+1 uin+2 ···uil = aui1 ···uin−1 u′uin uin+2 ···uil ,

where u′ = uin uin+1 u−1
in
∈ X. By Lemma 2.4,

aui1 ···uin−1 u′ = au j1 ···u jn−1 u jn+1

for some 1 ≤ j1, . . . , jn−1, jn+1 ≤ s. Consequently,

ah = au j1 ···u jn−1 u jn+1 uin uin+2 ···uil .

This is a contradiction with the choice of the smallest product ui1 ui2 · · · uil , since

u j1 · · · u jn−1 u jn+1 uin uin+2 · · · uil < ui1 · · · uin−1 uin uin+1 uin+2 · · · uil

(it was assumed that in < in+1).
Thus, for an arbitrary element h ∈ 〈X〉, ah = aui1 ui2 ···uil , where i1 ≥ i2 ≥ · · · ≥ il or,

equivalently,
ah = aums−1

s−1 ···u
m2
2 um1

1

for some nonnegative integers m1,m2, . . . ,ms−1. By Lemma 2.3, there exists a (k,m)-
bounded positive integer n such that yn ∈ Z(G) for each y ∈ X. Therefore, we may
assume that mi ≤ n for all i = 1, 2, . . . , s − 1. Consequently, |a〈X〉| ≤ (n + 1)m. �

As usual, if a group H acts on a group V , we denote by [V, H] the subgroup
generated by all elements of the form v−1vh, where v ∈ V and h ∈ H. We will require
the following proposition (cf. [7, Lemma 2.3]).

Proposition 2.6. Let p be a prime and V an abelian p-group acted on by a p′-group
H. Suppose that the order of [V, h] is at most t for all h ∈ H. Then the order of [V,H]
is t-bounded.

Proof of Theorem 1.1. Recall that X is either the set of all γ∗k-commutators for some
fixed k ≥ 2 or the set of all δ∗k-commutators for some fixed k ≥ 1 in G. By the
hypothesis, the size of aX is at most m for any a ∈ G. We wish to prove that the
order of 〈X〉 is (k,m)-bounded. By Proposition 2.5, there exists a (k,m)-bounded
positive integer t such that for each a ∈ G the index [〈X〉 : C〈X〉(a)] is at most t. Thus, a
theorem of Wiegold tells us that the order of the commutator subgroup 〈X〉′ is (k,m)-
bounded [9]. We pass to the quotient G/〈X〉′ and without loss of generality assume that
〈X〉 is abelian. In particular, without loss of generality we assume that G is soluble.
Let π(〈X〉) = {p1, . . . , ps} be the set of prime divisors of the order of 〈X〉 and P1, . . . ,Ps

be the corresponding Sylow subgroups of 〈X〉. Our hypotheses imply that 〈X〉 = Dk(G)
is the kth term of the lower Fitting series of G with k ≥ 1. For each i = 1, . . . , s, choose
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a Hall p′-subgroup Hi in Dk−1(G). If a ∈ Hi, we have Pi = [Pi, a] ×CPi (a). Therefore,
by Proposition 2.5, |[Pi, a]| is (k,m)-bounded. It follows from Proposition 2.6 that
|[Pi, Hi]| is (k,m)-bounded as well. By [1, Lemma 2.4], Pi = [Pi, Hi] for each
i = 1, . . . , s. Since the order of 〈X〉 is just the product of orders of its Sylow subgroups,
the result follows. �
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