BOUNDING THE ORDER OF THE NILPOTENT RESIDUAL OF A FINITE GROUP

AGENOR FREITAS DE ANDRADE and PAVEL SHUMYATSKY™

(Received 21 December 2015; accepted 5 February 2016; first published online 1 April 2016)

Abstract

The last term of the lower central series of a finite group G is called the nilpotent residual. It is usually denoted by $\gamma_{\infty}(G)$. The lower Fitting series of G is defined by $D_0(G) = G$ and $D_{i+1}(G) = \gamma_{\infty}(D_i(G))$ for $i = 0, 1, 2, \ldots$ These subgroups are generated by so-called coprime commutators γ_k^* and δ_k^* in elements of G. More precisely, the set of coprime commutators γ_k^* generates $\gamma_{\infty}(G)$ whenever $k \geq 2$ while the set δ_k^* generates $D_k(G)$ for $k \geq 0$. The main result of this article is the following theorem: let m be a positive integer and G a finite group. Let $K \subset G$ be either the set of all γ_k^* -commutators for some fixed $k \geq 2$ or the set of all δ_k^* -commutators for some fixed $k \geq 1$. Suppose that the size of a is at most a for any $a \in G$. Then the order of K is K is K in K is K in K in K in K in K in K in K is at most K in K in K in the order of K is K in K is at most K in K in K in the order of K is K in K

2010 Mathematics subject classification: primary 20D25.

Keywords and phrases: finite groups, nilpotent residual.

1. Introduction

All groups considered in the present article are finite. The last term of the lower central series of a group G is called the nilpotent residual. It is usually denoted by $\gamma_{\infty}(G)$. The lower Fitting series of G is defined by $D_0(G) = G$ and $D_{i+1}(G) = \gamma_{\infty}(D_i(G))$ for $i = 0, 1, 2, \ldots$

It was shown in [8] that these subgroups are generated by so-called coprime commutators γ_k^* and δ_k^* in elements of G. These were introduced in [8] with the purpose of studying properties of finite groups that can be expressed in terms of commutators of elements of coprime orders. The definition goes as follows. Every element of G is both a γ_1^* -commutator and a δ_0^* -commutator. Now let $k \geq 2$ and let S be the set of all elements of G that are powers of γ_{k-1}^* -commutators. An element g is a γ_k^* -commutator if there exist $a \in S$ and $b \in G$ such that g = [a, b] and (|a|, |b|) = 1. For $k \geq 1$, let T be the set of all elements of G that are powers of δ_{k-1}^* -commutators. The element g is a δ_k^* -commutator if there exist $a, b \in T$ such that g = [a, b] and (|a|, |b|) = 1. One can easily see that if S is a normal subgroup of S and S are the sum of S and S and S and S are the sum of S and S and S are th

The work of the first author was supported by CAPES/FAPEG. The work of the second author was supported by CNPq.

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

is a γ_k^* -commutator (respectively a δ_k^* -commutator), then there exists a γ_k^* -commutator (respectively a δ_k^* -commutator) $y \in G$ such that $x \in yN$. It was shown in [8] that for every $k \ge 2$ the subgroup generated by γ_k^* -commutators is precisely $\gamma_\infty(G)$ and, for every $k \ge 0$, the subgroup generated by δ_k^* -commutators is precisely $D_k(G)$.

There are several results in the literature that show that in some situations the order of $\gamma_{\infty}(G)$ can be bounded (cf. [1, 3, 4, 6]). In particular, it was shown in [1] that if G contains at most m γ_k^* -commutators, then the order of $\gamma_{\infty}(G)$ is m-bounded and, if G contains at most m δ_k^* -commutators, then the order of $D_k(G)$ is m-bounded. Throughout the article we use the expression ' (m, n, \ldots) -bounded' to abbreviate 'bounded from above in terms of m, n, \ldots only'. It is interesting to note that the bounds in this result do not depend on k. In the present article we discover a new phenomenon that also implies bounds for the order of the subgroups $D_k(G)$.

If X is a nonempty subset of a group G and $a \in G$, we write a^X to denote the set $\{x^{-1}ax \mid x \in X\}$. By $\langle X \rangle$, we denote the subgroup generated by X.

Our goal in the present article is to prove the following theorem.

THEOREM 1.1. Let m be a positive integer and G a group. Let $X \subset G$ be either the set of all γ_k^* -commutators for some fixed $k \geq 2$ or the set of all δ_k^* -commutators for some fixed $k \geq 1$. Suppose that the size of a^X is at most m for any $a \in G$. Then the order of $\langle X \rangle$ is (k, m)-bounded.

2. Proof of the theorem

Given a subset Y of a group G, we say that a subgroup $H \le G$ has Y-index t if Y is contained in a union of precisely t right cosets of H in G. The next lemma is straightforward. It is similar to [5, Lemma 2.1].

Lemma 2.1. Let Y be a subset of a group G and H_1, \ldots, H_s subgroups. Suppose that H_1, \ldots, H_s have Y-indexes m_1, \ldots, m_s , respectively. Then the intersection $\bigcap_i H_i$ has Y-index at most $m_1 m_2 \cdots m_s$.

The following observation is self-evident.

Lemma 2.2. Assume the hypothesis of Theorem 1.1. For each $a \in G$, the X-index of $C_G(a)$ is at most m.

We remark that whenever an element x is a δ_k^* -commutator in a group G, there exist at most 2^k elements $a_1, \ldots, a_{2^k} \in G$ such that x is a δ_k^* -commutator in $\langle a_1, \ldots, a_{2^k} \rangle$. Similarly, whenever x is a γ_k^* -commutator in a group G, there exist at most k elements $a_1, \ldots, a_k \in G$ such that x is a γ_k^* -commutator in $\langle a_1, \ldots, a_k \rangle$.

Lemma 2.3. Assume the hypothesis of Theorem 1.1. There exists a (k, m)-bounded positive integer n such that $x^n \in Z(G)$ for every $x \in X$.

PROOF. We will prove the lemma in the case where X is the set of all δ_k^* -commutators in G. The case where X is the set of all γ_k^* -commutators can be proved in the same manner. Choose $x \in X$. There exist 2^k elements $a_1, \ldots, a_{2^k} \in G$ such that x

is a δ_k^* -coprime commutator in $\langle a_1,\ldots,a_{2^k}\rangle$. Let $a_0\in G$ be any element and set $E=\langle a_0,a_1,\ldots,a_{2^k}\rangle$. Of course, x is a δ_k^* -commutator in E. For each i, we have $|a_i^X|\leq m$. By Lemma 2.2, $C_G(a_i)$ has X-index at most m. Since $Z(E)=\bigcap_i C_E(a_i)$, it follows from Lemma 2.1 that Z(E) has X-index at most m^{2^k+1} . Therefore, there are at most m^{2^k+1} δ_k^* -commutators in the quotient E/Z(E). The main result of [1] now tells us that the order of $\delta_k^*(E/Z(E))$ is (k,m)-bounded. Since x is a δ_k^* -commutator in E, we conclude that the image of x in the quotient E/Z(E) has (k,m)-bounded order. Hence, there exists a (k,m)-bounded positive integer n such that $x^n \in Z(E)$. It is clear that x^n commutes with a_0 , which was chosen in G arbitrarily. Therefore, $x^n \in Z(G)$. This completes the proof.

Let a be any element of the group G and let $u_1, \ldots, u_{s-1}, u_s = 1$ be elements of X such that $a^X = \{a^{u_1}, \ldots, a^{u_{s-1}}, a\}$. Our hypotheses imply that the elements $u_1, \ldots, u_{s-1}, u_s = 1$ can be chosen with $s \le m$. The next lemma and proposition mimic parts of the proof of [2, Theorem 1.2].

LEMMA 2.4. Let h be an element of $\langle X \rangle$ and write $h = x_1 \cdots x_l$, where $x_1, \dots, x_l \in X$. Then

$$a^h = a^{u_{i_1}u_{i_2}\cdots u_{i_l}}$$

for some $1 \le i_1, i_2, ..., i_l \le s$.

PROOF. We argue by induction on l. If l = 1, then $h = x_1$ and $a^h = a^{x_1} = a^{u_{i_1}}$ for some $1 \le i_1 \le s$. Suppose that the lemma holds for all elements of $\langle X \rangle$ which can be written as products of at most l - 1 elements of X. We have $a^{x_1} = a^{u_i}$ for some $1 \le i \le s$. Write

$$a^h = a^{x_1 \cdots x_l} = a^{u_i x_2 \cdots x_l} = a^{c_2 \cdots c_l u_i},$$

where $c_j = u_i x_j u_i^{-1}$. Note that $c_j \in X$ since X is a normal set of G. By the inductive hypothesis,

$$a^{c_2\cdots c_l} = a^{u_{i_1}u_{i_2}\cdots u_{i_{l-1}}}$$

for some $1 \le i_1, \ldots, i_{l-1} \le s$. Consequently,

$$a^h = a^{c_2 \cdots c_l u_i} = a^{u_{i_1} u_{i_2} \cdots u_{i_{l-1}} u_i}.$$

as desired.

Proposition 2.5. Assume the hypothesis of Theorem 1.1. There exists a (k, m)-bounded positive integer t such that for each $a \in G$, the index $[\langle X \rangle : C_{\langle X \rangle}(a)]$ is at most t.

PROOF. Choose arbitrarily $a \in G$ and let $u_1, \ldots, u_{s-1}, u_s = 1$ be elements of X such that $a^X = \{a^{u_1}, \ldots, a^{u_{s-1}}, a\}$ with $s \le m$.

Define an ordering < on the set of all (formal) products $u_{i_1}u_{i_2}\cdots u_{i_l}$ for $l \ge 1$ and $1 \le i_j \le s$ as follows. Put

$$u_{i_1}u_{i_2}\cdots u_{i_l} < u_{j_1}u_{j_2}\cdots u_{j_{l'}}$$

if and only if one of the following conditions is satisfied:

- (i) l < l'; or
- (ii) l = l' and there is an index $r \le l$ such that $i_r < j_r$ and $i_v = j_v$ for all v > r.

For an element $h \in \langle X \rangle$, let $u_{i_1}u_{i_2}\cdots u_{i_l}$ be the smallest product of the elements u_1,\ldots,u_s such that $a^h=a^{u_{i_1}u_{i_2}\cdots u_{i_l}}$. Let us show that $i_1\geq \cdots \geq i_l$.

Indeed, suppose that there exists n such that $i_n < i_{n+1}$. Then

$$a^h = a^{u_{i_1} \cdots u_{i_{n-1}} u_{i_n} u_{i_{n+1}} u_{i_{n+2}} \cdots u_{i_l}} = a^{u_{i_1} \cdots u_{i_{n-1}} u' u_{i_n} u_{i_{n+2}} \cdots u_{i_l}},$$

where $u' = u_{i_n} u_{i_{n+1}} u_{i_n}^{-1} \in X$. By Lemma 2.4,

$$a^{u_{i_1}\cdots u_{i_{n-1}}u'}=a^{u_{j_1}\cdots u_{j_{n-1}}u_{j_{n+1}}}$$

for some $1 \le j_1, \ldots, j_{n-1}, j_{n+1} \le s$. Consequently,

$$a^h = a^{u_{j_1} \cdots u_{j_{n-1}} u_{j_{n+1}} u_{i_n} u_{i_{n+2}} \cdots u_{i_l}}$$

This is a contradiction with the choice of the smallest product $u_{i_1}u_{i_2}\cdots u_{i_l}$, since

$$u_{i_1}\cdots u_{i_{n-1}}u_{i_{n+1}}u_{i_n}u_{i_{n+2}}\cdots u_{i_l} < u_{i_1}\cdots u_{i_{n-1}}u_{i_n}u_{i_{n+1}}u_{i_{n+2}}\cdots u_{i_l}$$

(it was assumed that $i_n < i_{n+1}$).

Thus, for an arbitrary element $h \in \langle X \rangle$, $a^h = a^{u_{i_1} u_{i_2} \cdots u_{i_l}}$, where $i_1 \ge i_2 \ge \cdots \ge i_l$ or, equivalently,

$$a^h = a^{u_{s-1}^{m_{s-1}} \cdots u_2^{m_2} u_1^{m_1}}$$

for some nonnegative integers $m_1, m_2, ..., m_{s-1}$. By Lemma 2.3, there exists a (k, m)-bounded positive integer n such that $y^n \in Z(G)$ for each $y \in X$. Therefore, we may assume that $m_i \le n$ for all i = 1, 2, ..., s - 1. Consequently, $|a^{\langle X \rangle}| \le (n+1)^m$.

As usual, if a group H acts on a group V, we denote by [V, H] the subgroup generated by all elements of the form $v^{-1}v^h$, where $v \in V$ and $h \in H$. We will require the following proposition (cf. [7, Lemma 2.3]).

PROPOSITION 2.6. Let p be a prime and V an abelian p-group acted on by a p'-group H. Suppose that the order of [V, h] is at most t for all $h \in H$. Then the order of [V, H] is t-bounded.

PROOF OF THEOREM 1.1. Recall that X is either the set of all γ_k^* -commutators for some fixed $k \ge 2$ or the set of all δ_k^* -commutators for some fixed $k \ge 1$ in G. By the hypothesis, the size of a^X is at most m for any $a \in G$. We wish to prove that the order of $\langle X \rangle$ is (k, m)-bounded. By Proposition 2.5, there exists a (k, m)-bounded positive integer t such that for each $a \in G$ the index $[\langle X \rangle : C_{\langle X \rangle}(a)]$ is at most t. Thus, a theorem of Wiegold tells us that the order of the commutator subgroup $\langle X \rangle'$ is (k, m)-bounded [9]. We pass to the quotient $G/\langle X \rangle'$ and without loss of generality assume that $\langle X \rangle$ is abelian. In particular, without loss of generality we assume that G is soluble. Let $\pi(\langle X \rangle) = \{p_1, \ldots, p_s\}$ be the set of prime divisors of the order of $\langle X \rangle$ and P_1, \ldots, P_s be the corresponding Sylow subgroups of $\langle X \rangle$. Our hypotheses imply that $\langle X \rangle = D_k(G)$ is the kth term of the lower Fitting series of G with $k \ge 1$. For each $i = 1, \ldots, s$, choose

a Hall p'-subgroup H_i in $D_{k-1}(G)$. If $a \in H_i$, we have $P_i = [P_i, a] \times C_{P_i}(a)$. Therefore, by Proposition 2.5, $|[P_i, a]|$ is (k, m)-bounded. It follows from Proposition 2.6 that $|[P_i, H_i]|$ is (k, m)-bounded as well. By [1, Lemma 2.4], $P_i = [P_i, H_i]$ for each $i = 1, \ldots, s$. Since the order of $\langle X \rangle$ is just the product of orders of its Sylow subgroups, the result follows.

References

- C. Acciarri, P. Shumyatsky and A. Thillaisundaram, 'Conciseness of coprime commutators in finite groups', Bull. Aust. Math. Soc. 89 (2014), 252–258.
- [2] S. Brazil, A. Krasilnikov and P. Shumyatsky, 'Groups with bounded verbal conjugacy classes', J. Group Theory 9 (2006), 115–120.
- [3] J. Cossey and T. Hawkes, 'Computing the order of the nilpotent residual of a finite group from knowledge of its group algebra', *Arch. Math. (Basel)* **60** (1993), 115–120.
- [4] S. Dolfi, M. Herzog, G. Kaplan and A. Lev, 'On the size of the nilpotent residual in finite groups', J. Group Theory 10 (2007), 299–305.
- [5] S. Franciosi, F. de Giovanni and P. Shumyatsky, 'On groups with finite verbal conjugacy classes', Houston J. Math. 28 (2002), 683–689.
- [6] X. Guo and L. Gong, 'A note on the size of the nilpotent residual in finite groups', *Arch. Math.* (*Basel*) **99** (2012), 413–416.
- [7] E. Khukhro and P. Shumyatsky, 'Almost Engel finite and profinite groups', arXiv:1512.06097.
- [8] P. Shumyatsky, 'Commutators of elements of coprime orders in finite groups', Forum Math. 27 (2015), 575–583.
- [9] J. Wiegold, 'Groups with boundedly finite classes of conjugate elements', Proc. R. Soc. Lond. Ser. A 238 (1957), 389–401.

AGENOR FREITAS DE ANDRADE, Department of Academic Areas, Federal Institute of Goias, Luziânia-GO, 72811-580, Brazil e-mail: agenor.andrade@ifg.edu.br

PAVEL SHUMYATSKY, Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900, Brazil e-mail: pavel@unb.br