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In his Canberra lectures on finite soluble groups, [3], Gaschiitz observed that
a Schunck class (sometimes called a saturated homomorph) is {Q, E+, Z)0}-closed
but not necessarily .R0-closed(*). In Problem 7.8 of the notes he then asks whether
every {Q, E^, D0}-closed class is a Schunck class. We show below with an example t
that this is not the case, and then we construct a closure operation ^ 0 satisfying
Do < Ro < Ro such that X is a Schunck class if and only if X = {Q^^RgjX.
In what follows the class of finite soluble groups is universal. Let ty denote the
class of primitive groups. We recall that a Schunck class X is one which satisfies:

(a) X = QX, and
(b) X contains all groups G such that Q(G) n ty £ 3c.

EXAMPLE. Let 5) denote the class comprising groups of order 1, groups
of order 2 and non-Abelian groups of order 6. Set X = E^D^. Since E^DQ is
a closure operation (see [4]), X is {E^,D0}-clossd. It is not difficult to see that
DoQ is 2-closed, and since E^Q is a closure operation (again see [4]), it follows
that QX = QE+DS <= E+QDS = E^D^ = X, and hence that X is Q closed.
Let G denote the extension of an elementary Abelian group of order 9 by an
inverting involution. Then clearly G$X and every primitive epimorphic image
of G does belong to X, even to 9). Therefore X = {Q,E<j),D0}X but X is not a
Schunck class.

In order to formulate the closure operation .Ro we need the concept of a
crown, due to Gaschutz [2]. Let HjK be a complemented chief factor of a group G
and M one of the maximal subgroups of G complementing it. Writing C = CG(H/K)
it is well known that Core(M) = M O C and that CjCC\M is a chief factor

* The closure operation of taking finite direct products is denoted by Da; the other closure
operations mentioned are defined in [1]. A more detailed analysis of their properties appears
in [4].

t I am pleased to acknowledge a similar example constructed by John Cossey of which I
was unaware when I submitted this note.
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G-isomorphic with HjK. Let R be the intersection of all normal subgroups T
of G such that CjT^GHjK. CjR is called the crown of H/K. A crown of G
is a normal factor CjR associated in this way with some complemented chief
factor. The following lemma shows that a normal subgroup of G either covers
a crown CjR or is properly contained in C

LEMMA. Let CjR be a crown of G and N o G. Then the following state-
ments are equivalent:

(1) The image of CjR under the natural homomorphism G -* GjN is a
crown of GjN;

(2) N does not cover the factor CjR;
(3) RN<C.

PROOF. Since a crown is by definition a non-trivial normal factor it is clear
that (1) implies (2). Assume (2) holds, and set L = C n NR [ = (C O N)R].
Then Lis a normal subgroup of G properly contained in C. Now [N, C] ^ CnL
^ L, and since C is the centralizer in G of any non-trivial normal factor of G
between C and R, we have N ^ CG{CjL) = C. Therefore NR = NRnC
= L< C, and (3) is true. Finally assume condition (3) is satisfied. If CjK is a
chief factor of G with K jS; R, then CjK is complemented and CjR is the crown
associated with it. By (3) we may choose such a K containing RN. Let
(CIN)I(TIN) be a chief factor of G/N isomorphic with (C/iV)/(X/iV); then
CjT =GCjK, so R fL T. Since C/RN is a semi-simple (in fact, homogeneous)
G-module, RN is the intersection of such T. Hence (C/JV)/(/?AT/iV) is the crown
of G/N associated with (C/JV)/(K/iV).

DEFINITION. If X is a class of groups, define R0X as follows:
G e -Ro£ if and only if G has a set {iVj* = t of normal subgroups N{ satisfying
(a) GINteX for i = \,-,t,

(P) n ' i - i t y = l . and
(7) for each crown C/i? of G, there exists i e {1, •••, t} such that Nt does not

cover CjR.
Evidently X ^ j?0£ and, if X £ 9), then ^03£ £ jjo">3). To prove that i?0 is a
closure operation, it remains to show it is idempotent. Let G e R0

2X = R0(R0X).
Then G has normal subgroups {Nj}5 = i with GjN,eR0X satisfying conditions (ft)
and (7) above. Thus each G/JV, has normal subgroups {JVy/Njy=1 such that

(a) G/ATye£ for 7 = l , - , * ( ,
(b) fT,. = 1iV0. = JV,., and
(c) each crown of G/JV, is nor covered by at least one N^/N^

The full set {JVy| 7 = 1, ••-,*;, i = 1, ••-,*} of normal subgroups of G clearly
satisfies conditions (a) and (/?) of the Definition. Let CjR be a crown of G. There
exists an i e {I, •••,(} such that JVj does not cover C/R. By the Lemma

is a crown of G/Ar
f and by condition (c) above there exists a
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je {1, ••-,<,-} such that NtJ does not cover it. Again by the Lemma we have
RNtJ < C and therefore the set {N,j} also satisfies (y). Thus G e R0X. It follows
that R0

2 = ^ 0 and that Ro is a closure operation.
It is obvious that Ro ^ Ro. To see that Do ^ Ro, let G = Gl x ••• x G,

with 1 # GfSX for i — 1, •••,t. Set Nt =Y\j*i^j- Then the normal subgroups
{NJ.L, clearly satisfy conditions (a) and (/?). It follows easily from the prop-
erties of a direct product that each chief factor is centralized by at least one Nt

and that a factor of the form NJR is never a crown. Hence (y) is also satisfied
and we have GeR0£. It remains to prove the following

THEOREM. The condition X = {Q,E^,R0}X is both necessary and sufficient
for X to be a Schunck class.

PROOF. Let X be a Schunck class and let GeR0X. G has a family
of normal subgroups satisfying conditions (a), (/?) and (y). Let GjK be a primitive
epimorphic image of G. Let CjK denote the monolith of GjK and CjR the crown
of G associated with CjK. It follows from the hypothesis and the Lemma that
there is an i e {1, •••, t} such that NtR <C. Let CjT be a chief factor of G with
T ^NtR. Then GjK s G/TeQCG/iV.K) ^ QX = X. Thus 2(G) n q$ £ £ ,
and so GeX. This shows that X = ^ 0 ^ - Since Schunk classes are Q-closed and
E^-closed, the necessity of the condition is established.

We prove the sufficiency arguing by contradiction. Suppose there exists a
{Q,£^,^0}-closed class X which is not a Schunck class. Let G be a group of
minimal order subject to satisfying Q{G) n i f s j a n d G$X. If 1 ^ N<\G,
then Q(G/iV)n^P s 3 t , and by minimality GjNeX. Hence by the ^-closure
of X we have O(G) = 1. Let S denote the set of all minimal normal subgroups
of G.I f \S\ = 1, G e ^ a n d s o G e X , a contradiction. If \s\ > 1, f) { N | N e S }
= 1. If CjR is a crown of G, either R > 1, or R = 1 and C $S. In either case,
there is an N e S such that RN < C. Thus the set S of all minimal normal sub-
groups of G satisfies conditions (a), ()3) and (y) of the Definition. Hence
G g R0X = X. This final contradiction completes the proof.
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