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RECONSTRUCTION OF ENTIRE FUNCTIONS FROM 
IRREGULARLY SPACED SAMPLE POINTS 

GEORGIR. GROZEV AND QAZI I. RAHMAN 

ABSTRACT. Let G(z) := (z-A0) Eg!i (1 ~ T~n)(*- r^ ) where {A„ }„GZ is a sequence 
of real numbers such that |A„ — n\ < A for some A > 0 and all « e Z . Extending an 
obvious property of sin irz to which the function G reduces when A = 0 we show that 

G"A y is bounded by a constant independent of n. The result is then applied to a 

problem concerning derivative sampling in one and several variables. 

1. Introduction. 
1.1 The main result. Sampling theorems deal with the reconstruction of a function/ 
from its values and possibly those of some of its derivatives at an infinite sequence of 
points {An}„Gz called nodes. Assuming that the infinite product 

(1) G(z):=(z-A0)f[(l-f)(l-^) 

converges uniformly on all compact subsets of C the function Ln{z) := G/(A
Gff_A ) van­

ishes at all the nodes except Xn where it takes the value 1. Then F(z) := E^i_oo/(Aw)Z/W(z) 
is defined at least at the points A„ and/(Aw) = F(Xn) for all n. Clearly,/ may not agree 
with F at any other point, i.e., in general, the formula 

(2) f(z)= £/(A„)- Vj 

'G'(A„)(z-Aw) 

cannot hold for all z G C or even for all z 6 R . However, (2) does hold under appropriate 
conditions on {Aw}„€z and on / (see for example [7], [8]). As regards the nodes, they are 
usually assumed (see [1], [4], [5], [9], [10], [11] in addition to [7], [8]) to satisfy 

(3) XneR, \Xn-n\ < A 

and also |\n+j — Xn\ > S > 0 for n G TJ G Z \ {0} whenever A > \. In the special case 
Xn = n (for all n G Z) the function G reduces to sin 7rz which has several characteristic 
properties. Proofs of (2) and certain other related formulae are based on the observation 
that these properties are more or less preserved when the sequence {A„} is allowed to 
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deviate from {«} but still remains "close to it" in some sense. It is known ([1], [10], [11], 
[14]) that if (3) holds, then there exist constants c\, c2, etc., such that 

|2A 

(4) 

(5) 

(6) 

(7) 

\G(z)\>c2 

|G(z)|>cie*W 

\\n-z\e^\ 

M>A; 

, ( n - - < |z|sec(argz)<n + - j ; (l + | z -« | ) ( l + |z|)4A 

|G(z)| < c2e^\\z\ + 1)4A for all z; 
G(z) 

< 4V M ( |z | + 1)4A for all z, 
iz -A„l 

where the function on the left is assumed to have its singularity at z = A„ removed; 

1 
(8) |G'(A„)|>c3(|A„| + i r 4 A forA< 

Some other interesting estimates for \G(z)\ were recently obtained in [9]. 
In the present paper we shall establish a new property of the function G. It concerns 

the quantity yAV which appears naturally in connection with Hermite interpolation and 
there are problems in that area to which our result can be applied. Since G(z) reduces to 
sin 7rz when \„—n for all n € Z we have (in that special case) 

G»(A„) 

G'(A„) 
0 
2*" 

if A: is even 
if k is odd, 

and so in particular, I G,AV is bounded by a constant independent ofn. We show that 
this property remains true under fairly weak restrictions on the sequence {A„}. 

THEOREM 1. If{ X„ }„ez is a sequence satisfying (3) with A < £ , then for each lc>2 
there exists a constant C4 k such that 

(9) 
&k\\„) 
G'(Xn) 

<C. 4Jt 

for all nel. 

REMARK 1. From (6) it follows that \G(z)\ < c^'flxl + 2)4A for \y\ < 1 and so, by 
Cauchy's integral formula for the £-th derivative we have 

|G<*>(A„)|<fc!4e*(|A„|+2)4A. 

This, in conjunction with (8) , implies that 

#*>(*») 
G'(A„) 

< A:!(^)^((|A„|+2)(|A„| + 1))4A 

from which the desired estimate follows trivially provided n remains bounded but not 
otherwise. It is however clear that while proving (9) we may suppose \n\ > 1. 

Note that in order to prove Theorem 1 it is enough to establish the following result. 
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THEOREM 1'. Let {\n}nei be a sequence of real numbers such that \ \n — n\ < A < \ 
and define 

GN(z):=(z-\o) If ( l - f ) -
i/=-N v "V ' 

Then for any given k €Nwe can find a constant Q such that for each n G {±1, ±2 , . . .} 

(10) <ck 

for all N > N„j where Nn^ is a positive integer depending on n and on k. 

NOTE. A prime affixed to the summation (product) sign as in E'dl ' ) indicates that 
the index of summation (product) does not take the value zero. 

REMARK 2. Let \n = n for all n G Z so that GN(z) := zn'"=-N(l - ^) . It can 

be easily seen that s u p , ^ ^ G / , x \ | is larger than \n(2N +1) and so goes to +oo as 

N —•> oo. The same example can be used to show that for no given k > 2 the quantity 
i &khx) i suV-N<n<N\'G^Jxj\ r e m a m s bounded as N —> oo. In other words, it is not true that for 

some Ck depending on k but not on N we have 

<Ck G'N{z) I 

for all the zeros A„ of G#. This makes (9) somewhat more interesting. 

1.2 Further results and an application of Theorem 1. The following result on derivative 
sampling was recently proved by G. Hinsen (see [9, Theorem 6.1]). 

THEOREM A. Let m G N, 1 < p < oo and A := {Xn}nei a sequence satisfying (3) 
with Ao = 0 and 

f ± . 1<P<2 
A<{^ 2<„<oo. 

Iff is an entire function of exponential type mir belonging to If(R), then 

oo m— 1 

(ii) Az)= £ j:f(tl\x„yi'm,„A^z) 
n=—oo /x=0 

where 

(12) fm,„,M(A,z) .- £ , {z_K)J+l ^(m_l_tl_j). 

In addition, he proved 
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THEOREM B [9, THEOREM 5.2]. Let 1 < p < oo and {A„}wGZ a sequence satisfying 

(3) with Ao = 0 and 

(13) 
A < i , p=\ 
b<±, 1 </? < oo. 

Iff is an entire function of exponential type •n belonging to If(K), then 

G(z) 
E F">™ 'G'(Aw)(z-A„)l 

converges uniformly on each bounded subset oj'C and (2) holds. 

Theorem B is important for certain applications; as an example we mention the gen­
eralization of the sampling theorem to more than one dimension obtained by P. L. Butzer 
and G. Hinsen in [4]. Comparing the two preceding theorems it is natural to ask under 
what condition does the series in (11) converge absolutely. With the help of (9) we shall 
prove the following 

THEOREM 2. Let m£N, 0<p<oo and A := {A„}wEZ a sequence satisfying (3) 
with 

A < ^ , if 0<p<\ 
l 

4pm9 
A < i > i f l < P < o o . 

(13') 

Further, let 

( G(z) \m 

VG^AaXz-A,,)/ 

Iff is an entire function of exponential type mir belonging to If(R) and 

for 0 < [i < m — 1, 

then the series 

oo (m— 1 1 \ 
(16) *)m,xV;z) := E E —faiKY? - A„r VmjAz), 

n=—oo { a=0 V" ) 

d? r f(z) 
(15) f^--=avA4z& 

which is identical with E£L_oo 52^=d/^(A„)xFTO>w^(A;z) (and so representsf, by Theo­
rem A read in conjunction with [3, Theorem 6.7.I J), converges absolutely. The conver­
gence is uniform on each bounded subset of C. 

It is interesting to compare conditions (13) and (13'). 

REMARK 3. It is not hard to verify that formula (16) can also be written as 

oo m— 1 
(17) V A ( T ; Z ) = E E/(M)(A„)<Dm,„,M(A;z) 

n=—oo /i=0 
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where 

(18) 
1 mz^» 1 dj 

Om^(X;z):=-(z-Xnrwm,n(z) £ _ _ ( _ _ ) ( z -A„y . 

Substituting for *FW>II from (14) in the above expression for Om,„^(A; •) we see that it 
(3Vw,//(A; •)) is indeed identical with the function ^ V ^ A ; •) appearing in Theorem A. 

1.3 Nonuniform multidimensional derivative sampling. 

1.3.1. The sumg(zi,..., zn) of an everywhere convergent power series in n variables 
z\,..., zn is called an entire function of exponential type r := (T\,..., r„) if for every 
e > 0 there exists a positive number A£ such that 

for all (zi , . . . , zn) € Cw. By definition, the function g belongs to LP(Rn), 0 < p < oo if 

/ " • • / |g(*i> • • • 9Xn)fdx\ - - dxn < oo, (x„ := Rez,, for */ = 1,...,n). 
J—oo J—oo 

1.3.2. Corresponding to each «-ruple (j\,... j „ ) wherey i , . . . Jn belong to Z let 

be a point in IRW such that 
(19) 

(0 \(\\,.jn)v -jv\ <K<\iox\<v<n; 
(U) ifjl =fl for 1 < v < n0 then 

(\'j'„)v = (X/;,-J'^ for 1 < i/ < n0. 

Note that the set of points {Xju...jn : y"i,... J« G Z} has the following structure (see [4, 

Remark on p. 71]). First we choose points {A,,} on the xi—axis subject to the condition 

that A7l E \j\— Aiji+Ai] for all/i £ Z. Through the points {A/,} we draw lines parallel to 

the *2-axis. On each of these lines we choose points {Ayli/2} satisfying |(Ay,y2)2 —7*21 < A2 

for ally 1 ,72 € Z. If« > 3 we continue by drawing through the points {Ay, j2} lines parallel 

to the X3-axis and choose on them points {Ay,y2y3} such that |(A/1J/2J/3)3 — 731 < A3 for all 

j \ J2J3 £ Z. This procedure for choosing the coordinates of {Xju..j„} one after the other 

goes on until all of them have been determined. The following alternative notation 

(20) Ay„...y„ = (Ai(/i),A2(/'ij2),...,Aw(/-i,... Jn)) 

would therefore be more indicative as regards the structure of the set {Ay, Jn : j \ , . . . J„ e 

Z}-
As an application of the absolute convergence of the series (16) we present: 
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THEOREM 3. Let m := (m\,...,mn) G Nw andp G (0, oo). If{\\,..jH : j \ , •. • Jn € 
Z} is a sequence of points in W1 satisfying conditions (19) with 

A, < ^ , if0<p<\ 
A "<4^7> ifl<P<oo, 

for v = 1, 2 , . . . ,« , then for all entire functions f of exponential type mir = 
(m\ 7r,..., w„7r) belonging to LP(Rn) we have 

oo oo /wi —1 m„- l g/ii . . . ^ „ / * 

n n f(zi9-->zn)=z 2^ '" Z-. 2^ • " 2^ a ^ T T T ^ r . 
( 2 1 ) . / i=-oo y„=-oo / i i=0 /i«=0 « * l G*" l(x,,...^cl,)=A/li 

X ^m,iflt...jH),Oii,..^H)(zl^ ">Zn) 

where with <!>.,.,.(•; 0 as in (18) and \\{j\\... \n{j\, • •. Jn) as in (20) 

®«,(/iv.Vi.X(Mi,...,/i»)(Zl»---'Z») 

= ^ i ^ i ( { A l ( / ' ) W ; z l ) X • • • X 0 W / ? j / ^ ( { A w ( / i , . . . Jn-\,j)}jer,Zn). 

The series (21) converges absolutely and uniformly on each compact subset ofCn. 

2. Auxiliary Results. 

LEMMA 1. Let {Xn}n£i be a sequence of real numbers such that \\n — n\ < A < £. 
Then for each « G Z there exists a positive integer Nn such that for all N>Nnwe have 

(22) 

Further, for all N G 

(23) 

(24) 

V«(W := 
1 

u——N Av A
n 

v£{-n,0,n} 

< 1 0 . 

N I 

E " 2 
u=-N \Av ~ An) 
v^n 

<^9 

1 N 

^ IX — \ \k 
i/=-N \Av An\ 
v^n 

< T T 2 + 2 * + 1 , ( £=3 ,4 , . . . ) . 

PROOF. Since the sequence {—A_„}M(=z also satisfies the condition of the lemma it 
is enough to prove (22)-(24) for n > 0. By assumption Xn = n + 6n where \8n\ < A for 
all n G Z. Let n > 0 be arbitrary but fixed. Then for N > n + 1, 
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<Pn(N) = 
2n + 2S„—6u — b-v J2 -

„=i (u-n+Sv-S„)(y + n+Sn-6-v) 

In particular, 

Vo(A0 < E 

^ i ( A 0 < E 

4 TT2 

£l {2v~^Xf ~ T ' 

J 
£ i {{V- I ) - !)((!/- i ) + l ) 

= 3, 

¥>2(A0 < max T— -—r-, 2_; 
i ( i+(« 2 -« i ) ) (3+(«2-«- i ) ) ' ^3(» ' - fx» '+ i ) ; 

12 1126) 1126 

For « > 3, we have (fn(N) = \B(n) — A(n)\, where 

2/2 + 2<5„ — bv — b-v n-\ 

A(n) := £ 

«W:= £ 

y=\ (n + v + (8n- 5-y)){n -i/ + (8n- 6vj)' 

2n + 2bn — by — &_„ 

„=«+! (i/ + « + (*„ — £_„)) (y -n + {by- bn)) 

It is easily seen that 

n-\ 

Ain) > £ 
2 / i - 1 

>E 
2 « - 1 

, t l (» + i + i/X» + £ - «0 ~ ,=i(" + I)2 - (v + i ) 2 ' 2> 

56 
,f, (n - \f - */2 " £} (n - l)2 - (i/ + i)2 ' 9 ' 

2 n - l 

"_1
 2 M + 1 

^(»)<E <E 
„, x * In - 1 
*(«) > E 

£,(? + &-* 

N 

2 > E £(„+ « )* - ( , , - 1)2 
2, 

*(«) < E 
^ 2 « + l 

< 
(2« + l)2 

+ E 
2 n + l 

Hence tp„(N) < ma\{D\tN,D2^} where 

Dw.= 
n-\ 

E 
2 /1+1 2 / 1 - 1 

— y -
, t l (/i - l)2 - (i/ + ±)2 £ J (i/ + ±)2 - (n - l)2 9 

56 „ 
+ — +2 

£ > 2 ^ = E 2 n - l AT 

E 
2« + l (2M + l)2 

^\(n+\Y-{v + \f £n(y+\Y-(n+\y (« + ±)(n + f) 
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Now we note that 

N 

- E 
2(» - 1) n-\ 

„=1 (y + \f - (« - 1)2 S (" + 5)2 ~ (» ~ I)2 

N 

- E 
I 74 

J „ ( ^ ) 2 - ( « - l ) 2 9 
Af / 1 + 1 \ f 2(n- l )7r 2 n - l 

I 2 ( « - l ) r ^ o ( ( I / + I ) 7 r )
2 - ( ( „ - l ) 7 r ) 2 {n-\f-\ 

n-\ 

E 
74 

„=,(t/ + ± ) 2 - ( n - l ) 2 9 

But 

2 M - 1 n-l 

( « - l ) 2 i ^ ' " - ' 
74 

,t i(z/ + i ) 2 - ( « - l ) 2 + 9 

< 
74 
9 n - \ 

74 , 83 

+ («-2) 
1 

Un_l)2_ (2)2 („ _ 1)2 _ ( n _ |)2 

and so 

where 

n ^ / i ^ * A [ ^ 2 ( / I - 1 ) T T 

V 2(11-1)^ L t i f ^ + I w ) 2 - ^ - ! ) ^ 

e#:= X] 

( („+!)*) - ( ( W - l ) 7 r ) 

2(/I - 1)7T 

• C J V 

83 

S-H ((i/ + ^)TT)2 - ((/i - 1)TT)2 
0 as N—*oo. 

According to Mittag—Leffler's expansion of tan irz [17, p. 113] 

1 
2 ( * - l ) 7 r £ = tan(« — l)7r = 0. 

"=o((i/ + I)rr) — ((/i — 1)TT) 

As such D\jf < 10 for all large N. Next we estimate £>2,w. Clearly 

D \+(, 1 x f 2(« + l) 2 
2 ^ | V 2(n + l))to^ + k)2-(n + lf (» + 

2 n + l 

D2-i 

+ E 
(2M + l ) 2 

< 

^i(n+lf-(ly+i)2 ( « + I ) ( „ + | ) 
00

 2(M + 1) 

5(*/ + ±)2-(« + l)2 / 
4 2 « - 1 784 + _ + + 
9 3 * + I 195 

where e^ —•* 0 as N —» oo. But 

^ 2(/i+l) 

^o0/ + ± ) 2 - ( " + l ) 2 
7rtan(n + 1)TT = 0, — — < 1 

" + ? 
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and so D2JJ < 6 for all large N. It follows that <p„(N) < 10 for each given n provided N 
is sufficiently large. 

In order to prove (23) we note that 

N 1 N-\ 1 n-\ 1 

E 7T-T^<ET--TU?+E 

oo J2 

< E 2 

i /=-oo U « — I)7r — i/7rj 

= 7T2COSeC2((« — - ) 7 r ) = 7T2. 

Finally, if A: > 3 then 

^ I \ \ IA: — I \ . \ \k I \ . \ l£ - ^ 
=_# |A„ - Xn\

k \X„-\ - \n\
k |An+i — A„|* V=_N |A„ - Aw|2 

< 2^ + 2^ + TT2 

and so (24) holds. 
The next lemma will be needed for the proof of Theorem 2. 

LEMMA 2. Let ^ ^ be the function defined in (14). Then 

" ^ " ' , 1 + .X= , (5i + 1)! • • • (sm + 1)! /^ G'(A„) ' 

PROOF. If//(z) := ^ , then //<5)(AW) = ^ ( ^ ( A , , ) and so by the generalized 
Leibnitz's formula [6, p. 219] for the 5-th derivative of the product of m functions we 
have 

!̂„(An) = E 7T-77 n &HK) 
s\+...+sm=s S\l" ' Sml j-i 

0<s\,...ySm<s 

sl+...+Sm=s (5, + !)!••• (sm + 1)! jL\ G'(Xn) • = E 
SI+—+S, 
0<s]t...^m<s 

REMARK 4. From Theorem 1 it follows that if Q,i = 1 andM5 := maxi<£<5+1 C4^ 
then for all n E Z 

The following formula for the /-th derivative of the reciprocal of a function will also 
be needed for the proof of Theorem 2. 
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LEMMA 3. Ifijj is I times differentiable at £ and t/;(£) ^ 0 then 

L(±S\. =J^L\M 

k dxl V \p(x) *=(. \m> 
wo ('7>'(o ••• G-!)^_1)(o 

o V(0 ••• Cl2)^'-2)(0 

o ••• m no 
PROOF. The formula may be obtained by solving (for>>(/)(£)) the system 

E ( j ^ W ^ O = 0 for* = /, / - 1 , . . . , 1 and >>(0<KO = 1- • 

REMARK 5. Applying Lemma 3 to the function *FWj/I(x) at the point Xn we con­

clude that the quantities ( J ^ ( y
 1(JC)))iJC=A

 a r e particular polynomials in ^ W(A„),..., 

^m!/i(^«)- Hence by Remark 4 they are bounded by a constant C5 depending only on A 

andm. 
The next two lemmas contain certain facts about entire functions of exponential type 

belonging to If(R) which we will use. 

LEMMA 4 [3, THEOREM 11.3.3; 15]. Iff is an entire function of exponential type r 
and iff G LP(R),p > 0, then 

[°° \f(x)\Pdx<rP j°° \f(x)fdx. 
J—00 J—00 

LEMMA 5 [13, p. 126; 3, THEOREM 6.7.15]. Iff is as in Lemma 4 then for any real 
increasing sequence {\n} such that \n+\ — \n > 6 > 0 

«=-oo ™l m J-00 

The following lemmas will be needed for the proof of Theorem 3. 

LEMMA 6 [13, p. 147; 12, THEOREM 3.4.2]. Letf{zu... ,z„) be an entire function 
of exponential type f = (T\, . . . ,r„). If some of the variables z\9...9z„ are fixed, then 
the resulting function is entire and of exponential type in the remaining variables. If 
f E If(Rn) where 1 < p < 00 then for 1 < m < n we have 

••• / \f(x\9...9xm9xm+\9...9xn)\
pdxx '"dxm\ 

J—00 j 
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LEMMA 7 [13, P. 160; 12, P. 116]. Lff{z\y. ..,zn) is an entire function of exponential 
type r = (T\ , . . . , rn) belonging to LP(W1) for somep G (0, oo), then -£., v = 1 , . . . , n are 
entire functions of exponential type r belonging to LP(Rn). 

LEMMA 8 [13, P. 146]. Letf(z\,. ..,zn) be an entire function of exponential type 
T = (T\ , . . . , rn) belonging to LP(Rn)for somep > 0. Ifxv, yv are the real and imaginary 
parts ofzvfor v = 1,...,«, then 

I -" I \f(x\ + iyu... ,x„ + iyn)f dx\-dxn 
J—OO J—OO 

< eP(r1iv1i+...+r„b„i) r . . . r |/-(Xl,... tXm)f cu,... n̂. 
J—oo J—oo 

LEMMA 9. Lff(z\,. .. ,z„) is an entire function of exponential type r = ( n , . . . ,r„) 
belonging to LP(Rn) for somep G (0,oo) and {(x^,...,x^);j = 1,2,3,...} is a sequence 
of points in Rn such that the euclidian distance between any two of them is at least 6(> 0), 
then there exists a constant C depending only onp, T, n and 6 such that 

(25) £ \f(xf,... ,xf)f < C f°° • • • f" [Ax,,... ,x„)f da • • • dxn. 
yTj J—OO J—OO 

PROOF. AS it is well known (see [ 16, p. 74]), the function \f(z\,..., z^/f is plurisub-
harmonic in Cw and (see (2.1.1), (2.1.2) in [16]) for S\ > 0, . . . ,<$„ > 0 we have 

dri--drnd0i--d0n 

= -^TT^sz J'" J\f(zi+s\+itU-.-,z„+sn + itn)\
pdsldtu...,dsndtn. 

i/=\,...,n 
sWv<Sl 

If we now follow the method used by Plancherel and Polya [ 13, p. 126] to prove Lemma 5 
we will obtain (25) with 

')2n„n'jn n s 

c= * nl— n(^* - 0-
3. Proofs of the theorems. 

PROOF OF THEOREM 1'. As indicated earlier (see Remark 1) we may suppose \n\ > 
1. Applying standard rules of differentiation we obtain 

G^)= ri'(l-f)+(z-Ao)E' ̂  11' ( l -f) 
v=-NK AnJ ji=-N Aj\ u=-Nx Av' 

https://doi.org/10.4153/CJM-1996-040-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-040-7


788 GEORGI R. GROZEV AND QAZI I. RAHMAN 

and for k > 2 

<#(*) = * £ (_1) 
ji=-N Aj\ 

E' P- IT (i-f) 
h-\=-N AJk-\ u=-N V AvJ 

Jk-itVu-Jk-2} Hifu-Jk-i} 

ji=-N Ajx 
E- ^ ir (i-f). y^-AT A/A , ,=_# A„, 

where {/i,... jV} = 0 if r < 1. Hence, if ft E {±1, ± 2 , . . . , ±AT}, then 

G>N(\n) = -±zA n ' ( i - r ) ' 

G^(A„)=2(^ rr 0 - r ) + ^ £ A1 n' ( i-r) i 
I A« i/=-N x Av J An j\=-N Aj\ v=-N v / V / I 

* 1 N / A \ 

<#(>-) = 6 E' T V IT (I - y) 
jx=-N AnAj\ v=-N v Av' 

N N i TV x 

-3(A„-A0)i:' E ' T T V n' i - ^ 
jl=-N j2=-N AnAj\Aj2 v=-N v AvJ 

j\¥" Jitinji} H{nJ\h] 

and for k > 4 

G^A,) = k(k - 1) £ ' • • • £ ' ; U 

J\=-N Jk-2=~N AnAjx'"Ajk-2 
jrf" Jk-2£{nJ\,...Jk-3} v?{nJu-Jk-2} 

N N ( A\k N 

+*(A„-A0) E ' ••• E ' v , x 
j\=-N jk-i=-N AnAj\"'Ajk-i v=-N 
ji¥" Jk-\t{nji,...Jk-2} ^ W i , » V t - i } 

n' I1 - r) 
u=—N v ' V ' 

<-» ft (,-£). 
= _ # V A?/ / 

Now, we are ready to prove (10). First let k = 2. For any given n E {±1, ±2 , . . . } and 

N > | n | we clearly have 

G'NJK) 
N 

E' ^/y(Aw) \ Aw — AQ A_w — \ n j\=—N Aj\ ~ An 

SinceO<A< \ , 

and so by Lemma 1 

A/i — Ao A_„ — Xn 

<2 + l 

G'^Xn) 

GUA„) 
<— fox 2L\\N>Nn. 
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Thus (10) holds with C2 = f and JV„,2 = N„. 
Next we shall prove (10) for k — 3. For« G {±l,±2,. . .}and./V> \n\ we have 

G'^K) 
G'JXn) 

i N i N N i 

A« — Ao y1 =-.# Aj\ ~~ ^« 7 i = - # 72=-A^ (A/i ~~ ^»)(A/2 ~~ ^») 

<12 ( 1 0 + i ) + 3 r 
i 

r 
i i 

\jx=-N Aj\ ~ ^« \72=-W A/2 ~~ ^« A/i ~~ An ̂  

[ \ji=-N Ay, — A„ y y,=-w (Ay, — K)2 J 

Hence by Lemma 1 there exists a constant C3 such that 

1 <$'(*„) 1 
GUA„) 

<C 3 

for all large Af, say for N > N„j. 
In order to prove (10) for k > 4 we first observe that 

^ /;(/: l ) ^ * £ ' £ ' 
G#(A„) A„ — Ao y,=-# jk-i^-u (A/i — Aw) • • • (A/A_2 — A„) 

N N 

h=-N j2=-N 

N I 
jk-i=-N (Ay, — Aw)(Ay2 — A „ ) . . . (A/^j — A„) 

Jk-i${nji,..Jk-2} 

Next we note that 

1 N N N 

Q-= Y! Y! "- E' 
jx=-N j2=-N ji=-N (Ay, — Aw)(Ay2 — Xn) ' • • (Ay, — X„) 
Ji¥n hi{nj\) Jii{nj\,...Ji-\) 

can be written as a polynomial of degree at most / — 1 in the quantities 

1 N i N i AT 

(26) 2^ \ _ \ ' Lu 7 \ ~ T m 2 ' ' " ' ^ ?\ \V- i* 
u=-N Av An i/--N \Av An) i/=-N \ /V ~ An) 

It follows that X " is also a polynomial of degree k — 1 in the quantities (26) and 

we may apply Lemma 1 to complete the proof of Theorem 1'. • 
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REMARK 6. We wish to point out that in Theorem 1 the restriction on A can be 
considerably relaxed. Inequality (9) remains true if A is arbitrary but fixed and 

lA^y-A,,! > <5>0 for neZ, j e Z \ {0}. 

For the proof of Theorem 1 we used (6), (8) and Lemma 1. The estimate (6) holds under 
the weaker assumption on {Aw} whereas (8) gets replaced [2, Lemma 1] by 

(8') |G'(A„)| > c3(|A„| + i r 4 A - ' 

which is good enough. The remaining details are left to the reader. 

PROOF OF THEOREM 2. Let E be any given compact subset of C and let no be the 
smallest positive integer such that \z\ < «o for all z € E. It is easily seen that for each 
v G Z the series 

oo fm—1 \ oo fm—1 1 \ 

E E -rl^,A(A„)(z - KYI l^,m(z)| 
w=-ooV/i=0 M1 J 

reduces to |/(A^)| at z = A .̂ Therefore, in order to prove the absolute and uniform con­
vergence of §m,\(f;z) on £we may assume z ^ Â  fori/ G Z.Nowif/? > 1 andq := -^y, 
then for all large N E N we have 

(27) 

where 

JV / w - l 1 \ m-1 

E E - r^A(A„) | | z -A w r | ^ m , w ( z ) | < Y,A„(N)B„(N) 
n=-N\n=0 M! V /i=0 

1 / # X1 / /7 

4 . W - - 7 E l/^(V>N , 

MN) •= ( E Kz - A»yi*m (̂z)|«l 
\n=-N J 

IfN > no + 2, then clearly 

(«,<"»' = ( E • E I1 ^ 
M/i|</i0+l /i0+2<|»|<#' | /I |</I0+1 "o+2<|"|< 

G(z) 
< E I W 

|«|<«o+l 

(z-A„r-"(G'(A„))" 
(m-/x)tf 1 

z - A , |G'(A„)I mq 

«0+2<|«|<A^ 

(<*»" 
(z-A„)(G'(A„))" 

We note that for |«| > no + 2, 

|A„| + 1 
< 

|A„| + 1 
k - A „ | " | A w | - | R e z | 

< 
no + 3 — A 

2 - A 
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and so from (6), (7) and (8) it follows that 

(*„(*))'< E ((4)"(-)'" e™0>o+ 1)4 A m("o + 2 + A)4A'")'? 

< (2«0 + 3){ {^Y(^) V " ° > o + l)4 A>o + 2 + A)4Am}' 

+ / ( ^ > ( Mo-n)4Amfwo+3~Air f -

The hypothesis A < ^ implies that q(\ — 4A/n) > 1 and therefore 

1 _ j» /l\«0-4Am) 

^lA.I + l ^ ' - ^ ) „=1 £.riA.i + i^^-)<1 + 2S(») <0°-

It follows that if A < ^ then for all z G is and all N > «o + 2 the quantity B^(N), where 
0 < / i < m — 1, is bounded by a constant Cm^Ayno depending only on w, /?, A and «o-
The same can be said about A^N). Indeed by Leibnitz's formula and Remark 5 we have 

(28) \f,AK)\<C5t^\\f^(\n)\. 

Since |w0 + • • • + w^f < (/x + \f-x(\w0]f + ••• + \\vrf) we obtain 

^ + , > H 5 ( ( < 0 / ' ' ~ ° < A " , r f 
and so the desired property of A^(N) follows from Lemmas 4 and 5. 

From (27) we conclude that if p > 1 then 

oo (m— 1 1 \ 

£ £-r l / , ,A(A„)(z-A„y| |^m,„(z)| 

is uniformly convergent on E. 
Now let 0 < p < 1. Iff G LF(R) then ([13], [3, Theorem 6.7.1]) it belongs to 

L\WL). From Lemmas 4 and 5 it follows that E£L_oo \f{fl\K)\ < oo for /x = 0 , 1 , . . . . 
Hence in view of (28) it suffices to check that if A < ^ then for all z G E the quantity 
\z — A„|/i|^/

m,„(z)| is bounded by a constant not depending on n. This can be done with 
the help of (6), (7) and (8) in a manner analogous to the above estimation ofB^N). • 
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REMARK 7. At this stage we wish to mention that for q > 1 and all z e E (as above) 

N m-\ N m-\ (m _ ,.\q-\ m-\-n , \ ^q 

E EI4WA;*)I'< E E ,„£ 2 ( ^ k - ^ n ^ W l ) 
n=-Nfi=0 n=-Nn=0 K^P j=0 V ! y 

< E ( " f f c| E E (|z-A„r]^„(z)|)" 
M=0 U i ! / f n=-N y=0 

<(c5cm^E(VT 
and so the series E£L_oo £™=o |3y«,/i(A;z)|^ converges uniformly on E. 

In addition, it can be seen that if A < ~ then like \z — A„|/x|xFm?n(z)| the quantity 

\®m,n,ii(^ \z)\ is bounded on E by a constant not depending on n. 

PROOF OF THEOREM 3. By Lemma 6,/(- , z 2 , . . . ,z„) is an entire function of ex­
ponential type m\T\ in the variable z\ and belongs to If(R). Hence Theorem 2 may be 
applied to conclude (see Remark 3) that 

/(z1?z2 , . . . ,zw) 

(29) °° m\ — l flH\ 
= E E ^^/(^l(/l)^2,-..^ii)0» l l/1^1({Al(/)}yez;^l) 

the series being absolutely and uniformly convergent on compact subsets of the zi-plane. 
From Lemmas 7 and 6 it follows that ^rf{X\(J\), • ,Z3,... ,zw) is an entire function of 
exponential type /w2r2 in z2 and belongs to LF(R). By Theorem 2 
(30) 

; ] - / (Ai ( / i ) ,Z 2 , . . . ,Z w ) 
Sx? lJ 

00 m 2 - l 3^2 / QV\ 

= E E ^ ( ^ / ( A l ( / U A 2 0 W 2 ) , . - . , Z » ) ) ^ 
j2=-oo n2=0 ox2 VC7X1 

Again here the series converges absolutely and uniformly on compact subsets of the z2— 
plane. Substituting the right hand side of (30) for jgrf(\\(j\\z2,... ,z„) in (29) and 
using the absolute convergence of the two series we obtain 

00 00 ml-\m2-l Q^\Q^2 

f(zUZ2,...,Zn)= E E E E 3 nxps nf{M(Jl)>*2(jlj2),...,Zn) 

X ^ ^ ^ ( { A i O U - e z ^ i ) x 0W2j/-2,/i2({A2(/-1 j)}yGZ;z2). 

This latter series not only converges absolutely but also uniformly on compact subsets 
of (zj-plane) x (z2-plane) by Lemma 9 and Remark 7. 

Repeatedly applying Theorem 2 followed by Lemma 9 and Remark 7 as above we 
obtain the desired representation (21). • 
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