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RECONSTRUCTION OF ENTIRE FUNCTIONS FROM
IRREGULARLY SPACED SAMPLE POINTS

GEORGI R. GROZEV AND QAZI 1. RAHMAN

ABSTRACT.  Let G(2) := (z—X0) IT}2 (1— & )(1— 5%-) where {\ } .7 is a sequence
of real numbers such that |\, — n| < A for some A > 0 and all n € Z. Extending an
obvious property of sin 7z to which the function G reduces when A = 0 we show that

0
'%2(%‘;)[ is bounded by a constant independent of n. The result is then applied to a
problem concerning derivative sampling in one and several variables.

1. Introduction.
1.1 The main result. Sampling theorems deal with the reconstruction of a function f
from its values and possibly those of some of its derivatives at an infinite sequence of
points {\, },cz called nodes. Assuming that the infinite product

o0 z z
1) G(z) == (z—,\o)n[zll(l—:\:)(l— /\_,,)
converges uniformly on all compact subsets of C the function L,(z) := —G’(—A:.;)L(Ez)—T) van-
ishes at all the nodes except A, where it takes the value 1. Then F(2) := 332 f(\y)LA(2)
is defined at least at the points A, and f(A\,) = F(\,) for all n. Clearly, f may not agree
with F at any other point, i.e., in general, the formula

& G()
2 = An)——
@ 0= L OG0
cannot hold for all z € C or even for all z € R. However, (2) does hold under appropriate
conditions on {\, },cz and onf (see for example [7], [8]). As regards the nodes, they are
usually assumed (see [1], [4], [S], [9], [10], [11] in addition to [7], [8]) to satisfy

3) MER, |A—n| <A

and also [A\j — \s| >8> 0forn € Z,j € 7\ {0} whenever A > % In the special case
An = n (for all n € Z) the function G reduces to sin 7z which has several characteristic
properties. Proofs of (2) and certain other related formulae are based on the observation
that these properties are more or less preserved when the sequence {),} is allowed to
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deviate from {n} but still remains “close to it” in some sense. It is known ([1], [10], [11],
[14]) that if (3) holds, then there exist constants ¢y, ¢, efc., such that

2A
@ 6@ >ae™| L7, >4
|An — z|e™ 1 1

- < _\-
) |G(2)| > Cz(l =+ R’ (n 5 S |z| sec(argz) < n + 2),
(6) |G(z)| < che™(|z] + 1)**  forall z;

G

(7) ]z_i; <cjeM(|z] + 1) forallz,

where the function on the left is assumed to have its singularity at z = )\, removed;
1
@® GO > c3(Aal + )7 forA < 7

Some other interesting estimates for |G(z)| were recently obtained in [9].

In the present paper we shall establish a new property of the function G. It concerns
the quantity %\5‘;2 which appears naturally in connection with Hermite interpolation and
there are probler;ls in that area to which our result can be applied. Since G(z) reduces to
sin 7z when )\, = n for all n € Z we have (in that special case)

‘G(")()\,,)l _ o0 if k is even
G'Oy) |~ |21 ifkis odd,

and so in particular, I%%’lﬂ)zl is bounded by a constant independent of n. We show that
this property remains true under fairly weak restrictions on the sequence {\, }.

THEOREM 1. If {\n}nez is a sequence satisfying (3) with A < %, then for eachk > 2
there exists a constant Cy such that

GO0Ow)

® G'(An)

4,k

foralln € Z.

REMARK 1. From (6) it follows that |G(z)| < che™ (x| +2)** for |y| <1 and so, by
Cauchy’s integral formula for the k-th derivative we have

IGOOW| < Kleze™(|h] +2)*.
This, in conjunction with (8) , implies that

GH ()
G'(An)
from which the desired estimate follows trivially provided » remains bounded but not

otherwise. It is however clear that while proving (9) we may suppose |n| > 1.
Note that in order to prove Theorem 1 it is enough to establish the following result.

<K(Z)em (@l + 20| + D)
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THEOREM 1. Let {\}nez be a sequence of real numbers such that |\, —n| < A < 1
and define

N
zZ
Gr(2) = (z— ,\O)Vy_’N(l _ E)'
Then for any given k € N we can find a constant Cy such that for eachn € {£1,+2,...}
GO
10 Nl < G
10) G0 k

Jorall N > N, x where N, ; is a positive integer depending on n and on k.

NOTE. A prime affixed to the summation (product) sign as in ¥’([T’) indicates that
the index of summation (product) does not take the value zero.
REMARK 2. Let), = n for all n € Z so that Gy(z) = zII’,,__N(l — —) It can

be easily seen that sup_N<,,<N| o )I is larger than In(2N + 1) and so goes to +o0o as
<n<N|G\,(h
N — oo. The same example can be used to show that for no given k > 2 the quantity

Sup—N<n<N| G,
some Cj, dependlng on k but not on N we have

@) <,
G

for all the zeros )\, of Gy. This makes (9) somewhat more interesting.

1.2 Further results and an application of Theorem 1. The following result on derivative
sampling was recently proved by G. Hinsen (see [9, Theorem 6.1]).

THEOREM A. Letm € N, 1 < p < 00 and \ := {\,}ncz a sequence satisfying (3)

with Ao = 0 and
1
A<{4m’ lsp<2

e 2 <p<oo

Iff is an entire function of exponential type mm belonging to LIP(R), then
(1) f@= Z Zf(“)()\n)‘l’mnu@ 2)
‘ n=—00 p=0

where

| '_m—l—u (G(Z))m {((._)‘n)/G(.))m}(m—l—ﬂ—ﬁ()\n)
(2 5= o G Wy

In addition, he proved
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THEOREM B [9, THEOREM 5.2]. Let 1 < p < 00 and {\,}ncz a sequence satisfying
(3) with Ao = 0 and

A<, p=1

A<z, 1<p<oo.

(13)

Iff is an entire function of exponential type m belonging to LP(R), then

& G(2)
2 ogee

converges uniformly on each bounded subset of C and (2) holds.

Theorem B is important for certain applications; as an example we mention the gen-
eralization of the sampling theorem to more than one dimension obtained by P. L. Butzer
and G. Hinsen in [4]. Comparing the two preceding theorems it is natural to ask under
what condition does the series in (11) converge absolutely. With the help of (9) we shall
prove the following

THEOREM 2. Letm € N, 0 < p < 00 and )\ := {\,}nez a sequence satisfying (3)

with
<Lt <
13" A_4{n, ¥f 0<p<li
A< m> if 1 <p<oo.
Further, let
G(2) m
14 WYpn@) =\ ——————) .
9 = (G )
Iff is an entire function of exponential type mm belonging to LP(R) and
a ([
= <u<m-—
(15) finni= g =S|, rosesm—t,
then the series
00 m—1 1
(16) Ina32) 1= 3 {2 —hir e =0 ¥mso
n=—00 \ u=0 H*

which is identical with 52 _ ZZ‘;& SO mnu(\;2) (and so represents f , by Theo-
rem A read in conjunction with [3, Theorem 6.7.1]), converges absolutely. The conver-
gence is uniform on each bounded subset of C.

It is interesting to compare conditions (13) and (13').

REMARK 3. It is not hard to verify that formula (16) can also be written as

oo m—1
(17) I)m,/\ (f; Z) = Z Zf(u)()\n)q)m,n,u()‘;z)

n=—00 p=0
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where

1 m—1—p 1 d.l 1
(18)  Dpnu(A;2) = E(Z_ n) ¥m(2) Z 7! dzf( ,,.,n(z))

E—=X2y.
z=\p
Substituting for ¥,,, from (14) in the above expression for @, , ,(\;-) we see that it
(Pm,nu(X; ) is indeed identical with the function W, , ,(; -) appearing in Theorem A.
1.3 Nonuniform multidimensional derivative sampling.

1.3.1. Thesumg(zi,...,z,) of an everywhere convergent power series in » variables
z1,...,2, is called an entire function of exponential type 7 := (ry,...,T,) if for every
€ > 0 there exists a positive number 4, such that

|g(21, cae ,z,,)| < Aeeﬂ=|(Ty+a)|z.,|
for all (zy,...,2,) € C". By definition, the function g belongs to I7(R"), 0 < p < oo if

/m /00 lgCxr, ... xn)P dxy - - - dxy < 00, (x,:=Rez, forv=1,...,n).
—OQ —0Q
1.3.2. Corresponding to each n-tuple (ji, . . . ,j,) where ji, ..., j, belong to Z let

A]l, ((Ajl Jn)l 3 (le,Jn)n)

be a point in R” such that

() Gyid =il SO <Lforl<v<n
(19) @) ifj, =] for 1 <v<ng then
Mgy = ()\ i for1 <v <ny.

Note that the set of points {X]l Jn S J1s--sjn € 1} has the following structure (see [4,
Remark on p. 71]). First we choose points {);, } on the x;—axis subject to the condition
that \;, € [j1—Ay,j1+A ]forallj, € Z. Throughthe points {);, } we draw lines parallel to
the x,—axis. On each of these lines we choose points {le J» } satisfying |(5:,I an—il <A
forallji,j, € Z.1f n > 3 we continue by drawing through the points {/\Jl J»} lines parallel
to the x3—axis and choose on them points {>‘1x Jajs + such that |()\,‘ a3 —J3| < A3 forall

J1,j2,J3 € Z. This procedure for choosing the coordinates of {/\j,,..‘ Jjn} one after the other
goes on until all of them have been determined. The following alternative notation

(20) Nivedn = (MG A20172), -« s Anits - - 1))
would therefore be more indicative as regards the structure of the set {le odn S J1seees)n €

z).

As an application of the absolute convergence of the series (16) we present:
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THEOREM 3. Let it := (my,...,my) € N" and p € (0,00). If {Ny.j, J1se--jin €
1} is a sequence of points in R" satisfying conditions (19) with

A< s HO<p<I

Ay<4p1ny, if1 <p<oo,

for v = 1, 2,...,n, then for all entire functions f of exponential type mm =
(m,...,m,m) belonging to LP(R") we have

00 oo m—1 my—1 GE1 ... Bl
fe,om= 3 - % Z"'Z——f-

Y n -
@n S50 im0 =0 im0 OXY' O gy n)=X,

X D o) it o) E1 - - > Z1)

where with @...(-;-) as in (18) and A\i(j1), ... M1, . . - ,jn) as in (20)

@ 1jid it eopin)Z1s - - 5Z)
= Oy, o (M DYezs21) X -+ X Dy ({Pn5 - o120 }jez320).

The series (21) converges absolutely and uniformly on each compact subset of C".

2. Auxiliary Results.

LEMMA 1. Let {\n}ncz be a sequence of real numbers such that |\, —n| < A < ;.
Then for each n € 1 there exists a positive integer N, such that for all N > N,, we have

N
(22) pn(N) = Z X X < 10.
y=—N v \n
v¢{—n,0,n}
Further, for all N € N,
N 1 7r2
— <
@) :/=Z—:N A — )‘")2 -
v#n
N 1
24 > < +2¢ (k=3,4,..).

v=—N I)‘V - )‘nlk
vF#Fn

PROOF. Since the sequence {—\_, }ncz also satisfies the condition of the lemma it
is enough to prove (22)~24) for n > 0. By assumption )\, = n +§, where |5,| < A for
alln € Z. Let n > 0 be arbitrary but fixed. Then for N > n+ 1,
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0= |2 o i |
In particular,
po(N) < :4_:1 )2 = g’
(PI(N)<Z( . )3((V__)+1) ’
P2N) < max{ (1 1 (5262—;,‘;3)(;%52_5_51_)1)) é - %f(v +3) }

(12 126 _ 1126
573120 312°

For n > 3, we have p,(N) = |B(n) — A(n)|, where

A(n) = "‘I 2n+26,—6,—6_,
Rt (n+1/+(5 —6_))(n—v+@n—6,))
B(n) = ENZ 2n+26,—8, —6_,

vam (Vn+ @ —6.))(v —n+ 6, —6n)

It is easily seen that

- m—1 n—1 2n—1
A
(n)_';l(n_._ +V)(n+l_,,)—,;l(n+1)2_(1/+%)2,
w1 m+1 —1 2n+1 56
A(n) < 9’
(m) < ,,2_:1( Ip— Vz—,,)-—::l(n—l)z—(lf*'%)z 9
1 N 2”*1
B)>Yy —>—— 2> —%
(n) Vz;n( +2)2 n2 ~y=n(y+%)2_(n—l)2
vt N 10 N +
By < Y, —ar Gt ey ot

v=n (V+%)2—”2 (n+%)(n+%) v=n (V+%)2_(n+1)2.

Hence ¢,(N) < max{D; y, D, n} wWhere

nl 2n+1 N 2n—1 56
Dy := — +—+2|,
o El(n—l)Z—(w%Y :/Z—_-:n(l/"‘%)z—(n—l)? 9
-l 2n—1 N 2n+1 Qn+1)?
Dy = — _ )
2 rr s R O T AT )
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Now we note that

ul 2n—1) n-l 3
Diy=|— -
7 { Lo —a-1F Her -1
N 1 74'
— 4+ —
v=n (V+%)2—(n“ 1)2 9
1 N 2(n—1 2n—1
(14 ) @b -l
2n—=1)/" /= ((1/ + %)w) — ((n —Drp (@—1¥—3
nl 2 74
— + —.
,;(V+%)2—("—1)2 9 '
But
2n—1 n=l 2 74
— — + —
‘ (n—1P -3 uz=:1(1/+%)2~(n—1)2 9 l
74 2 1 1
<|= - _4+m-2 +
5 a3 ){(n—1)2—<%)2 (n—l)z—(n—%y}
T, LB
9 9’
and so
1 & 2(n— Dm 83
Diy<(1+ Ty 5 5 — 1 -=
( 2(n— 1)> v=0 ((1/+ %)w) — ((n — 1)7r) 9
where - 5 .
= (Z_ ) 5 —0 a N—oo.
v=N+1 ((1/ + %)7{') — ((n - 1)71')
According to Mittag—Leffler’s expansion of tan 7z [17, p. 113]
x 1
2m— Ny 5 5 = tan(n — 1)m = 0.
v=0 (@ + Pm)" — ((n — D)
As such D) y < 10 for all large N. Next we estimate D, y. Clearly
1 N 2(n+1) 2n+1
Dyy=[+{1-— +
2N . ( 2(n+1)),,2=0(1/+%)2—(n+1)2 (n+1p—1

nel 2 @n+1)

2 TR LR SIS Ly

=t (1 — @+ 3 (mtm+y)
@ 2n+) | 4, 2n—1 784
9 3n+l 195

< ,,;0(1/+%)2—(n+1)2 N

where ), — 0 as N — oo. But

) 2n+1) n—1
=ntan(n+Nr =0, —— <1
Z(V+%)2_(n+1)2 T n(n )7l' n+%

v=0

https://doi.org/10.4153/CJM-1996-040-7 Published online by Cambridge University Press



https://doi.org/10.4153/CJM-1996-040-7

RECONSTRUCTION OF ENTIRE FUNCTIONS 785

and so D, y < 6 for all large N. It follows that ¢,(N) < 10 for each given n provided N
is sufficiently large.

In order to prove (23) we note that

N 1 N—1 1 n-l 1
< +
uy:X—:N (A — An)? —sz;l(’/_n+%)2 ugN(V_"+%)2

S 2

v=—00 ((n — -;—)ﬂ' — 1/7'(')2

= 7r2cosecz((n — %)w) = 7.

Finally, if £ > 3 then

ﬁ’: 1 < 1 + 1 + EN: 1
v=—N ')\u - )‘nlk - |)‘n~1 - )‘nlk |)‘n+l - /\nlk v=—N |)‘u - >‘n|2
v#n v¢{n—1,nn+1}
< 2k 42k 442
and so (24) holds. »

The next lemma will be needed for the proof of Theorem 2.

LEMMA 2. Let ¥, be the function defined in (14). Then

] m G(Sj+l)(A )
O () = = "
NP VI vy’ eyl | ey
0<s1,5000Sm<s

PROOF. If H(z) = z_ﬂ%, then H(\,) = —-G¢*D(),) and so by the generalized
Leibnitz’s formula [6, p. 219] for the s-th derivative of the product of m functions we

have
s!

.0 = 3 —,—THH‘W(A)

syt Fsy=s S1 me =
081,000 <8
s!

e G NSV
0<51,000Sm<s

e
GO -

||ms

REMARK 4. From Theorem 1 it follows that if C4; = 1 and M, := maX;<x<s+1 Cax
then foralln € Z
!ms+m

G+m)

P90 < (M)

The following formula for the /-th derivative of the reciprocal of a function will also
be needed for the proof of Theorem 2.
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LEMMA 3. If is I times differentiable at £ and Y(€) # 0 then

d 1 1 \+1 w(g) (I_ll)wl(é) cee (t})w(l—l)(g)
=73 - 1-2Y,1(1-2)
(@ (t/)_(x_)) ) =t (1/)(5)) ? Y(§) | (1_2)1/): ©
0 v we v

PROOF. The formula may be obtained by solving (for y)(¢)) the system

k (k\ . .
2 ( j>y"’(€)1/)(""’(€) =0 fork=1 [—1..,1 and yEYE)=1 =
j=0
REMARK 5. Applying Lemma 3 to the function ¥,, ,(x) at the point A\, we con-
clude that the quantities (%(Wl,,(x_))) s, AT€ particular polynomials in ¥,, ,(As), ...,
‘PE,’,{,,(A,,). Hence by Remark 4 they are bounded by a constant Cs depending only on A
and m.

The next two lemmas contain certain facts about entire functions of exponential type
belonging to LP(R) which we will use.

LEMMA 4 [3, THEOREM 11.3.3; 15].  Iff is an entire function of exponential type T
and iff € IP(R),p > 0, then

[repa<e [ [fwpd.

LEMMA 5 [13, P. 126; 3, THEOREM 6.7.15). Iff is as in Lemma 4 then for any real
increasing sequence {\,} such that \pr1 — Xy > 6 >0

2 8 &% —1
D e I (O

The following lemmas will be needed for the proof of Theorem 3.

LEMMA 6 [13, P. 147; 12, THEOREM 3.4.2]. Let f(z1,...,z,) be an entire function
of exponential type T = (11,...,T,). If some of the variables zi,.. .z, are fixed, then
the resulting function is entire and of exponential type in the remaining variables. If
f € PR where 1 < p < oo then for 1 < m < nwe have

(/j:o-'./f:olf(X1,...,x,,,,x,,,+],...,x,,)|pdxl._.dxm)l/p
< 2"—'"( I_n[ T,,)‘/P(/_O;.../j;lf(xl,...,x,,)lpdxl...dxn)

v=m+1

1/p
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LEMMA 7 [13,P. 160; 12, P. 116]. Iff(z1,...,z,) is an entire function of exponential
typeT = (11,...,T,) belonging to LP(R™) for some p € (0,00), then %, v=1,...,nare
entire functions of exponential type T belonging to L (R").

LEMMA 8 [13, p. 146]. Let f(zi,-..,2,) be an entire function of exponential type
7 =(m,...,T,) belonging to [P(R") for some p > 0. If x,, y, are the real and imaginary
partsof z, forv =1,...,n, then

/f:o.../j;[f(xl+iy1,...,x,,+iy,,)|"dX1"'dx
Se”(ﬂlyll*"”nlyn')/jo /_m [fGxet, - xn)P dixy - - - dxy.

LEMMA 9. Iff(z1,...,2,) is an entire function of exponential type T = (11,...,T,)
belonging to LF(R™) for somep € (0,00) and {(x(l’), ... ,xﬁ,’)); j=1,2,3,...}isasequence
of points in R" such that the euclidian distance between any two of them is at least 6(> 0),
then there exists a constant C depending only on p, T, n and b such that

25) j:z;lf(xﬁ",...,x?)[l’5C/_‘:---/:[f(xl,...,x,,)wdxl---dx,,

PROOF. As it is well known (see [16, p. 74]), the function |[f(zi, . .., z,)|P is plurisub-
harmonic in C" and (see (2.1.1), (2.1.2) in [16]) for 6; > 0,...,8, > 0 we have

fzi,- .. zn)lP

2" i n 2 2 i i
<G h KL e et P
1 n
dry---dr,db, ---do,

= 2—/ /[f(zl +s1tity, ..zt Sy +ity)P dsy dby, ... ds, dty,.
o3 - - - 62 it

V="V
I/—l ..... n

If we now follow the method used by Plancherel and Pélya [13, p. 126] to prove Lemma 5
we will obtain (25) with
22n n"an n

F)
C= TP . Ty ,,=1(em - 1)' "

3. Proofs of the theorems.

PROOF OF THEOREM 1’.  As indicated earlier (see Remark 1) we may suppose |n| >
1. Applying standard rules of differentiation we obtain
N
/ z —1) z
V4 (z = 2 7 _ -
Gv@ = I (l M ) =) ;_ X, VEN(I ,\V)’

v=—N
v#
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and fork > 2
N N -1 N 2
G(A’,()(z) = Z (—) . 2’ g___..._) H’ (1 _ _)
J1== >\ Je-1=—N )\jk—l v=—N Ay
Tkt e ik-2} VE{isedi-1}

1 N —1 z
o) Z’( Loy S (-1,
)‘Jl Ji=—N )\Jk y=—N Ay
j‘tg{il»"-aik—l} V¢{il"~-:ik}

where {ji,...,j,} = 0if r < 1. Hence, if n € {£1,42,...,£N}, then

Ghw) =~ ' (1),

n v=—N )‘1/
v#n
( 1) N/ )\n )\n - )\0 NI 1 NI )\n
_ _Am) R -2t
(>\ ) { An V'l_:I—N(l )\V) An Jl—Z—N >‘Jl l/l-l—:N ( )\1/)
vin a#n - vg{ni}
N
A
/// / n
]l;‘N A )‘Jl I/IIN ( )\t/>
Jr#n vé{nji}
N N 1 N’ An
=30 —Xo) ¥ ! 1 - 2n
jl:ZiN j2=z_N >\")‘fl A1'2 V]=:[N ( )\V)
N#n jag{nji} vé{njij2}
and fork > 4
N N 11 N
POy =kk—1) 3 oYY 1) i (1 N ﬁ)
Ji=—N Ji-2=—N )\")\jl T )‘jk—z v=—N Ay
Ji#n Jk—2E{nj1sedi—3} v@{nji,.jr-2}
N N 1Y% N A,
O =20) X Y A( )A T (1 _X')‘
Ji=—N Ji-1=—N nAL T N v=—N v
Jr#n Ji1E{n1sei2} v@{n 1,1}

Now, we are ready to prove (10). First let k = 2. For any givenn € {£1,+2,...} and
N > |n| we clearly have

Guw) _ (L 1 L’l, Y
Giy(An) =X A=A SN A=

J1
Jig{—nn}
Since 0 <A < %,
SRR S P
Aon— Al T 3
and so by Lemma 1
Gy(An)

< 73—6 forall N > N,.

Gy(An)
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Thus (10) holds with C; = 2 and N2 = N,..
Next we shall prove (10) for k = 3. Forn € {£1,42,...} and N > |n| we have

G/// )\n 1 N 1 N N
IIV( ) — _6 ZI +3 ZI ZI 1
Gy(n) =20 i N N = A 5N j=en i = A, = M)
Jr#n a#n ja{nii}
2 N, N, 1
<12{10+ =) +3 _ —
( 3) j|=Z—N A]l - )\” (jz;-N /\12 - )‘" Aj| - A’l
é#n Ja#n
2
<128+3ma ZN' ! ZN' !
> X — > —_— /-
AN A = M) TS = AP
Jr#n Ji#n
Hence by Lemma 1 there exists a constant C3 such that
Gy ()
C
Gy =

for all large N, say for N > N, 3.
In order to prove (10) for £ > 4 we first observe that

IO\ _1¥ N N
G‘,y(n):k(k_l)( DA SRR 1
GN()‘n) An— Ao Ji=—N Jk-2=—N (>‘j —An)-ee (>‘J'k—z — )

Ji#n Jr2@ {3}

N N

+EE Y Y

h==N j=-N

N#n p¢{nji}

N
> ‘
Jk1=—N 0‘]'1 - )‘n)O‘jz = ). (Ajh—l - An)'

JietE{njtsei2}

Next we note that

NI NI NI l
0= jn;N J'2=E—N - /;N Nii = A, = An) - (4 — An)
a#n pg{ni}  ig{njisevier}

can be written as a polynomial of degree at most / — 1 in the quantities

(26) )DL R W I
Y A= V=N (AV—A,.)z""’F;N v = M)

5)
It follows that %(15,’((%) is also a polynomial of degree k — 1 in the quantities (26) and
N n
we may apply Lemma 1 to complete the proof of Theorem 1'. (]
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REMARK 6. We wish to point out that in Theorem 1 the restriction on A can be
considerably relaxed. Inequality (9) remains true if A is arbitrary but fixed and

Pnj — M| > 6>0 for nez, jez\{o}.

For the proof of Theorem 1 we used (6), (8) and Lemma 1. The estimate (6) holds under
the weaker assumption on {), } whereas (8) gets replaced [2, Lemma 1] by

®) |G’ > es(|Aa] + 1)~

which is good enough. The remaining details are left to the reader.

PROOF OF THEOREM 2. Let E be any given compact subset of C and let ny be the
smallest positive integer such that |z| < ng for all z € E. It is easily seen that for each
v € Z the series

5 (z L Oz — ,.)"|)|\P,,,,.(z)|

n=—00

reduces to |f(\,)| at z = \,. Therefore, in order to prove the absolute and uniform con-
vergence of §,, y(f; z) on E we may assumez # )\, forv € Z.Nowifp > landq := ;%l,
then for all large N € N we have

m—1
@7) 5 (z L OWllz = A ) na < zAuav)B#m

n=—N

where

1 N ) 1/p
A (V) :=m(";Nm,A(An)l) ,

N 1/q
BM = 3 6= M) ¥ns@l)
If N > ng + 2, then clearly

(G(z))m 'q
@ = Ay (G' )"

(Bu(N))qz( Z +

|n|<mp+1  np+2<|n|< <N)

G(z) |(m—maq 1
G(z)|M -
S |nl§)+1 | ( )l 1 )\nl IGI()\")Imq
. (G(z))m lq
ner2 <N 2 — ) (G'O))”

We note that for |n| > ng +2,

1)\,,|+1< [An] +1 <n0+3—A
lz—Xn] ~ M| —|Rez| = 2—A
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and so from (6), (7) and (8) it follows that

Buw)'<s ¥ {(é)#(ﬁ)me’"’m(nw1)4A”’(no+2+A)4A"‘}q

|n| <ng+1 C,/’z/ C3
cH\™m np+3—A\\¢ 1
¢ B e (2
no+zgz|n|51v C3 (o +1) 2—A } (|2n] + 1)g(1—44m)

< (2ng + 3){ (z—%)#(%)me"""'"(no + 1) (ng +2 + A" }q
2

+ {(ﬁ)memom(no_'_ 1)4A,,,(no+3 -—A)}q i 1

c3 2—-A n=—00 (P‘nl + )ai=4am)*

The hypothesis A < @Lm implies that g(1 — 4Am) > 1 and therefore

x 1

NORED D

n=-—00

00 /]y g(1—4Am)
+ - .
<1 2;(”) < oo

It follows that if A < 4—’-:-,; then for allz € E and all N > ng + 2 the quantity B,,(N), where
0 < p < m—1,is bounded by a constant Cy, , 4 », depending only on m, p, A and ny.
The same can be said about 4, (V). Indeed by Leibnitz’s formula and Remark 5 we have

(8) WMMSQiGWWMm

1=0

Since |wo + - - +w,lP < (u+ 1P~ (JwolP + - - + |w,[P) we obtain

) N (8 o\ /P
4,(N) < mcs( z (Z( / )tf‘““”(xn)l) )

n=—N\/=0

n=-—00

1/
< Ot 1) q(é((';))p > V‘”‘“(A,.)lf’) ,,

and so the desired property of 4,(N) follows from Lemmas 4 and 5.
From (27) we conclude that if p > 1 then

n=-—00 \ u=0

00 m—1 l
5 (:2 OG- An)ﬂl) ¥n@)|

is uniformly convergent on E.

Now let 0 < p < 1.Iff € LP(R) then ([13], [3, Theorem 6.7.1]) it belongs to
L'(R). From Lemmas 4 and 5 it follows that Y2 __ [f ®(\,)| < oo for p = 0,1,....
Hence in view of (28) it suffices to check that if A < # then for all z € E the quantity
|z — An|#|¥Wmn(2)| is bounded by a constant not depending on n. This can be done with
the help of (6), (7) and (8) in a manner analogous to the above estimation of B,(N). =
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REMARK 7. At this stage we wish to mention that for ¢ > 1 and all z € E (as above)

! (m —

N 1 " q
55 ol < 30 5 TS > (5 Csle = M1t
=0 \J:

n=—N p=0 n=—N p=0 (/»‘L')q
m—1 (m _ M)q—l N m—1—pu . q
S5y GE, g )
b= n= J=

m—1 m— q
S (CSCm,p,A,no)q 2 (_"—“')
n=0 2

and so the series 00 57 |®p,n,u(A;2)|¢ converges uniformly on E.
In addition, it can be seen that if A < ;- then like |z — As|#|Wma(z)| the quantity
|®pmn,u(X;2)| is bounded on E by a constant not depending on n.

PROOF OF THEOREM 3. By Lemma 6, f(:,z3,...,2,) is an entire function of ex-
ponential type m;7; in the variable z; and belongs to L”(R). Hence Theorem 2 may be
applied to conclude (see Remark 3) that

f(z1,22,- .- 52n)

(29) o molgm _
Z Z a I‘l (Al(ll)a 221 . ,Zn)q)ml,j;,p,l ({Al(l)}jeZQZl)
Jj1=—00 p1=0
the series being absolutely and uniformly convergent on compact subsets of the z;—plane.
From Lemmas 7 and 6 it follows that %‘Tf (/\1(1'1), “,Z3,... ,z,,) is an entire function of
1
exponential type m,7 in z; and belongs to LP(R). By Theorem 2
(30)

oM
Wf(Al(jl)’ZZ7 ... ,Zn)
1

oo m—1l gu2 , G
= (6 ulf()‘l(ll) A2(15)2)s - - ))(sz,iz,#z({)‘Z(jl,j)}jel;zz)~

=00 =0 0%,
Again here the series converges absolutely and uniformly on compact subsets of the z,—
plane. Substituting the right hand side of (30) for %}Tf ()\1(1'1),22, . ,z,,) in (29) and
using the absolute convergence of the two series we obtain

oo  mp— lmzlaua

f@,z2,...,2,) = Z DD ppw (MG, A2G1,52)s - - >2n)

J1=—00j,=—00 ;=0 pr=0

X Oy jy oy ({)\1(1')}1'62;21) X (szjz,uz({/\Z(il ,j)}jez;zz).

This latter series not only converges absolutely but also uniformly on compact subsets
of (z;—plane) X (z;—plane) by Lemma 9 and Remark 7.

Repeatedly applying Theorem 2 followed by Lemma 9 and Remark 7 as above we
obtain the desired representation (21). n
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