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Introduction. The uniformization theorem says that any compact Riemann surface
5 of genus g ^ 2 can be represented as the quotient of the upper half plane by the action
of a Fuchsian group A with a compact fundamental region A.

A classical problem going back to Poincare is to obtain a relation between the group
A and the algebraic equations defining S in some projective space; the solution to this
problem is approached via the construction of a basis of differentials invariant by A. Our
point of view is that it is interesting and possible to obtain direct relations for special
groups, namely those representing surfaces admitting a group of automorphisms. See for
example Siegel [6] and Streit [7].

Wolpert in [8] constructed an explicit basis of the space of quadratic differentials
Q(A) in terms of series depending on a partition of the surface by closed geodesies;
however, it does not seem to be possible to study the action of a finite group of
automorphisms on such a prescribed basis and one therefore does not obtain the equation
of the algebraic curve representing S. We propose here a new method to build a basis of
quadratic differentials based on the action of a finite group of automorphisms and one
therefore does obtain the equation of the algebraic curve representing S. Namely we
represent the group on the space of quadratic differentials 6y associated to closed
geodesies and then find the eigenspaces; these in turn can be seen in the equation of the
algebraic curve and we can identify them.

A different construction of a basis for Q(A) is given by Kra in [2] and even though
his version holds great promise we will need the analytic formulae established by Wolpert,
and we give a sketch of the results needed in the first section.

Since the possible groups acting on Klein surfaces are more varied it is natural also to
relate the action of an anti-conformal involution t of S on the basis Q (A). We shall
determine these for some important examples in low genera leaving a larger classification
for a later study.

The importance of explicit basis of quadratic differentials can also be seen in the
following theorem of Royden [5].

Let Qi(A) denote the space (2(A) with norm Lx. Then any isometry of Qi(A) is
induced by an automorphism of S.

Thus, if we have an identification Q(A) = Rd, d = 6g-6, is is possible to study
automorphisms of Riemann surfaces in terms of the geometry of convex sets in Rd. We
cannot undertake that study in this paper however.

Preliminaries. Let A be a Fuchsian group acting on the upper-half plane with a
compact fundamental region A. Let C be a hyperbolic element in A given by

* Partially supported by Fondecyt 1930517 and Fondecyt 1961055.

Glasgow Math. J. 39 (1997) 193-210.

https://doi.org/10.1017/S0017089500032079 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032079


194 GONZALO RIERA

where a,b,c,daxe real numbers and ad-bc = 1. Then the formula

wc(z) = ((« + df - 4)(cz2 + (d- a)z - by2

defines the natural quadratic differential invariant by the cyclic group (C). The Petersson
series associated to the simple closed geodesic y in A/A which C represents is the series

6y= 2 wcoB B'2
Be (CM

The sum is taken over the right cosets of (C) in A. It is proved by Wolpert (c.f. [8,
Theorem 3.7]) that if aJy 1 s / < 3g - 3, is a partition of the surfaces S into pairs of pants,
the differentials 6a form a basis for Q(A) over C. We do not have, as we said, any means
of representing the action of a finite group of automorphisms in terms of this basis.

The Weil-Petersson metric on Q(A) is given by the product

<</>,./,> = 1/2 Re f <t>4>(Imz)2

and the following fundamental formula holds

where ep is the angle at each point of intersection measured counter-clockwise from a to
/?. We denote this skew-symmetric product by the symbol [6a, dp]. It is a bilinear product
over R and therefore the interaction of the real and complex structures on Q(A) is
important. Let then {0,}, l ^ / : s 6 g - 6 , be any basis of quadratic differentials over the
reals. In terms of this basis, multiplication by / is given by a square matrix R such that
R2= -I, and the bilinear product is given by x'Fy, where F is a skew-symmetric real
matrix.

Also, since x'(R'F)y represents the product (<f>, i/f) it follows that the matrix R'F is
symmetric positive definite.

Let now G be the full group of automorphisms of the Riemann surface, G — N(A)/A
where N(A) is the normalizer of A. Our method starts with any closed geodesic y and its
associated quadratic differential 6y; we act on it by the group and we obtain a vector
space {8gy;g e G}, invariant by G. The dimension of this vector space over R can be
computed using the geometric formula for the skew-symmetric product. If this dimension
is not yet 6g - 6, we take another geodesic and repeat the process. In the end we arrive to
a complete basis of Q(A) over R and to a formula for the complex structure given by the
matrix R.

The action of the group G is now completely determined and we can therefore relate
this basis of quadratic differentials to the algebraic equations for 5.

The curve of genus 2 with a Z/5 action. The equation of the curve is

and the quadratic differentials are

dx2 dx2 dx2

<p j = z , a>2 ~ ~5—^ r, ©3 = ~z—~
v(x — 11 v i x — 11 v i x — 1 i
y v / y \ / y v /
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3

2

1-6,2-7,3-8,4-9,5-10
Figure 1.

They can be characterized in two ways, first if we consider the action of the
automorphism

v(x, y) = (-x, Cy) where ( = e2lri'5

Then

so that {<f>u <f>2, (f>3} constitutes a basis over C under which the action of the cyclic group
decomposes into eigenvalues.

They can be characterized also in terms of their zeros:
0! has double zeros at — 1, 1
02 has simple zeros at — 1,1 double zero at °°
<f>3 has a quadruple zero at oo
We shall now consider a fundamental region for a discrete group acting on the unit

disk such that its quotient is isomorphic to the curve above.
The angles at each vertex are equal to 2n/5, the identifications of the sides are shown

in the list above and each equilateral triangle has angles TZ/5. The rotation v of order 10
with center 0 takes each triangle to its adjacent one and belongs to the normalizer of the
group A generated by the side identifications.

Let y be the geodesic that goes from the middle of side 1 to the middle of side 6. We
consider the quadratic differential given by the Petersson series 6y.

The automorphism v acts on 6y generating the differentials

v*(0r) = 0V(V)) v*(evr) = e<Ky), v*(eV2y) = ev,y, v*(e^r) = e^

and

o*,= ey (ioiey = e.y).

We would like to consider the dimension of the subspace generated by

{6y, 6Vy, d^y, d^
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196 GONZALO RIERA

over R. Since v is an automorphism over C and this space is closed under v, its dimension
is even, that is it is either 2 or 4.

To prove that it is actually 4 it is enough to prove that three of them are linearly
independent and to that effect we compute the skew-symmetric products in this subspace.

n 4n
[0y, dvy] = cos-= - c o s y =

V5

[0y,l

[ey,i

2;r - 1 + V5
| = COSy = -

3n
| = cos —= -cos — =

= cos y =

2n_ 1 -V5
5 "

- 1 - V 5

where we used the formula

Suppose we have a linear relation

pea/3

= 0

with real numbers a, b, c. Taking the product with 6y, Byy, 9y2y gives

-a
V5

1 + V5 - 2 + V5
b—— + c = 0

4 4
1 + V5

+c—•— = 0

1-V5 , 1 + VS
a—• b—-— = 0

where we used the fact that the product is invariant by the action of v, so that, for
instance, [9vy, 8jy] = [dy, dvy].

If we take further the product with Q^sy we obtain

+ c = 0
4 4 ' " 4

From these equations it follows a = b = c = 0. The action of v is then necessarily

0 0 0 - 1

1 0 0 - 1

0 1 0 - 1

0 0 1 - 1
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RIEMANN SURFACES 197

in terms of the basis (9y, 9v 9^), as a vector space over R. (A matrix
0 0 0 a \
1 0 0
0 1 010c

\0 0 1 dl
of order 5 has the form above). Thus 9^y = -8y- 9vy - 9^y-
skew-symmetric product is:

The matrix for the

F =

0

An
cos —

In
-cos —

In
cos —

An
—cos —

0

An
cos —

In
-cos —

In
cos —

An
-cos —

0

An
cos —

-cos —

In
cos —

An
-cos —

0

We "diagonalize" the action of [v] over R using the matrix
. In In

sin — -cos —
. I n . A n I n An

sin — + sin— -cos —-cos —
.In In

sin — 1 + cos —
0 1 0

An
sin —

.In .
-sin — + sin —

An
sin —

An
-cos —

An In An
-cos — - cos —

An
1 + cos —

so that
In

cos —

. In
sm —

0

0

In
-sin —

cos —

0

0 0

0 0
An . An

cos — -sin —

An An
sin — cos —

J J

" 0 3-44 0 0 "
-3-44 0 0 0

0 0 0. 0-25
0 0 -0-25 0 .

Here Q.' denotes the transpose of the matrix Q. Therefore, if R is multiplication by i
in the original subspace,

0 1 0 0'

0 0 0 1
0 0 - 1 0
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198 GONZALO RIERA

for FR must be negative definite. Let (fi,/2,/3,^) be the canonical basis for these
matrices. In order that the action of Q-1/?Q corresponds to multiplication by i we must
make the correspondence

/i<-»(i,0), /2<-Kl,0), /3<->(0,0, /4<-K0,l)
Then

(Q"1 vQ)(/i) = cos —fi + sin —f2

corresponds to
In . In _7...i cos — + sin — = ie

that is

Therefore
^//•s . 2TT 1 In 4n\ In
i2(/i) = sin — Oy + I sin 1- sin — IQ^ + sin — o^y

5 \ 5 5 / 5

is a quadratic differential such that

and up to a constant multiple, can be identified with the differential <£i = —f\ y
y(x ~ 1)

In the same way

Q(/3) = sin — dy + f -sin — + sin — jOvy + sin — 9^y

satisfies v*(</>2) = £3(f>2-
To complete the basis over C, let a be the geodesic beginning along side 1 from B to

A and ending between the sides 8 and 9.
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The skew symmetric form is now given by

3n n 3n 3-V5
[0a, Qva] = COS — + COS - + COS — = "

n In n 1 + 3V5
[da, O^c] = cos - + cos — + cos - = — - —

An 3K An - 1 - 3 V 5
Wa, O^J = cos — + cos — + cos — = :

5 5 5 4

taking into account the intersections at the points A, O, B.
As before (6a, 6va, 6^a, O^) is a vector space of dimension four and v acts by the

same matrix in it. However we now obtain

' 0 4-76 0 0 '
-4-76 0 0 0

0 0 0 -2-38
0 0 2-38 0

In this subspace multiplication by i is now given by R where

0 1 0 0'
- 1 0 0 0

0 0 0 - 1
. 0 0 1 0.

and therefore

An I In An\ . An
Q(/3) = sin — 6a + I-sin-— + sin — \6va + sin —

satisfies v*(<£3) = £2<f>3.

The curve of genus 2 with a group G24. The Riemann surface whose algebraic
equation is

a6admits a group of automorphisms over C of order 24 generated by elements

\ y
,y) = \-,i—J of order 4.

A basis of quadratic differentials is

dx2 xdx2

- ~~r» 02 - ~,
y y

2jv2x2dx
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200 GONZALO RIERA

and it is immediate to obtain the action of the group in terms of this basis

[v6] =[ v ] = -
1
1

"o
0

.1

1 - 1
2 1

.1 2
o r
1 0
0 0_

1
- 4

4_

. b

The fact that [/x] has order 2 is due to the fact that fi2(x, y) = (x, - y) is the hyperelliptic
involution and therefore fixes all quadratic differentials. The group acting on Q(S) is not
of order 24 but 12 and is isomorphic to D6. A check of the character of this representation
against all known irreducible representations of D6 says that there must be a matrix Q
such that

1

0
0

- 1

0
0

0
£2

0

0
0

-r2

0
0

C
0 "

-c()
and indeed Q = works.- 1 2? 2{2

. 1 1 1 .
We shall then look on the upper-half plane for quadratic differentials on which the

group acts by these latter matrices.
We uniformize this Riemann surface by a considering a polygon of 12 sides as in

Figure 3 in the unit disk, whose sides are identified as shown. There are three cycles at the
boundary, proving that if A is the Fuchsian group generated by the corresponding
Moebius transformations, the quotient A/A has genus two. The polygon is divided into 48

9 B 10 A

Figure 3.
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RIEMANN SURFACES 201

triangles with angles n/6, n/4, nil. A pair of triangles, one shaded and one unshaded, is
the fundamental region for a triangle group N such that [Af:A] = 24; this group is
generated by v, ft as indicated in the figure, of orders 6 and 4 respectively. Thus N/A acts
on A/A as a finite group of automorphisms of order 24 and since (it can be shown that)
there is only one such surface in genus 2, it is the Riemann surface we are considering.

Let a be the geodesic from A to A passing through the fixed points of v, /A. The
skew-symmetric product, computed from the geometry of this fundamental polygon, gives
the values

[da,9vtta] = 0,

[Bva, dpc] = 0,

In In
„ 9VH.a] = cos — + cos — = - 1 ,

It follows that the vector space over R

is of dimension 4 and that the skew-symmetric form on it is

0
- 1

0

1
0
0

0
0
0

0
0

- 1

0 0 1 0.

The action of the generators of the automorphism group obtained is

[v] =

With the change of variables given by

D

0
1
0
0

0
0
1

0

i

- 1
- 1

0
0

0
0

- 1
- 1

D

0
0
0
1

1

0
0
0

"[

0
0

- 1
- 1 _

- 1 "
- 1

0

0_

V3/2

0
1/2]

1 J '
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202 GONZALO RIERA

we obtain
In

cos —
3

In
-sin —

3
In 3n

sm- cos

2n
cos —

In
sin —

0

. In
-s iny

2n
cos-—

0
0
0

0
0

- 1
0

-V3/2
0
0

1
0
0

0
- 1

0
V3/2

0

0
0

5

0
0

0
+V3/2

0
0

-V5/2
0

The only real matrix A ]/?A commuting with these and satisfying RF negative definite is
^0 - 1 0 0"

1 0 0 0
1 0 0 1

.0 0 - 1 0.
whence the complex structure is determined. It follows that {9a, 9^} is a vector space of
dimension two over C over which the group acts by the required matrices.

Thus, up to a constant factor,

e = ( - i + 2
 4 +2 2 *> —

dS y

We have yet to complete this basis to a three dimensional complex space, or, what is the
same, the first space to a six dimensional real space. Let /3 be the geodesic from sides 1 to
10. The sixth geodesic is harder to find and is as follows.

It is a simple closed geodesic and the skew symmetric form is now
0

- 1

0
0

-1/V2
0

l
0

0

0

0

0

0
0

0

1

1/V2
0

0
0

- 1

0

0

0

1/V2
0

-1/V2
0

0

- 2 cos 8

0
0

0

0

2cos0

0

Here 0 < 9 < — is the angle that )3 makes with e at the points of intersection. Hence

{6a, 9va, 9»a, #vMa» 0/3> #E} is a vector space of dimension 6 over R and it can be shown
that the group acts via - / in the last two factors. Thus {6a, 6va, 9p} is of dimension 3 over

https://doi.org/10.1017/S0017089500032079 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032079


RIEMANN SURFACES 203

C

Figure 4.

C and, up to a constant,

The Riemann surface with 168 automorphisms. Let us consider the group
PSL(2, Z) of integer matrices with determinant 1, modulo ±id, acting on the upper half
plane H in C via the formula

We use the notation T(p) to denote the set of all matrices congruent to the identity
modulo p, p prime, so that we have the exact sequence

where Fp denotes the field with p elements. The group F(p) acts discontinuously on H and
the quotient 5 can be compactified by adding the parabolic punctures; hence we have a
branched covering map

7 7 T I
Figure 5 modelled on Klein [1] (where — denotes compactification) making C into a
Riemann surface with Galois group PSL(2, FP) = G over Pv

Felix Klein considered this construction for p = 7 in [c.f. [1]] where he also built a
universal cover in the unit disk as a subgroup of a triangular group of type [2,3,7] whose
fundamental region we shall use in Figure 5.

The curve C has genus three and it is the only such curve admitting a maximal group
of automorphisms of order 168. Algebraically, the equation of the curve is

in complex projective space, and the generators of the group G represented as linear
automorphisms are

u o 0\
5 = 0 C 0 , I = exp(2;ri/7),

\0 0 C2I
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II

14

of order seven and

11-2.1-6.3-8.

T =

5-10.7-12.9-14. 13-4

Figure 5.

(°
\b
\c

b
c
a

with a = ( ^ 2 - r 2 ) / ^ r 7 » b = (t-r4)/"^^, c = (£ - r 1 ) / 1 ^ , of order two. See
Riera [3].

We determine first the action of the generators of the group on a basis of quadratic
differentials; these are

<Pi = x 2 Q 2 , cp2 = xyQ2, <p3 =

with Q = (x dy - y dx)/(y3 + 3z2x).
It is easy to see that S acts via the diagonal matrix [£2, £5, £, ^3, ^6, g4] with different

eigenvalues and that T acts via the symmetric product of T with itself.
Let a be the closed geodesic from side 4 to side 13 through the fixed points of order

two. We identify S with the rotation of order seven at the origin, and denote by A the
acute angle between a and S(a). The skew-symmetric product is given then on the real
vector space V = (6a, 9Sa, 9S2a, 9s>a, ds*a, 0s>*) by

9a • 0Sa = cos A,

6a . 6S2a = cos(;r - A) = -cos A,

6a

= cos A.

https://doi.org/10.1017/S0017089500032079 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032079


RIEMANN SURFACES 205

The matrix of this product on V is

0
- 1

1

0
0

l - l

1
0

- 1

1
0
0

- 1
1

0
- 1

1

0

0
- 1

1

0
- 1

1

0
0

- 1

1
0

- 1

1
0

0
- 1

1

Oj

. cos A,

which shows that dim,, V = 6. If V ¥- iV there would be a repeated eigenvalue under the
decomposition of 5; therefore V = iV(=RV) and the matrix on V of 5 is

0
1

0
0
0

o

0

0
1

0

0
0

0
0
0
1

0

0

0

0
0
0
1

0

0

0
0
0

0
1

-11
- 1

- 1

- 1

- 1

- l j

Let now /3 = TS3T(a), where we mean by 5 the rotation of order seven at the center
of the fundamental polygon and T the elliptic element of order two with fixed point at the
nearby point of the triangulation in Figure 4. The matrix of the intersection product on
W = (0p, 6sii, 6syp, 6S'p, 6ssp) is now

D =

0
1

0
1

- 1

0

- 1

0

1

0

1

- 1

0
- 1

0
1

0
1

- 1

0

- 1

0

1

0

1
- 1

0
- 1

0

1

o^
I

- l

0

- 1

cos A

so that d\mR W = 6 and also W = iW. S acts on W by the same matrix as in V.
If Q is the matrix that diagonalizes 5 over R, that is

In
cos —

/
. In

siny

cos —

. 6n
sm —

. In
-sin —

/
In

cos —

-siny

6ncosy

e

An
cos —

7

_siny

An
-sin —

7
Ancosy
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we obtain

H-:T

It follows that we can obtain theta series that are eigenfunctions for the eigenvalues
£, f2, r2, (\ C\ we have to find C1-

To this end, let y be the geodesic joining the vertex between sides 10 and 11 through
the center of the polygon to the opposite vertex between sides 3 and 4 and continuing as
side 1.

We compute in this case

2n n In
[6y, 0Sy] = cos — + cos - - cos —,

An n In
[6y, 0S2y] = cos — + cos - - cos —,

6n 3n
[6y, 053y] = cos — + cos — - cos

6n 3n 5n
— + cos — - cos —.

The intersection matrix E is determined and we obtain

where we have in the first summand the eigenvalue (~l.
In all we obtain

/ 2n\ ( In 4n\
0a + [1 + cos — J BSa + ^1 + cos — + cos — J 0S^

/ In 4n 6n\ ( In An\ In
- ^cos — + cos — + cos — j 0S)a - (̂ cos — + cos — J 0S'a - cos — 6ssa

as eigenfunction for 5 with eigenvalue £

4n\n I An 8n\
— jesp + (l + cos— + cos —jeS2Pcos

( An 8n 12n\ I An &n
- [COS — + COS — + COS —JOS3p - ĈOS — + COS —

An
- COS — 6ssp

for C\

6n\n / 6n 12n
O + (1 + +

/ 6n
[1 + cos -j

n / 6n\n / 6n
6e + [1 + cos -jjOsfi + (1 + cos — + cos

(sn \%n\n ( dn\n 6n
— + cos-z-J6s^- ^cos-j)es'p~cos —
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for £\

ea + [l + cos — JeSa + [i + cos— + cos

6n Yin \%n\ I 6n 12n\ 6/r
— + cos — + cos —)9&a ~ ^cos — + cos — J0s*a - cos — 6Sia

6a + [1 + COS — JeSa + ^1 + COS — + COS y

/ An 8n 12n\n ( 4n 8n\n 4n n

- (̂ cos — + cos — + cos — J 053a - ĵ cos — + cos y j 05<a - cos y ( 0ss

for ^5, and

0r + ( l + cos y j^sy + ( l + cos y + cos y W r

/ 2^ 4n- 6n-\ / 2n 4n\ In
- I COS — + COS — +COS— )Qsiy~ (COS — + COS— 1054,,-COS —

for £6.

The action of Klein's involution. Let T : S - » S be an anti-conformal involution. This
involution acts naturally on Petersson quadratic differentials by the formula

<ea) = eT(a).
If (0a>), 1 < ; < 6g - 6, is a basis of Q(S) over /?, the action of T is given by a real square
matrix B satisfying B2 = /. We will establish the main relations of this matrix with F, the
matrix of the skew-symmetric product, and with R, the matrix of multiplication by i in
Q(S).

First, since x reverses orientation we have as a direct consequence of the formula in
terms of the angles of intersection the relation

[6a, 90] = -[0T(a), #T(0)]
or, in terms of real matrices B'FB = —F. Consider as before a fixed point free Fuchsian
group T acting on the upper half plane H such that HIT = 5. The involution T lifts to an
anti-conformal involution in H and we may assume, modulo conjugation, that we have
T(Z) = -f. Then we have

Proof. Let us write xBr = B* for B in T.

0C(T(Z))= 2 wc(B(r(z))) B'(r(z))2

Be<C>\r

= 2 wc(T(fl
B*e<c')\r

But it is easy to see that
WC(T(Z)) = w<-(z)

Therefore

SMz))= 2 H>T(C)(
B*e<T(c))\r
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We now prove that

[e^a)jep] = -[ezm,iea]. (2)
Proof.

= - ^ 5 R e J 0T(a)(z)^(z) (Im z2)

where we used twice the formula (1) and the fact that dxdy changes sign under
= -Z .
Since in terms of a basis over R we have

6e-6

B(9a) = Qz(aj) = X bkjdak,
k = l

6g-6

the formula (2) gives the identity

B'FR = -(FR)'B = -R'FB.

But R'F is symmetric so that -FR = R'F. Also, since B'FB = - F , we have

(B'FB)BR = +.FRB,

Hence BR = -RB.
This proves the following

THEOREM 1. In terms of a basis of Q(T) over R the matrices of multiplication by i, of
the skew-symmetric product and of Klein's involution are given by a triple (R,F,B) such
that R2 = - / , F' = -F, B'FB = -F and BR = -RB.

It is to be observed that in terms of abelian varieties a similar construction of a
Jacobian of a Klein surface is obtained in Riera [4]. The difference is that in this case F
need not be an integral matrix.

An automorphism of a Klein surface is given by a conformal mapping a:S-*S
commuting with T. In terms of a basis over R of Q(S) it is given by a matrix A such that

AR = RA, A'FA = F, AB = BA.

We find these in the examples we already have.
1. In the case of genus two with an action of Z/5, the reflection T is the reflection on

the geodesic from the middle of side 1 to the middle of side 6.
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The matrix of T in the first subspace of dimension four spanned by 8y, 8vy,
6y3y

0v

D
D —

1
0
0

_0

- 1
- 1
- 1
- 1

we obtain

An
cos —

An
-s in —

0

0

-sin

-cos

0

0

0
0
0
1

An
5
An
5

0
0
1
0_

0

0

In
cos —

. In
sin —

0

0

. In
sin —

In
-cos —

and its properties are then easily checked.
2. For the curve of genus 2 with a group of automorphisms of order 24 the reflection

T is the reflection on the three geodesies from sides 12 to 3, 4 to 7 and 8 to 11.
In the vector space spanned by

8v a , 6VfJLa}

the matrix of T is

0
0
1
0

0
0
0
1

1
0
0
0

0
1

0
0

n

Since A 'fiA = B the properties
B'(A'FA)fl = -ATA, B2 = /,

fl(A"VA) = -(A~'flA)B are immediate.
3. For the surface of genus 3 with 168 automosphisms, let B be the reflection on the

geodesic from the vertex at sides 10 and 11, through the center to the vertex at
sides 3 and 4 and continuing as side 1. Since BSB = 5"1 and B is anti-linear over
C, B fixes the eigenfunctions and therefore the matrix over the reals has in each
eigenspace the form

o -
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