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Abstract

Members of an hierarchy of integrable nonlinear evolution equations, related to the well-
known linearizable diffusion equation which has the diffusivity form as the reciprocal of the
square of the concentration, are adapted to derive a new integrable nonlinear equation which
models the surface evolution of an arbitrarily-oriented theoretical anisotropic material by
the concomitant action of evaporation-condensation and surface diffusion. The constitutive
relations are explicitly formulated and these show that the theoretical anisotropic material
behaves like a liquid crystal. The integrable nonlinear equation may be used to advantage
as test cases for numerical schemes. Its form has many attributes of the nonlinear governing
equation for an isotropic material. Closed-form solutions are constructed for the evolution
of a ramped surface by concomitant evaporation-condensation and surface diffusion.

1. Introduction

Fundamental to the study of interfaces are the kinetics of morphological changes
due to capillarity. Although capillary driving forces appear rather insignificant, on a
sufficiently small scale they become dominant and play an important role in such
varied phenomena as the sintering of crystalline powders [21], coarsening and spher-
oidization of precipitate particles in alloys [16], the growth of grain boundary voids
during creep [61], the formation of "island" structures in thin films [57, 70], blunt-
ing of field-emission cathodes [56], faceting of high temperature catalysts [49], the
formation of cystallite catalysts [73] and the development of grooves when grain
boundaries meet a surface [1, 50]. For each of these, the interface will tend to assume
a configuration so as to reduce the surface energy to a minimum. For most solid
materials, and particularly crystalline materials, the surface tension, denoted y, varies
with orientation. If this variation is sufficiently marked, the equilibrium shape of
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[2] Surface redistribution due to capillarity 519

crystals will be polyhedral and planar surfaces of certain orientations may be unstable
with respect to the spontaneous decomposition into a surface composed of segments
of two or more orientations, even though this process involves a net increase in the
total surface area [2].

Relaxation of the surface may occur by a number of mechanisms, transport by
surface diffusion along the interface; transport by volume or bulk diffusion either
by defects in the solid or by solution in the fluid phase; transport by evaporation-
condensation in a single-component system and transport by plastic or viscous flow [46,
32].

Kuczynski [46] carried out pioneering work on sintering and determined growth
laws for the interface radius for each transport mechanism in the sintering of spheres to
a planar surface and deduced that surface diffusion is dominant for small particle size.
Further innovative work was carried out by Herring [33, 34] who outlined a general
procedure for calculating morphological change induced by capillarity and explicitly
related chemical potential and curvature for anisotropic y. For materials with isotropic
properties, Mullins, co-workers and others [29, 37, 40, 52, 55] have derived general
solutions for the Cauchy problem of describing the relaxation of a nearly-planar surface
for each of the transport processes. The problems were linearized by assuming the
slope was everywhere small and invariant forms were calculated that characterize the
profile for a point source, an antisymmetric and a symmetric scratch [55].

Brailsford and Gjostein [8] investigate the influence of surface-energy anisotropy
on morphological changes occurring by surface diffusion on simply-shaped bodies.
Approximate solutions describing the relaxation, from an assumed initial circle to
the final equilibrium shape are derived. Also, they determine the form of y for
stability. They discuss three spatial dimensions. Furthering work on anisotropic
materials, Bonzel and Preuss [5] and Bonzel et al. [6] consider evolution of periodic
profiles for a theoretical material which has cusp-like anisotropic surface tension. It
is shown that relatively-planar segments develop at the cusp orientation in agreement
with experiment (Preuss et al. [59]). The analysis was carried out by numerical
methods. Srolovitz and Safran [70, 71] consider capillary instabilities in thin films
and determine a critical radius below which holes contract.

Ghez [26], Davi and Gurtin [19] and Gurtin [30] have derived general balance
laws for non-stationary interfaces which may be in a state of non-equilibrium. These
results generalize the work of Herring [33, 34] which assumes near-equilibrium con-
ditions. Taylor et al. [74] give a review of mathematical methods for the treatment
of geometric models of interface motion. They compare the various methods and
discuss limitations. Additionally, there is a recent review of surface motion by surface
diffusion by Cahn and Taylor [15]. Geometry growth laws for morphological change
are developed from both a physical model and from gradient flows. A survey of
mathematical techniques is given.
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Here, we derive a new integrable nonlinear evolution equation which gives scope
to compose closed-form solutions for surface relaxation for a wider range of surface
slopes than presently available. Closed-form solutions are constructed for the redistri-
bution of an extended solid surface of a single-component system by the concomitant
action of evaporation-condensation and surface diffusion.

2. Preliminaries

Where we have only one material species present, the driving force of the evap-
oration-condensation and surface diffusion is due to capillary effects and to surface
tension anisotropy. After Mullins [55], the motion normal to the surface, dN/dt, with
only one non-zero principal curvature, K, is given by

(y(0) + %£
at \ J

tfl{A[( g>]} (1)
where p0 is the equilibrium vapor pressure over a flat surface, m is the mass of an atom,
k is Boltzmann's constant, T is the absolute temperature, £2 is the atomic volume,
a(0) is the condensation coefficient (< 1) which may be dependent on the orientation
0 [39, 33], y{6) is the surface tension dependent on the orientation, c0 is the number
of atoms per unit area in one monolayer, Ds (0) is the diffusivity, also dependent on the
orientation and s is arclength. The first term on the right-hand side is the contribution
from evaporation-condensation and the second term represents the surface diffusion
component.

In Cartesian coordinates, the evolution of the surface profile, denoted y(x, t), is

y, = (y(9) + ^f

where we assume the usual convention K > 0 when yxx < 0 and we choose 0 to be
the angle from the y axis to the normal of the surface, hence 6 = aictan(dy/dx).

For isotropic materials we have

= A y^ 9 f 1 3
y> ( l + 3 £ ) "dx

where A = po(2nm)-l/2(kT)-3/2Q2aoyo and B = Sl2c0D0y0/kT with a0, y0, Do

constants for the condensation coefficient, surface tension and surface diffusivity
respectively.
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There are no known analytic solutions for (3) (Cahn and Taylor [15], except if
evaporation-condensation only is operative, B = 0, then an explicit exact solution
exists for the development of a symmetric grain boundary groove (Broadbridge [11]).
Recently, some progress has been made toward describing the effect of the nonlinearity
of (3). The smoothing properties when B = 0 have been investigated rigorously by
Kitada [41, 43] and by Kitada and Umehara [42]. The existence and uniqueness of
solution have been proved for the evolution, due to surface diffusion, of a convex
interface that appears stationary to an observer moving with uniform translational
velocity (Davi and Gurtin [19]) and for the boundary value problem of the development
of a symmetric grain boundary groove (Bouchiba [7]).

Most applications to boundary value problems assume the surface slope is every-
where small, |y^| <K 1, then use the linearized equation

y, = Ayxx - Byxxxx. (4)

For example surface redistribution due to capillarity (Mullins [52], King and Mullins
[40], Jones et al. [37], Gruber and Mullins [29], the development of grain boundary
grooves, (Mullins [50, 51]; Srinivasan and Trivedi [69], Hackney and Ojard [31],
Ratke and Vogel [60], G6nin et al. [25], Vogel and Ratke [77]) and linear facet growth
(Mullins [54]).

The linearized form (4) has failed to show some important effects of the nonlinear-
ity. For a symmetric grain boundary groove evolving by surface diffusion only, the
linear model predicts an infinite groove growth rate for a grain boundary groove with
a zero dihedral angle. However, Broadbridge and Tritscher [14] show that a finite
groove growth rate exists. Also, for a symmetric grain boundary groove evolving
by evaporation-condensation only, the groove depth has a log growth rate as a func-
tion of the dihedral angle whereas the linearized equation has a linear growth rate
(Karciga, [38]). Another failing, in relation to surface redistribution by surface dif-
fusion only, is that the nonlinear equation amplifies the long wavelength "beating" of
two closely-spaced short-wavelength perturbations whereas the linearized equation
doesn't show this (Coleman et al. [18]).

We note that the linearized equation (4) is an integrable form of the governing
equation (2) for a class of theoretical anisotropic materials which have constitutive
relations evaporation coefficient,

a(9)=ao(l+y2
xy

1'2

= a0cos9, (5)

surface diffusivity,

D5{6) = A,(i + y2
xr

i/2

= Dosec0, (6)
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and surface tension,

= Yo((

Peter Tritscher

i cos 9 + C2 sin 9 -\— sec 9
) •

[5]

i, C2 arbitrary constants). (7)

Equation (7) is the general solution of the Herring equation [33]

y(9) = Yo s e ° 3

In Appendix A, we show, using Herring's "tangent sphere" criterion [33], that this
class of theoretical materials are stable with respect to the formation of an undulated
structure or facets. This implies that their behavior is like a liquid crystal (Herring
[33, 34]). Polar graphs of these relations are presented in Figure 1. These show that
isotropic materials are indeed modeled well if the slopes are relatively small, |>v| <
0.6 (\9\ < 0.5 rad), which confirms what has been demonstrated by computation
(Robertson [62]) and experiment (Mullins and Shewmon [53], Hilliard et al. [36],
Gjostein [28]).

FIGURE 1. Polar graph of the constitutive relations (5)-<7) for the class of materials modeled by the
linear equation (4),
— — — — — normalized evaporation coefficient, or/ao;

normalized surface diffusivity, D/Do;
_ . _ . _ . _ normalized surface tension, y/yo, with C\ = 1/2 and C2 = 0.
For comparison purposes, the circular section represents an isotropic material.
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3. An integrable hierarchy of nonlinear evolution equations

There exists another integrable form of governing equation (2) which models the
nonlinearity of the equation for isotropic materials (3). It is suitable for test cases for
numerical schemes and for a qualitative description of the evolution of the surface
even when the surface slope is large.

Integrable partial differential equations which possess an infinite chain of Lie-
Backlund symmetries of arbitrarily high order are, in practice, transformable to linear
equations, either directly by a change of variables, or indirectly by the inverse-
scattering transform (Fokas [22], Bluman and Kumei [4], Mikhailov et al. [48],
Broadbridge and Godfrey [12]). If A is a symmetry recursion operator for the class
of evolution equation

u, = K{t,x,u,ux, ... ,un), (8)

where M; = dJu(x, t)/dxj, then we may construct a hierarchy of evolution equations

u, = A'K, i = 0 , l , . . . (9)

each of which preserves the flow of (8) (Olver [58]).
We consider an hierarchy of higher-order evolution equations related to the well-

known integrable nonlinear diffusion equation ([72, 23, 44, 45, 3, 63, 64, 35, 66, 67,
9, 68, 10, 13])

e, = —t©"2©,]. (io)

Equation (10) has Lie-Backlund symmetries (Bluman and Kumei [3]), in infinitesimal
form

where A is the symmetry recursion operator

A = £° 0 "' / " (12)

The hierarchy of evolution equations has the form

"'~ dx

_j|7[@-20J forn = 0,

(13)
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Equation (10) transforms directly to the linear diffusion equation. One choice of
linearizing transformation is a form of hodograph transformation (Clarkson et al.
[17], Galaktionov e/a/. [24])

e = (uzy\ x = u{x,z), t = x. (14)

Applying the chain rule when differentiating (14b) by x and by t, we derive respect-
ively

— = (MZ)~' and — = uT(uz)~
l.

ox at
The chain rule then yields

d , d 3 d ,3

Substituting (14a) into (15) provides

3* v"" dz2

and

3 0 , ._, d2u , .

3© ,32M , ,32M

Finally, substituting (15a), (16)-(17) into (10) gives the desired result

-K71 A(Mt(«zr') = -«r'^(«rl M«)
= » Mr = Uzz.

Subsequently, the infinity of flows (13) which preserve the flow of (10) ensure that
the higher-order nonlinear evolution equations (13) transform to linear equations.

Not only are each of the members of the hierarchy (13) linearizable, we also have
the surprising result that any linear combination of the members of the hierarchy are
linearizable!

PROPOSITION 1 (Rogers [65]). The nonlinear equation

e, = ?oW-[e-26I] + ̂ , ( ( ) - o e - 1 - o[0-3©x],

where qt are arbitrary functions of t, is linearized by the transformation (14).
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PROOF. Substituting (15a), (16M17) into (18) and noting that 0 = (uz)~
l implies

) ) ,
d'

and the linear equation

follows.
,=0

Various members of (18) have been applied to surface redistribution previously. A
form of the n = 0 member was used to model the evolution of an initialy ramped
surface by evaporation-condensation (Broadbridge [11]). The n = 2 member was
used for the qualitative and quantitative description of the development of a symmetric
grain boundary groove by surface diffusion for an isotropic material (Broadbridge and
Tritscher [14], Tritscher and Broadbridge [76]).

However, if we choose the members i — 0, 2 with qo(t) = Aaoyo and q2(t) =
—BDoyo, where a0, Do and y0 are weights for the evaporation coefficient, surface
diffusivity, and surface tension respectively, an integrable governing equation which
has a form similar to (3) is created whereby we incorporate concomitant evaporation-
condensation and surface diffusion. In terms of the potential y = a f* ©dx -
bx, (a,b constants), this equation is

y, = A
(b + yxy

We have as constitutive relations:
evaporation coefficient,

a(0) = ob-

surface diffusivity,

and surface tension,

yx)
= oe0

cos(0 - arccot b), ....
(20)

( '
— arccot b)

+C2 sin(0 — arccot b) + - sec(9 — arccot b)
) • (22)
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where C\, C2 are arbitrary constants. Equation (22) is the general solution of

So, surprisingly, the nonlinear equation (19) models the same class of theoretical
materials as the linear equation (4)! However, we now have the freedom to arbitrarily
orient the anisotropic material.

The linear equation satisfactorily modeled isotropic materials provided the surface
inclination varied by less than approximately n/4 rad about the line y = 0. Since the
nonlinear equation represents the same class of materials as the linear equation but with
an arbitrary orientation, then we may model isotropic materials where the inclination
varies by approximately n/4 rad about an arbitrary line. Here we apply the nonlinear
equation (19) to the evolution of an initially-ramped surface by the concomitant
action of evaporation-condensation and surface diffusion. Also, a comparison with a
numerical solution for an isotropic material is made.

4. Evolution of a ramped surface

We consider the evolution of an extended surface that is ramped with an arbitrary
inclination * and rise of 2h. By an appropriate choice of axes, the initial value
problem may be formulated with the initial condition

\mx for 0 < x < h/m,
y(x,0)=\ (23)

In for x > n/m,

where m = tan*. By symmetry we only consider the region x > 0. The anti-
symmetric initial condition implies that, at x — 0, the curvature and velocity vanish
so that

^ = 0 at * = 0 for n = 0, 1. (24)
dx2"

At early time surface diffusion is dominant [32], so a convenient scaling [19] is

y* = h-xy, x* = h~lx, and t* = h-4D0y0Bt. (25)

Equation (19) transforms to

https://doi.org/10.1017/S0334270000000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000849


[10] Surface redistribution due to capillarity 527

where v* = VCIQDQX with v = h2A/B being the dimensionless ratio of the object
length to the diffusive length. We have initial condition

y*(x*,O) = \ ~ ' (27)
[l for x* > 1/m

and at the origin

— ^ - = 0 at x* = 0 for n = 0, 1. (28)

Though the hodograph transformation (14) gives a means of transforming (26)
to linear form, a linearization procedure derived by Knight [44], who modified a
transformation of Storm [72], is more convenient for the boundary conditions. The
problem is linearized by

y;.r
1-a/b, (29)

x= I (n + a/byldx\ (30)
Jo

x = t*. (31)

In Appendix B, we derive the canonical form

The initial condition remains linear. At t* = 0

I a-\m + b)x* for 0 < x* < 1/m,
a~l{l+b)x* for x* > 1/m.

Inverting (33) and noting that dx*/d\ = V + a/b, the initial condition transforms to

0) = ( a m b & + m)~' for °^X < & + m)/(am),
' ~ JO f o r x">(b + ) / ( )

| ^ = 0 , for n = l ,3 . (35)
dx

n
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Employing the Fourier cosine transformation, we derive the solution

s (36)(
Jo \ am

for r). Inverting (29)-(31) and a change of parameterization yields a solution

v* = I a(n + a/b) —bdx*
Jo

= ax -b rj+a
Jo

[°° _2 _U<+V.S2)T . /(b + m) \ .
/ s Le {s +v s )x sin s si

Jo \ am J

2am [ _2 _U<+V.S2)T . /(b + m) \ .
/ L {s +v s )x s sin (xs) dsJ

2r.l/4 p ^ . ^ ^ ^ ( t e ) ^ . ( * \ . ( 4> \
s e s i n (7^) s i n ^V^' (37)

b bm

and

r*. (39)
am

By a Cauchy product of the appropriate two series, we may express (37) in series form
as

n=0

This series is absolutely convergent for <j> e 3t and r* € SR — {0} [75].
We note that the case where a, b —*• oo, with the weights a0, Do, and y0 ad-

justed accordingly, yields the solution when the small-slope approximation is as-
sumed (Mullins [55]). For comparison and entirety, we present the solution when
evaporation-condensation only is operative, 6 = 0 , (Broadbridge [11])

v* = !(«+ l)erf 1]) - \U ~

^ (42)
bm
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and

h 2a0y0At =
am

\2

)
T . (43)

Graphical presentation of the solution for the cases evaporation-condensation only,
surface diffusion only and concomitant evaporation-condensation and surface diffu-
sion with va0DQl(b + m)2{am)~2 = 1 are shown in Figure 2. We also display, in
Figure 3, the graph of scaled slope at the origin versus scaled time. For conciseness,
the surface profiles and scaled slope are shown in the parameter space (r*, <}>, y*).
However, the graphs show actual profiles and slopes if we assume the small slope
approximation, a, b —> oo.

2 3 4 5
scaled width (•)

FIGURE 2. Graph of scaled height y* versus scaled width <f> = bm(b + m)~\x* + y'b~l) for (a)
evaporation-condensation only, (b) surface diffusion only and (c) concomitant evaporation-condensation
and surface diffusion with
VOCODQ1 (b + m)2(am)-2 = 1.

Tf=0; —) 1—rf =0.00311;
= 0.579; - 6 — A - rf = 2.39.

= 0.0372; =0.149;

rf is scaled time, rf = (am)2{b + m)~2aoyoh~2At for evaporation-condensation, or r f = (amf(b +
m)~4Do9oh~4Bt for surface diffusion or concomitant evaporation-condensation and surface diffusion.

There are some distinctive differences in the surface profiles among the modes
of surface redistribution. These are that the surface height has no local maxima
when evaporation-condensation only is operative, whereas for surface diffusion the
surface height exhibits local maxima for which the predominant one approaches a
dimensionless height, y*, of 1.104 in the limit as time approaches infinity. For con-
comitant evaporation-condensation and surface diffusion the surface height reaches a
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t

1,0.6 •
o

M Q . 4 -

o . o -
10 1 0 ' 1 0 . 1 0 '

scaled time (x)
10

FIGURE 3. Graph of scaled slope at origin ^ ( 0 , r*) = m-l(b+m)y*.(0, z*){b + y*.(,0, z*))~l versus
scaled time z* = (am)4(fc + m)-4D0y0h"'Bt.

vf = 0 (surface diffusion only); —I 1— vf = 0.25; —* x— vf = 1;
—* *—yt=4; — • • — 1 ^ = 32; - £ A -v f = 128.
uf is a compound parameter, uf = wd0D^'(am)"2(i + m)2.

global maximum, which is less than 1.104, with the limiting profile approaching the
profile of evaporation-condensation only. We show the derivation of these limits in
Appendix C.

Implicit in the graph of the scaled slope at the origin, Figure 3, is that, if surface
diffusion is present, the profile for some initial inclinations will develop a vertical
tangent at the origin. The scaled slope y^(0, r*) shows a maximum of 1.104. From
(37H39),

3>;.(0, r*) = by;(0, r*)(b/m + 1 - y;(0, r ' ))-1 .

This implies that a vertical tangent may develop if m > 6/0.104. If the initial
inclination is large and we wish to approximate an isotropic material, then b ~ 1 (see
Section 5), hence a vertical tangent may develop if m > 10 which corresponds to an
initial inclination of * > 84°. If b -*• oo, which is the solution when the small slope
approximation is assumed, then no vertical tangent develops.

5. Comparison with a numerical solution for an isotropic material

A numerical solution for the evolution of a ramp for an isotropic material is given
in Lee [47]. The method of lines with a stiff ordinary differential equation solver was
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[ 14] Surface redistribution due to capillarity 531

employed and the fidelity of the method was verified by applying the scheme to the
theoretical anisotropic material.

We make our comparison using a ramp initially inclined at 7r/4 rad. This is chosen,
not because we felt that this was the limit for which our theoretical anisotropic material
would give a reasonable approximation for an isotropic material, but rather, it was
imposed by instability in the numerical scheme. In the calculation for the theoretical
anisotropic material, we choose the following values for the scales and parameters in
the constitutive relations (20)-(22): a0 = a/{\ + b2)~i/2; Do = 1; y0 = (1 + b2)/a2;
C, = (1 + b2)/(2a2); C2 = 0 and a = b = cot(7r/8). The relations are explicitly
presented below:
evaporation coefficient (< 1),

a(6>) = ar0cos(6>-7r/8), (44)

surface diffusivity,

Ds(0) = Do cos(;r/8) sec(<9 - TT/8), (45)

and surface tension,

y(0) = j {sec(?r/8) cos(6> - jr/8) + COS(TT/8) sec(6> - ;r/8)}, (46)

where we note that the surface tension satisfies the requirement of a minimum at
0 = 0.

This orients our theoretical material so that the line of symmetry is inclined at
0 = 7r/8. Over the range of inclinations spanned, these constitutive relations give
a relatively close representation for an isotropic material. A graphical presentation
of these relations, compared to the constitutive relations for an isotropic material,
is shown in Figure 4. Near the extremes of inclination, the surface diffusivity and
surface tension agree. The restriction that the evaporation coefficient be less than or
equal to one, necessitates a small compromise however.

Graphs of the surface profiles, and the inclination at the origin versus dimensionless
time, for an isotropic material and our theoretical anisotropic material are shown in
Figures 5 and 6 respectively. Displayed are the profiles for evaporation-condensation
only, surface diffusion only and concomitant evaporation-condensation and surface
diffusion with v = 1. The inclination at the origin is calculated for a range of values
of v from 0 (surface diffusion only) to 16 (evaporation-condensation dominant). We
comment that the profiles are remarkably close! The maximum absolute difference in
any of the profiles is a mere 0.015 dimensionless units.
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1 .

FIGURE 4. Polar graph of the constitutive relations (44)-(46).
— — — normalized evaporation coefficient, ar/ao;

normalized surface diffusivity, D/Do;
_ . _ . _ . _ normalized surface tension, y/yo-
For comparison purposes, the circular section represents an isotropic material.

6. Conclusions

We have derived a new integrable nonlinear equation which models the surface
evolution of an arbitrarily-oriented theoretical anisotropic material by the concomitant
action of evaporation-condensation and surface diffusion. This theoretical anisotropic
material behaves like a liquid crystal and shares the same constitutive relations as those
of the constant coefficient linear equation used in the small slope approximation for
isotropic materials. The integrable nonlinear equation may be used to advantage
as test cases for numerical schemes. Its form has many attributes of the nonlinear
governing equation for an isotropic material.

Closed-form solutions are constructed, where the theoretical anisotropic material
may be arbitrarily oriented, for the evolution of a ramped surface by concomitant
evaporation-condensation and surface diffusion. The solution for the ramped surface
showed, unlike the solution when the small slope approximation is assumed, that
a vertical tangent may develop for the case where the initial inclination is large
(> 84°). We have given a solution for a specific initial condition. However, surface
redistribution for a general antisymmetric initial condition, such that the initial surface
inclination deviates by no more than it/A rad about the line of symmetry of the
theoretical anisotropic material, may be accommodated.

https://doi.org/10.1017/S0334270000000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000849


[16] Surface redistribution due to capillarity 533

FIGURE 5. Surface profiles for (a) evaporation-condensation only, (b) surface diffusion only and (c)
concomitant evaporation-condensation and surface diffusion with v = 1. The ramp is initialy inclined at
7r/4 rad.

isotropic material; — — - theoretical anisotropic material; Dimensionless
times from left to right t1 = 0, 0.005, 0.061, 0.242, 0.970, 3.88. ff = h~2At for evaporation-
condensation, or ft = h~*Bt for surface diffusion or concomitant evaporation-condensation and surface
diffusion.

It was stated earlier that the transport modes evaporation-condensation and surface
diffusion yield opposing groove growth rates in the development of grain boundary
grooves. Karciga [38] has shown that the transport mode evaporation-condensation
only has an unbounded groove growth rate for a groove with a zero dihedral angle, but
the the groove growth rate is finite for a groove developing by surface diffusion only.
Hence, the question of whether a finite groove growth rate exists by the concomitant
action of evaporation-condensation and surface diffusion. Physically, a finite growth
rate is suspected to be the case, as evaporation may be ignored near the root of the
groove where the opposite walls are only a few atomic diameters apart. However, our
new governing equation appears to be unable to assist in the resolution of this problem
because of a nonlinearity of the flux gradient at the origin. In principle, a solution
may be constructed if we specify the form of the flux gradient at the origin, however,
this forces the form of the flux at the origin, which doesn't suit our purposes.
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Appendix A

We show that the class of theoretical anisotropic materials modeled by the linearized
equation (4) are stable with respect to the formation of an undulated structure or facets.
The stability is readily confirmed using the "tangent sphere" criterion by Herring [33],
which states that the surface with orientation in the neighborhood of the point (P,9P)
on the y-plot is stable if, and only if, the y-plot nowhere passes inside the sphere
drawn tangent to (P, 0P) and through the origin. For our purposes, only a planar
section through the y-plot, called a jvplot [55], need be considered, so Herring's
condition simplifies to the construction of a tangent circle at (P, 9P) of the y2-plot.

We follow the notation given by Gjostein [27]. The equation of a circle, given in
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polar coordinates (R,0), which passes through the origin is

/i (Al)

where h, k are the x and y coordinates of the center of the circle. The requirement
that the circle is tangent to the y2-plot at the point (P, 0P) leads to

y(0P) = R(0P) = 2(h sin0P + kcosOP)
dy dR

and —(Op) = —(Op) = 2(hcosOP — &sin0/>).
dO dO

Solving for h, k yields

1 / dy \
h = - I y(0P) sin0p H (0P) cosOP I , (A2)

2 \ dO J

(A3)

From (7), the surface tension and torque at (P, 0P) is given by

y (Op) = y0 ( C, cos Op + C2 sin 0P + - sec 0P J (A4)

dy ( 1 \
and -j- (0P) = y0 - C , sin 0P + C2 cos 0P + - sec 0,. tan 0,. I.

dO V 2 / , . r .x y (A5)

Substituting (A2)-(A5) into (Al) yields the equation

( 1 1 2 \
/?(0) = y0 Ci cos 0 + C? sin0 + tan0P sin0 H— cos0 tan 0P COS0 I (Ao)

V 2 2 ;
of the tangent circle. We show that R(0) < y(0). By symmetry we need only consider
0 e (—n/2, it 12). Comparing (7) and (A6), it is sufficient to show that

2 tan Op sin 0 cos 0 + (1 - tan2 0P) cos2 0 < 1. (A7)
Equation (A7) implies

tan0P sin(20) + - (l - tan2 0P) (cos(20) + 1)

= tan Op sin(20) + - (l - tan2 0P) cos(20) + - - - tan2 0P

T 1 2 1 1 / 2 1 1
= tan2 0P + - (1 - tan2 0P) cos(20 - 20P) -\ tan2 0P

L 4 J 2 2
= - (1 + tan2 Op) cos(20 - 20P) + - - - tan2 0P

< 1, (A8)

because cos(20 — 20,.) < 1. This completes the proof.
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Appendix B

We detail the transformation of the nonlinear equation (26) to the linear canonical
form (32). Equation (26) may be expressed as

0,. - -g, (Bl,

where

dy*
0 = — (B2)

dx*

and

„ a2 a 9
~v b + @ b + e d *

Hence

= v*a(n + a/b) - a(r, + a/b)-^ [(IJ + a/b)r,x.] (B3)

By (29). From (30),

-JL = (r,+a/b)-1-?-, (B4)

so (B3) transforms to

J = v*a(r)+a/b)-ar)xx. (B5)

O J , / v

— = -a{t, + a/by1 (r,xxx - v*nx) (B6)

and finally

a2/ _
^ j =-air, + a/b) [r,xxxx - (r, + a/b) r,xr,xxx

-r)xx + V{r,+a/b)-\r,x)
2]. (B7)

Next, we transform the left-hand side of (Bl). By (29),

©,. = -a(T,+a/by2r,,- (B8)
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and

-i r'a©
= r)T + a r)x I — t

Jo ot
from (29M3O)

dJ

= r,T - (r, + a/brlnx {r}xxx -v*r,x) by (B6), (B9)

where we note that, from the initial condition, the velocity at the origin vanishes

dJ

x'=0 dt*
= 0. (BIO)

* • = < )

Substituting (B7), and the resultant of (B9), (B8), into (B1) yields the linear canonical
form (32).

Appendix C

When surface diffusion only is operative, we show that, as time approaches infinity,
the dimensionless rise approaches 2.209, whereas, if evaporation-condensation is
present, the dimensionless rise approaches 2. We first consider the case of surface
diffusion only, A = 0.

lim y* = lim / s~2e~s" sin (—— ) sin I——s) ds, from (37),
r._oo r*->oo n Jo Vr*'/4/ \r*l / 4 /

2 [°° _, _s> ,. r*l/4 . ( s \ .
= — I s e lim sin I I sin (9s) ds,

n Jo *'-*<*> s \r*'/4/

= - / s~xe~s sin(O5) ds, (Cl)
n Jo

where <I> = </>T* I / 4 is finite. The function (Cl) has the form of the self similar
solution for the development of the ramp modeled by the linear equation (4) when
m —> oo (Mullins [55]). The graph exhibits a global maximum of 1.1044 to yield a
dimensionless rise of 2.209.
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Now consider when evaporation-condensation is present.

lim y* = lim —— / s-2e-s'-vW"V s in (_L-\ s in (-^-s] ds from (37)

= lim - rM-Vr-l^«4-'t*<2' '2^sinf^i>)sin(cD^) du

= erf ( i ^ - 1 ^ * / ^ ) < 1 from [20], (C2)

where <I>* = 0r*~1/2 is finite. Hence, when evaporation-condensation is present, the
dimensionless rise approaches 2. We comment that like the surface-diffusion only
case, the function (C2) has the form of the self-similar solution for the development
of the ramp modeled by the linear equation (4) when evaporation-condensation only
is operative and m —> oo (Mullins [55]).
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