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DRIVING FROM DEGENERACY
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Abstract

A method is proposed for driving degenerate feasible solutions to linear programming problems
away from essential degeneracy and in particular for identifying essentially degenerate optimal
solutions. An essentially degenerate cycling example is also given, so answering a question raised
earlier.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 90 C 05, 90 C 06,
65 K 05.

1. Introduction

In this paper a method is proposed for driving an essentially degenerate op-
timal solution of a linear programming problem towards a basis where the
optimal nature of the solution can be recognised. The method appears to
be effective too in driving a non-optimal feasible solution away from essen-
tial degeneracy. An example is also provided of a problem with essential
degeneracy which can cycle, so answering a question raised in Cameron [2];
however the 'driving method' forces out the essential degeneracy from that
problem and so avoids cycling.

In Cameron [2] the lexicographic refinement is mentioned as a technique
which can be used to guarantee no cycling when at an essentially degenerate
iteration. Ryan and Osborne [6] apply instead Wolfe's ad hoc refinement
(see Wolfe [7]), not just to prevent cycling but, at insignificant computational
cost, to improve performance when applying the simplex method to highly
degenerate problems. The interpretation of Wolfe's technique in terms of
finding directions of recession is well expounded in Osborne [5]. Fletcher [4]
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addresses the important question of how to deal confidently with degeneracy
in the practical computational setting where floating point (as opposed to
exact) arithmetic is used. Like Wolfe's method, Fletcher's method is recursive
and both methods deal locally with degeneracies as they arise, so either of
these methods may be more appropriate to use than the lexicographic method
in an essentially degenerate situation.

For notation used in this paper we refer to Cameron [2]. In particular, the
standard minimum LP problem has the form

min cTx subject to Ax = b and x > 0

and if B is a basis matrix such that B~xb > 0 then xB = B~xb, XF = 0 is
the corresponding basic solution. Furthermore, if tT = c%B~lA - cT then
t < 0 guarantees that the basic solution is optimal (the so-called test vector
end-criterion).

2. Cycling example

We look at an example, virtually identical with one due to H. W. Kuhn
which appeared in Balinski and Tucker [1], namely

min(-2xi - 3x2 + *3 + 12x4)

subject to - 2x\ - 9x2 + *i + 9x4 < 0,

x\ + 3x2 - X3 - 6x4 < 0,

2x\ + 3 J C 2 - X 3 - 12x4 < 2,

and x > 0.

After introducing slack variables, the initial tableau, essentially degenerate,
is

tT
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1
- 1
- 1
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- 12

1
0
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0

0
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0

0
0
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0

0
0
2

0

The conventional choice of largest t/ = ti gives the (2,2) pivot, as starred,
leading to the second tableau, also essentially degenerate, with only t\ = 1
positive and with first column (1 *, 1 / 3,1)T. If (against the lexicographic crite-
rion) we select the first entry as pivot, rather than the second, the next tableau
is similar to the first with positive h = 2 and U = 3. We pivot conventionally,
allowing X4 to become basic and the fourth tableau, similar to the second,
has ?3 = 1 with third column (1*, 1/3, l ) r . Pivoting as shown (this time, too
late, satisfying the lexicographic requirement) leads to a tableau with t$ = 2
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and t6 = 1, fifth column (-2,1/3,2)T and sixth column (-3,1/3% l ) r . If we
pivot, this time against convention, at the (2,6) entry we have for the sixth
tableau t<, = 1 and fifth column (1*, 1, l ) r . Pivoting as shown returns us to
the initial tableau and cycling has occurred.

3. Driving method

It is possible, as in Hoffman's example (see Dantzig [3]) to have an es-
sentially degenerate optimal solution which cycles without satisfying the test
vector end-criterion. Such a solution may be driven to a basis where / < 0
by selecting the entering variable JC/ so that, for some k where (B~lb)k = 0,
ti and (B~lA)ki are positive and

= max(B-lA)kl

From the updating formula

- t t,{B

we have /(l)y- < 0 whenever (B~lA)kj > 0. Furthermore, if f(l)y > 0 then
(B~lA)iCj < 0 so at the next stage (B(l)~1b)k = 0 is no longer essentially
degenerate.

This technique removes the cycling possibility in Hoffman's example. If
used on a non-optimal essentially degenerate tableau, then of course t(l)j > 0
for at least one j . Indeed applying the technique to Kuhn's example above,
since ti/(B~lA)2i = 2 > 1 = t2/(B~lA)22 the (2,1) entry in the initial tableau
is chosen. In the second tableau only t^ — 1 is positive, the third column
is ( - 1 , - 1 , l*)T so the situation is no longer essentially degenerate. Using
the unique pivot shown, the next tableau gives the (non-degenerate) optimal
solution, with basic variables x\ — 2 — JC3 = x^.

If instead Wolfe's method is used in Kuhn's example (with (0,0) perturbed
to (1,1) in the second tableau) six tableaux are needed to reach optimality,
while if Fletcher's method is used five tableaux are needed with eight level
changes, fourth level variables being reached.
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