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Abstract

The goals of this study are to analyse the impacts of 1.5 and 2.0°C scenarios on UK winter
wheat using a combination of Global Climate Models (GCMs), crop models, planting dates
and cultivars; to evaluate the impact of increased air temperature on winter wheat phenology
and potential yield; to quantify the underlying uncertainties due to the multiple sources of
variability introduced by climate scenarios, crop models and agronomic management. The
data used to calibrate and evaluate three crop models were obtained from a field experiment
with two irrigation amounts and two wheat cultivars that have different phenology and growth
habit. After calibration, the model was applied to fifty locations across the wheat-growing area
of the UK to cover all the main growing regions, with most points located in the main growing
areas. Four GCMs, with two cultivars and five planting dates, were simulated at the end of the
century. Results of this study showed that the UK potential wheat yield will increase by 2–8%
under projected climate. Farmers will need to close such a gap in the future because it will have
implications in terms of food security. Future climatic conditions might increase such a gap.
Adaptation measures (e.g. moving the optimal planting time), along with climate-ready varieties
bred for future conditions and with precision agriculture techniques can help to reduce this gap
and ensure that the future actual UK wheat production will be close to the potential.

Introduction

Wheat is among one of the largest cultivated crops worldwide, second, in millions of hectares
only to rice (FAOSTAT 2021). In the UK, wheat is the main cultivated arable crop, sown on
approx. 1.9 million hectares (UK Flour Millers, 2020). Most of the UK production is in the
eastern parts of England. The annual UK production averaged about 14 million tonnes over
a period of 10-years (2000–2019), with a variability of 11–16 million tonnes (UK Flour
Millers, 2020; FAOSTAT 2021).

The current climate patterns are causing gradual warming of Earth, with the last 5 years
(2015–2019) being among the world’s warmest while 9 out of 10 warmest years that have
been recorded since 2005 (NOAA 2020). The impacts of increased temperature on crop devel-
opment, yield and quality has been well documented (Porter and Gawith, 1999; Semenov,
2008; Ferrise et al., 2014; Semenov and Stratonovitch, 2014; Trnka et al., 2014; Asseng
et al., 2015, 2019). In a study where statistical and process-based models were compared, it
has been found that global wheat production will fall by 4–6% per °C of air temperature
increase (Liu et al., 2016). However, the impacts of increased air temperature will vary over
space and time (Asseng et al., 2015).

The temperature trend in the UK over the past 30 years (1989–2019) has shown unequivo-
cal warming with the top ten warmest years recorded since 1884 happening from 2002 (UK
Met Office, 2019). It has been found that the most recent decade (2009–2018) is about 1°C
warmer than the pre-industrial era (1850–1900) and agrees with findings observed at global
scale (UK Met Office, 2019). Future projections indicate that the UK temperatures will increase
with an uneven warming trend in summer and winter.

Global Climate Models (GCMs) have been used in many studies to quantify the impacts of
projected climate for a given crop (Asseng et al., 2013, 2015, 2019; Cammarano et al., 2019a,
2020; Müller et al., 2019; Ruane, 2021; Ruane et al., 2021). Given their coarse resolution, the
GCMs have been downscaled at finer scales before using them for any impact study on the
agricultural area. However, due to the different downscaling methods, the GCMs might
have biases in representing temperature extremes or rainfall patterns (Cammarano et al.,
2013; Harkness et al., 2020). Such a problem can be minimized by using an ensemble of
GCMs, because the uncertainty associated with the climate projection can be quantified
(Cammarano and Tian, 2018; Harkness et al., 2020).
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The impacts of climate on agricultural crops can be quantified
using crop growth models (CSM). Such models simulate the daily
growth, development and final yield as influenced by weather,
soil, crop and agronomic management (Jones et al., 2003).
Those models have been used to extrapolate the abovementioned
interactions beyond a single year and a single experimental site
(Basso et al., 2001, 2011; Cammarano et al., 2019a; Maestrini
and Basso, 2021). Potential yield is defined as the maximum
yield that can be obtained by a crop in a given environment
and determined using CSM with plausible physiological and agro-
nomic assumptions (Evans and Fischer, 1999). Potential yield is
mainly impacted by air temperature and atmospheric CO2 con-
centration and crop genetic. Therefore crop phenology, defined
as the timing of life cycle events (Ritchie, 1991), can be used as
a proxy for evaluating projected impacts of temperature changes
on crop development and potential yield (Asseng et al., 2011,
2015, 2017; Zhao et al., 2017).

Harkness et al. (2020) assessed ten weather indices using a
range of GCM ensemble and two greenhouse gas emissions
(RCP 4.5 and 8.5) on winter wheat in the UK. The authors
found that hotter and drier summers improve sowing and har-
vesting conditions. They also analysed the impact of rainfall and
found that wetter winter and spring could pose waterlogging pro-
blems (Harkness et al., 2020). But, drought stresses during the
reproductive phase will remain low by mid-century. The use of
multiple GCM was important for quantifying the uncertainty
between their projections and they found that such variation
was greater than between the two emissions scenarios
(Harkness et al., 2020). In another study, 27 crop models and
16 GCMs were used to quantify the main source of uncertainty
and crop models shared a greater amount of uncertainty than
the GCMs (Asseng et al., 2013). Cammarano and Tian (2018)
used both an ensemble of CSM and GCMs to quantify the
impacts of climate projection and extremes on wheat and maize
and on two contrasting soils. The authors calculated16 climate
indices finding that climate impacts differ depending on the soil
type and the growth stage at which extreme climate events hap-
pen. The use of a multi-CSM and -GCM ensemble has been
used to quantify the climate impacts on soil carbon and the
source of uncertainty (Asseng et al., 2013; Martre et al., 2015;
Wallach et al., 2021).

Another factor that might affect the simulated impacts of pro-
jected climate on crop yield using CSM is agronomic manage-
ment. The shifting of sowing date can be considered as an
agronomic adaptation measure that might help to offset the nega-
tive impact of climate change (Cammarano et al., 2019a;
Rodríguez et al., 2019; Ojeda et al., 2021). Semenov (2008)
using a climate model and a CSM to assess the impacts of climate
change on wheat production in England, found that heat stress
around flowering might cause considerable yield losses. Recent
studies highlighted how drought conditions during the growing
season and around flowering cause a projected decline in wheat
yield up to 20% of the potential yield levels in the UK and across
Europe (Clarke et al., 2021; Putelat et al., 2021; Senapati et al.,
2021).

To avoid the negative and irreversible impacts from global
temperatures, the Paris Agreement of 2015 stated that the
World needs to achieve a maximum of 2.0°C or an ambitious
1.5°C. Global wheat production can be significantly impacted
by raising the temperature (Asseng et al., 2013, 2015, 2019) but
quantifying such impacts on regional wheat production can
help to point out the local adaptation and related uncertainties.

An assessment of 1.5 and 2.0°C scenarios on UK winter wheat
using a combination of GCM and CSM, planting dates, and cul-
tivars is lacking. The goal of this study is to analyse all those fac-
tors together to evaluate the impact of increased air temperature
on winter wheat phenology and potential yield, and to quantify
the underlying uncertainties due to the multiple sources of vari-
ability introduced by climate scenarios, crop models and agro-
nomic management. Therefore, the objectives of this study are
to (i) evaluate the impacts of projected temperature by the differ-
ent GCMs and atmospheric CO2 concentration on winter wheat
phenology and potential yield; (ii) determine the main source
of uncertainty among the different factors.

Materials and methods

Observed data

The data used to calibrate and evaluate the crop models were
obtained from a field experiment with two irrigation treatments
and two wheat cultivars that have different phenology and growth
habit (Foulkes et al., 2001, 2002). The field experiments were
located at ADAS Gleadthorpe (53°13′N, 1°6′W) and were con-
ducted during three growing seasons: 1993–1996. The experimen-
tal design was a randomized block, split-plot experiment with two
irrigation treatments, full irrigation and no irrigation and six cul-
tivars. All the details of the experimental design are reported else-
where (Foulkes et al., 2001, 2002). Two cultivars were chosen for
calibration, Haven and Maris Huntsman. The former is a late-
developing, photoperiod sensitive cultivar. The latter is an old,
tall cultivar. They were chosen for the difference in their growth
and phenology response to environmental conditions. Sowing
dates, phenology, aboveground biomass and grain yield were pro-
vided for each growing season. The soil information available
from the experimental site (e.g. soil texture) were integrated
with the Land Information System soil data (Hallett et al.,
2017) purchased from the soil data’s portal.

The observed wheat data for wheat yield for the UK yield
(1984–2009), and the database with variety trials (2002–2009) results
were obtained from the Agriculture and Horticulture Development
Board (AHDB) and the Department for Environment, Food &
Rural Affairs (DEFRA), respectively (AHDB 2021; DEFRA 2021).

To simulate the impacts of temperature changes on wheat yield
fifty locations were selected across the wheat-growing area of the
UK to cover all the main growing regions, with most points
located in the main growing areas (Fig. 1). The soil and weather
information from these 50 locations across the UK were down-
loaded from the Land Information System soil data (Hallett
et al., 2017) and NASA AgMERRA for the baseline period
1980–2010 (Ruane et al., 2015), respectively. Daily incident
solar radiation (MJ/d/m2), maximum and minimum air tempera-
ture (°C) and precipitation (mm) were used as input to the crop
models. Soil texture (clay, silt, sand content), organic carbon (%),
pH, lower limit, drain upper limit and saturation were the soil
input for the model.

Crop modelling

The CSM used in this study were the CSM-CERES-Wheat (Ds),
the CSM-Nwheat (Nw) and the WheatGrow (Wg) (Cao and
Moss, 1997; Hoogenboom et al., 2019) and were selected because
of the different temperature response functions impacting devel-
opmental processes. These three CSM require a set of weather
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(e.g. daily air minimum and maximum temperature, solar radi-
ation, precipitation), soil (e.g. texture, bulk density, organic mat-
ter) and agronomic input data (e.g. planting date) for running.
In addition, they require observations, such as main phenological
events (flowering, maturity), grain yield to calibrate for a crop and
an independent dataset for evaluating the results of the
calibration.

The two cultivars, Maris Huntsman and Haven were calibrated
using the irrigated experiment described in the section above
(Foulkes et al., 2001, 2002). The main aim of the cultivars’ calibra-
tion was to parameterise the models’ for simulating the observed
phenology and yield levels and to adjust the growth and yield
parameters for simulating aboveground biomass and grain yield.

Since the main aim of this study was to simulate the impacts of
rising temperature on potential yield, the models were evaluated
on their ability to simulate values higher than the observed
yield as recorded in the reported databases. For simulating yield
potential, the models were set with optimal water and nitrogen
input so that that abiotic stresses were minimized. This procedure
has been used in other temperature-related modelling studies so
that other agronomic management practices such as fertilization
will not impact simulated yield (Asseng et al., 2015, 2019). In add-
ition, the effect of raised CO2 concentration is considered in the
CSMs routines as it is an input to the models and modifies several
processes. In Ds and Nw the elevated CO2 modifies the Radiation
Use Efficiency (RUE) and Transpiration Efficiency (TE), while in
Wg the elevated CO2 modifies leaf photosynthesis rate.

These three crop models have differences in their temperature
response functions for the different growth and development pro-
cesses (Fig. 2). Wang et al. (2017) described in details the differ-
ences and similarities among those temperature response
functions. These three models have been extensively compared
against datasets comprising wheat response to varying tempera-
tures (Asseng et al., 2015). The main difference among the models
is that Wg simulated photosynthesis and transpiration while Nw
and Ds use the concept of RUE to simulate the accumulation
aboveground biomass as a function of the intercepted radiation
(Monteith, 1972). Respiration is indirectly considered by using
only net photosynthesis in the RUE estimation. Nw simulated
the effects of heat stress on leaf senescence where the increase
in maximum air temperature causes a hastening in leaf senescence
(Asseng et al., 2011).

Long-term simulations

To set up the long-term simulations, the climate scenarios for 1.5
(CO2 concentration of 423 ppm) and 2.0°C (CO2 concentration of
487 ppm) above pre-industrial level was obtained from the Half a
degree Additional warming, Prognosis and Projected Impacts
project (HAPPI) (Mitchell et al., 2017). The time period for pro-
jected climate scenarios that were 1.5 and 2.0C warmer than the
pre-industrial level was 2106–2115. The baseline CO2 concentra-
tion for the 1980–2010 period was 360 ppm; the CO2 concentra-
tions correspond to the centre of 1980–2010 and the 1.5 and 2.0°

Fig. 1. Colour online. United Kingdom (UK) wheat-growing area
and points used in the simulation study.
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C global warming level as highlighted in Ruane et al. (2018a).
For each of the 50 weather stations, and for each scenario, the
daily climate data were generated using the pattern-scaling
approach employed and described in detail in other studies
(Ruane et al., 2015, 2018b). Four GCMs were used for each scen-
ario. The GCMs selected were the CanAM4, CAM4, MIROC5,
NorESM1-M. The reason for choosing those GCMs was because
they were used in a previous global study on wheat to quantify the
impacts of 1.5 and 2.0 C above pre-industrial warming where also
the same crop models were used (Liu et al., 2019).

The three crop models were run in a factorial combination,
with four GCMs used (CanAM4, CAM4, MIROC5 and
NorESM1); two CO2 concentrations (360 ppm and the respective
CO2 concentration of each climate scenario as reported above);
five planting dates (from Mid-Sep to Mid-Nov); and three scen-
arios (Baseline; 1.5 and 2.0°C). This combination was run for
the 50 locations and for 30 years of daily weather data, for a
total of 76 500 000 simulations. Since the target was the simula-
tion of potential yield the models were re-set every year and no
water or nitrogen stress was simulated.

Data analysis

The observed and simulated data were compared against two stat-
istical indices to evaluate how well the models performed. The
first index was the Root Mean Square Error (RMSE) and it was
calculated as follows:

RMSE =
�����������������∑

i=1 (Oi − Si)
2

n

√
(1)

Oi, Si, n were the observations, the simulations and the number
of comparisons, respectively. The other index was the Wilmott
index of agreement (D-Index), with values ranging between 0
(poor fit) and 1 (indicating a good fit). D-index values above

0.5 are to be considered acceptable. The D-Index expressed the
measure of the goodness of fit and has been used as a cross-
comparison method between models (Wilmott, 1982; Martre
et al., 2015; Cammarano et al., 2019b).

D = 1−
∑n

i=1 (Oi − Si)
2∑n

i=1 (|Oi − �O| + |Si − �O|)2
(2)

�O was the mean of the observed values. The relative change in
terms of yield, respect to the baseline was calculated as follows.

RC = S f ,i − Sb,i
Sb,i

× 100 (3)

Sf,i was the simulated (S) value as predicted by any combination of
factors ( f ) for given growing season i, and Sb,i was the baseline (b)
value simulated for the growing season i.

To compare uncertainty among crop and climate models the
approach described in Asseng et al. (2013). The coefficient of
variation (CV%) was used to represent the uncertainty between
a scenario of the A2 emission from 16 GCMs and 26 CSMs.
Each CSM simulated the 16 GCM impacts plus a baseline scen-
ario (1980–2010). Standard deviations were calculated for the
simulated absolute yield impact for each CSM and across the
GCMs. We also calculated the standard deviation across models
for each GCM, across GCM for each model and for the different
factors, the standard deviation was calculated across and for each
model. The CV% was calculated as follows:

CV% = s

�x
× 100 (4)

where σ is the standard deviation of simulated yield for the dif-
ferent factors and �x was the mean. All the Figures were made
using GGPLOT2 (Wickham, 2016).

Fig. 2. Temperature response functions for different simulated processes by the CSM-CERES-Wheat (Dc, red line), the CSM-Nwheat (Nw, green line) and the
WheatGrow (Wg, blue line).
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Results

The results of model calibration of the models are shown in Fig. 3.
Overall, the simulated data showed good agreement with the
observed data (Fig. 3). The simulated anthesis dates had an
RMSE of 10 days and a D-Index of 0.70, while maturity dates
had an RMSE of 4 days and a D-Index of 0.97. Aboveground bio-
mass and grain yield had an RMSE and D-Index of 199 and 133 g/
DM/m2 and 0.97 and 0.96, respectively (Fig. 3); the crop para-
meters for each of the models are presented in Supplementary
Table 1.

The evaluation of potential yield simulation showed that mod-
els were simulating yield values higher than the national UK
reported yields and the AHDB research trials (Fig. 4).

The results of the long-term simulations are shown in Fig. 5.
Overall, under baseline weather data the simulated potential
yield ranged from 10 000 to 14 500 kg/DM/ha with lower values
in the north and higher in the south (Fig. 5(a)). The standard
deviation of the simulations (size of the dots in Fig. 5) at each
point was due to the planting date, GCM, cultivar and the crop
model used (Fig. 5(a)) and it was about 1500 kg/DM/ha with
lower values in the south and higher in the north (Fig. 5(a)).
At 1.5C and 2.0°C the simulations considered where the ones

with the elevated CO2 concentration. Overall, the simulated
potential yield increased for all the locations with higher increase
in the south, but from 1.5 to 2.0°C the variability of the simula-
tions increased to about 2500 kg/DM/ha (Fig. 5(a)).

When the overall change was split among the different compo-
nents of the factorial simulations, the 2.0C scenario showed the
highest yield increase ranging from −1 to 10% (Fig. 6). Under
baseline CO2 concentrations, the future potential wheat yield is
projected to decrease between −1.6 and −1% under scenarios 1
and 2. However, the simulated impacts of increased CO2 caused
the simulated yield potential to increase 7–10% for scenarios 1
and 2, respectively (Fig. 6). Among the planting dates, later plant-
ing dates showed the highest yield increase with late-Oct/
Mid-Nov having a higher increase in potential yield. Among
the different GCM used there was a similar response under scen-
ario 1, but under scenario 2 the simulated impact on potential
wheat yield diverged. However, the simulated yield increase was
more divergent among the three crop models, regardless of the
scenario, the simulated yield increase ranging from 1.5 to 9%
(Fig. 6).

Simulated potential wheat yield for both cultivars plateaued
above 52°N and under baseline or future conditions. The simu-
lated potential yield was different among the two cultivars, with

Fig. 3. Calibration of the CSM-CERES-Wheat (Dc, dots), CSM-NWheat (Nw, diamonds) and WheatGrow (Wg, triangles) models for two wheat cultivars Haven (grey)
and Maris Huntsman (white) for (a) anthesis dates; (b) maturity dates; (c) aboveground biomass; and (d ) grain yield.
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Fig. 4. Patterns of simulations of potential wheat yield as simu-
lated, from 1984 to 2009, by the CSM-CERES-Wheat (Dc, stars
and dotted line), CSN-NWheat (Wg, cross and short dash line)
and WheatGrow (Wg, plus and long dot line). In addition,
observed data from the UK national statistics (grey triangles),
the AHDB research trials data (grey dots) are shown.

Fig. 5. Colour online. Simulated results as mean among two cultivars, four GCMs, five planting dates and three crop simulation models for (a) potential wheat yield;
(b) anthesis; and (c) maturity dates for baseline, 1.5°C (Scenario 1) and 2.0°C (Scenario 2). The dots represent the standard deviation of the averaged values. For 1.5°
C and 2.0°C conditions only the simulations with elevated CO2 concentrations were used.
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Haven (C1) showing the higher simulated potential yield. The
simulated anthesis dates linearly increased with the latitude, ran-
ging from about 230 days after planting at 50°N to about 260 days
after planting at 58°N (Supplementary Fig. 1). For the simulated
anthesis dates, the cultivar Haven (C1) showed a slightly higher
number of days from planting to anthesis because it has a higher
photoperiod sensitivity with similar vernalization parameters.
However, the simulated maturity date was similar among the
two cultivars.

The relationship between simulated potential grain yield and
mean growing season temperature is shown in Fig. 7. The
response of the simulated yield differs greatly among crop models,
with Ds showing distinct patterns for Haven and Maris
Huntsman across the five planting dates. However, all the models
agreed that the potential wheat yield shifts towards upper values
under Scenarios 1 and 2 (Fig. 7).

The daily maximum temperature between anthesis to maturity
does not reach values that will negatively hamper the grain-filling
period. For this study, across the 50 locations, the higher values of
daily maximum temperature were around 25°C and they were
reached under Scenario 2 (2.0C; Fig. 8). The relationship between
the anthesis date and the minimum temperature between sowing
to anthesis is shown in Fig. 9. The relationship between simulated
anthesis date and daily minimum temperature differs slightly
among the two cultivars, but there was less disagreement from
the CSM. For later sowing dates, the Wg model tends to simulate
anthesis dates that plateaued at about 3°C.

Most of the uncertainty that impacts the simulated yield comes
from the three crop simulation models, which had a coefficient of
variability of 8% for baseline, increasing to 11% for Scenario 2
(Fig. 10). The increase in CO2 concentration and the different cul-
tivars was also showing higher uncertainty but much lower than
the crop models. The GCM showed the least uncertainty with
values below 1% (Fig. 10).

Discussion

The three models were able to represent the observed crop traits.
The overestimation of anthesis date was mostly due to the Maris
Huntsman cultivar while Haven showed a closer fit between

observed and simulated data. However, the D-Index had values
higher than 0.5 below which the results of the calibration should
have been considered non-acceptable. Similar behaviour of spread
between a multi-model comparison with observed phenology and
yield were reported by Asseng et al. (2015).

The potential yield as defined by Evans and Fischer (1999) and
van Ittersum et al. (2003) can be calculated with CSMs or with a
simple but robust light-based approach (Monteith, 1972). The
CSM-CERES-Wheat model simulates the potential yield condi-
tions by disabling nitrogen and water simulated dynamics. In
this way, the model’s simulated yield was the only function of
the calibrated cultivars, the environmental conditions and the
atmospheric CO2. This simulated yield potential approach is simi-
lar to what is used in the modelling community (van Ittersum
et al., 2003). However, the Nw model had to apply ample water
and nitrogen in order to simulate potential yield which means
that their results can still be affected by water and nutrient
dynamics, like it could happen in field conditions. The results
of the yield gap between the simulated potential and the observed
UK wheat was about 25% for the DEFRA dataset and 45% for the
UK census data, which is in line with the 39% reported by
Senapati and Semenov (2019) in their study. The global wheat
yield projection of Ruane et al. (2018a) also showed an increase
of UK wheat yield but their results were based on generic wheat
calibrations following the approach of Elliott et al. (2015) while
in this study detailed crop physiological UK data were used to
calibrate three wheat models. However, the reported wheat yield
in both studies highlights an important point regarding the con-
sistency and robustness of the obtained results.

Results of the projected warming on phenology and yield agree
with the findings of Asseng et al. (2013) where crop models
diverged in simulating phenology and yield at higher air tempera-
tures. The simulated anthesis date for the baseline climate condi-
tions (1980–2010) was 260 days after planting and showed higher
simulated variability in the north than in the south in terms of
mean air temperature. However, under 1.5 and 2.0°C the variabil-
ity of the simulated anthesis decreased. This can be explained by
the different temperature response functions for the vegetative
stage of the different models. The temperature response function
for vernalization has different shapes among models (Fig. 2),

Fig. 6. Relative yield change, respect to the simulated
baseline (1980–2010), for scenario 1 (black dots corre-
sponding to 1.5°C) and scenario 2 (grey dots corre-
sponding to 2.0°C) of different planting dates (P1:
Mid-Sep; P2: Late-Sep; P3: Mid-Oct; P4: Late-Oct; P5:
Mid-Nov), CO2 concentrations (Ca: baseline CO2 concen-
tration of 360 ppm; C3: elevated CO2 concentration of
423 ppm for the climate scenario 1.5°C and 487 ppm
for the climate scenario 2.0°C), Global Climate Models
(G1: CanAM4; G2: CAM4; G3: MIROC5; G4: NorESM1-M),
wheat cultivars (C1: Haven; C2: Maris Huntsman) and
different crop simulation models (Ds:
CSM-CERES-Wheat; Nw: CMS-NWheat; Wg: WheatGrow).
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which means the number of days required to accumulate the ver-
nalization requirement varies among models. Under baseline con-
ditions, the air temperatures (2–5°C), especially in the northern
UK, means that the accumulation of vernalization requirement
varies among models because the slope and the cardinal

temperature is rather different among models (Fig. 2). Under
warming scenarios, the increase in air temperature causes the
reaching of optimal vernalization rates for all the crop models
(Fig. 2). This explains why under future conditions the variability
among models in the northern UK decreases. These results agree

Fig. 7. Colour online. Relationship between mean growing season temperature and simulated potential wheat yield for the cultivar Haven (HA, open dots) and
Maris Huntsman (MS, open squares) under baseline conditions (S0, black colour), 1.5°C (S1, red colour) and 2.0°C (S2, blue colour), for 5 different planting
dates (P1: Mid-Sep; P2: Late-Sep; P3: Mid-Oct; P4: Late-Oct; P5: Mid-Nov) and different crop simulation models (Ds: CSM-CERES-Wheat; Nw: CSM-NWheat; Wg:
WheatGrow).

Fig. 8. Colour online. Relationship between daily maximum temperature averaged from anthesis to maturity and simulated days from anthesis to maturity for the
cultivar Haven (HA, open dots) and Maris Huntsman (MS, open squares) under baseline conditions (S0, black colour), 1.5°C (S1, red colour) and 2.0°C (S2, blue
colour), for 5 different planting dates (P1: Mid-Sep; P2: Late-Sep; P3: Mid-Oct; P4: Late-Oct; P5: Mid-Nov) and different crop simulation models (Ds:
CSM-CERES-Wheat; Nw: CSM-NWheat; Wg: WheatGrow).
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with the findings of Ruiz-Ramos et al. (2018) and Rodríguez et al.
(2019) who found, using many crop models, how the increase in
air temperature reduces the time to vernalization.

Among the planting dates, later planting dates (late-Oct/
Mid-Nov) showed the highest potential yield increase. In add-
ition, the projected temperature changes are still within the opti-
mal growth range for the winter wheat for several physiological
processes. Fang et al. (2015) found that the increase of air tem-
perature during the winter period does not cause any significant
decrease in yield on winter wheat in northern environments
where air temperatures are well below the wheat base temperature
of 0°C. In the UK the mean air temperatures during winter times
tend to be, especially in the northern part, around the values of
the base temperature. Therefore, any increase in air temperature
will not cause significant reductions in potential grain yield.
Therefore, an increase in atmospheric CO2 concentration at
such latitudes boosts the potential wheat yield by an average of
3 and 6% for 1.5 and 2.0°C, respectively. Such behaviour, at nor-
thern latitudes, has been experimentally confirmed in northern
China in the study of Fang et al. (2015).

Ruane et al. (2018a) reported a large CO2 uncertainty in the
crop model projections due to climate model projection. This
means that different climate models need different levels of

atmospheric CO2 concentrations to reach a 2.0°C World leading
to some substantial differences across the GCMs (Ruane et al.,
2018a).

The results of the variability of the crop models in terms of
phenology and yield response as a function of air temperature
showed that the spread is higher for the yield-temperature rela-
tionship than the phenology-temperature as also reported in
Asseng et al. (2013, 2015). Ruane et al. (2018a) reported values
of global wheat yield uncertainty analysis finding that uncertainty
of climate models is smaller than one of five crop models used
and results of this study agree with the magnitude of uncertainty
for crop models, GCMs and CO2 response of that study. This has
led to several improvements in the model’s sub-routines, such as
the temperature response to phenology as shown in Alderman
et al. (2013) and Asseng et al. (2015).

The overall uncertainty of the simulated system was mainly
due to the multi-crop models used rather than the other factors.
This same response has been observed in many multi-models’
studies (Asseng et al., 2013; Martre et al., 2015; Cammarano
et al., 2016; Liu et al., 2016; Ruane et al., 2016; Wang et al.,
2017; Webber et al., 2017). This high uncertainty among models
is generally due to the fact the crop models have many different
sub-routines simulating soil-plant-atmosphere interactions. In

Fig. 9. Relative yield change at different latitudes for scenario 1
(white dots corresponding to 1.5°C) and scenario 2 (grey dots
corresponding to 2.0°C) as mean across different planting
dates (P1: Mid-Sep; P2: Late-Sep; P3: Mid-Oct; P4: Late-Oct; P5:
Mid-Nov), CO2 concentrations (Ca: baseline CO2 concentration
of 360 ppm; C3: elevated CO2 concentration of 423 and 487
ppm for Scenario 1 and 2, respectively), Global Climate Models
(G1: CanAM4; G2: CAM4; G3: MIROC5; G4: NorESM1-M), wheat cul-
tivars (C1: Haven; C2: Maris Huntsman) and different crop simu-
lation models (Ds: CSM-CERES-Wheat; Nw: CSM-NWheat; Wg:
WheatGrow).

Fig. 10. Coefficient of variation of the different compo-
nents (CSM: crop simulation models; CO2: atmospheric
CO2 concentrations; GCM: Global Climate models used;
Planting: five planting dates; Cultivar: two cultivars
used; Location: fifty locations; Interannual: 30 years)
affecting the simulated potential wheat yield under
baseline (white bars), 1.5°C (light grey bars) and 2.0°C
(dark grey bars).
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this study, the three CSM have an improved temperature response
function but other processes impacting growth and development
simulations such as evapotranspiration partitioning, and energy
balance algorithms have not been improved yet. These two
important sub-routines have been shown to cause a high variabil-
ity in simulated yield among crop models (Cammarano et al.,
2016; Webber et al., 2016). This is because to simulate yield
potential models like Nw have to apply ample water and N mean-
ing that other factors might still affect the simulated production.

Clarke et al. (2021) found that water limitation for UK wheat
reduces yield depending on the timing and length of drought
severity; and future projections of wheat yield losses to drought
report negative impacts ranging between 5 to 20% (Putelat
et al., 2021). The southeast of the UK, where most of the wheat
is cultivated, showed greater uncertainties in simulated yield
changes and this is in agreement with the findings of Putelat
et al. (2021) in which the same region showed to be more sensitive
to climate extremes. In addition, in their conclusions, Putelat et al.
(2021) pointed out how the negative impacts of projected climates
could also be offset by better choices of cultivar and planting
dates. Those conclusions also hold in the current study which is
based on the impact of temperature on potential wheat yield.

However, further issues that have to be addressed are how the
impacts of rainfall changes would alter reduce such potential
yield; and if grain protein is going to be affected negatively by
such increase. In addition, ozone damage is another factor
worth exploring that could potentially undermine potential
yield. The highest uncertainty of this study is due to the differ-
ences among the crop models. This is not surprising because des-
pite the temperature response functions have been improved in
the past, other sub-routines, more complicated, such as the
water and energy balances have not been subject to model’s
improvement. Since the simulation of yield potential, for some
crop models, means that water and energy balances cannot be
turned off their improvements would be needed to improve
both potential and actual yield simulations.

The yield gap between potential and actual yield means that
farmers have the chance to adopt agronomic management deci-
sions (e.g. planting date, fertilization amount/timing, better geno-
types) that can help reduce such gap. Digital technologies such as
Precision/Digital agriculture can help in this sense. However, the
question remains if farmers will be able to close such a gap in real-
ity, despite the adoption of digital technologies. Adaptation and
mitigation measures, along with climate-ready varieties bred for
future conditions and with precision agriculture techniques can
help to reduce this gap and ensure that the future actual UK
wheat production will be close to the potential.

Conclusion

In conclusion, the projected potential wheat yield in the UK will
increase by 2–8% depending on the location and the scenario
considered. This is because an increase in air temperature is still
within the limits of the optimal temperatures for wheat. This
has important implications because in the UK it means that
expectations for future higher potential yields are possible.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859621000903
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