ON GROUPS WITH SMALL ENGEL DEPTH

ROLF BRANDL

Every finite group G satisfies a law $[x, y^r] = [x, y^s]$ for some positive integers $r < s$. The minimal value of r is called the depth of G. It is well known that groups of depth 1 are abelian. In this paper we prove the following. Let G be a finite group of depth 2. Then $G/F(G)$ is supersoluble, metabelian and has abelian Sylow p-subgroups for all odd primes p. Moreover, $l_p(G) \leq 1$ for p odd and $l_2(G^2) \leq 1$.

1. Introduction

If G is a finite group, then there exist positive integers $r < s$ such that for all $x, y \in G$ the following holds: $[x, y^r] = [x, y^s]$. If r is chosen minimal with respect to this property, we call r the (Engel-) depth of G. Let \mathcal{V}_r be the class of all finite groups of Engel depth less than or equal to r. Obviously, a finite nilpotent group belongs to \mathcal{V}_r if and only if it satisfies the rth Engel condition.

In [7, Theorem 3.2] it has been proved that groups in \mathcal{V}_1 are abelian. By contrast, the groups $\text{PSL}(2, 5)$ and $\text{PSL}(2, 8)$ are of depth 3 (D. Nikolova, Personal Communication).

Here we consider groups of depth 2. It turns out that these groups are soluble. More precisely, we shall prove

THEOREM. Let G be a finite group of depth 2. Then

Received 2 May 1983.
(a) $G/F(G)$ is supersoluble, metabelian and for all odd primes p the Sylow p-subgroups of $G/F(G)$ are abelian,

(b) if p is an odd prime, $l_p(G) \leq 1$; also $l_2(a^2) \leq 1$.

Unless otherwise stated, all groups considered in this paper are finite.

2. The structure of groups in V_2

This section is devoted to a proof of the main theorem mentioned in the introduction. We first note a simple observation that turns out to be very useful in the proofs.

Lemma 1. Let $H \in V_2$ and let A be a nilpotent normal subgroup of H. Then for each $a \in A$ the normal closure $\langle a^H \rangle$ is abelian.

Proof. Let $b \in H$. By assumption, we have $[b, 2^a] = [b, 2^{k+a}]$ for some k. So $[b, 2^a] = [b, 2^{k+a}] = \gamma_{k+2}(A)$ for all positive integers t. As A is nilpotent, we get $[b, 2^a] = 1$ and so $[a, a^b] = 1$. This implies that $\langle a^H \rangle$ is abelian.

We now prove that all groups in V_2 are soluble (this fact has been found independently by D. Nikolova). In order to do this, we examine the minimal simple groups (see [11]).

Lemma 2. The Suzuki groups $Sz(q)$ and $SL(3, 3)$ do not belong to V_2.

Proof. Let $G = Sz(q)$, let A be a Sylow 2-subgroup of G and let $H = N_G(A)$. Any element in H of order $q - 1$ acts transitively on $(A/\Phi(A))^H$ and so for any $a \in A\Phi(A)$ we have $A = \langle a^H \rangle$. But A is non-abelian and so $H \not\leq V_2$ by Lemma 1. This proves $G \not\leq V_2$.

The group $SL(3, 3)$ contains a subgroup H isomorphic with $SL(2, 3)$. The same argument yields $SL(3, 3) \not\leq V_2$.

We now deal with the remaining minimal simple groups $G = PSL(2, q)$.
The search for suitable elements proving $G \not\leq V_2$ has been eased considerably by computer calculations performed on a TR440 at the Rechenzentrum der Universität Würzburg.

Lemma 3. Let $q \geq 4$ be a prime power. Then $\text{PSL}(2, q) \not\leq V_2$.

Proof. Because of the isomorphism $\text{PSL}(2, 5) \cong \text{PSL}(2, 4)$ we may assume $q \not= 5$. Let $e \in \text{GF}(q)$ with $e^2 \not= \pm 1$. Let

$$
\begin{bmatrix}
-e^2(e^2+1)(e^2-1)^{-1} & (e^2-1)^{-3} \\
-e^2(e^2-1)^2 & e^{-2}(e^2+1)^{-1}
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
e^{-1} & 0 \\
0 & e
\end{bmatrix}
$$

A straightforward computation yields

$$
[x, e^ky] = \begin{bmatrix}
e^{-2} & e^{-2}(e^2-1)^{-1} \\
0 & e^2
\end{bmatrix}
$$

So for any $k \geq 3$, we have $[x, e^ky] = \begin{bmatrix}1 & \ast \\0 & 1\end{bmatrix}$. As $e^2 \not= \pm 1$ we have shown $[x, e^ky] \not= \pm [x, e^ky]$ for all $k \geq 3$. Hence $\text{PSL}(2, q) \not\leq V_2$.

We now prove the first part of our main theorem.

Theorem A. Let $G \in V_2$. Then $G/F(G)$ is supersoluble.

Proof. Let G be a minimal counterexample. Lemma 2, Lemma 3 and [11] imply that G is soluble. By [2, 2.9] we know that G is a split extension of its unique minimal normal subgroup N by a complement Q and all proper subgroups of Q are supersoluble. From [5] we infer that Q has a unique normal Sylow subgroup A possessing a complement B in Q. Moreover, $A/\Phi(A)$ is an irreducible B-module and A is noncyclic. Also $\Phi(A) \leq Z(A)$.

We first show that A is elementary abelian. Let $a \in A \setminus \Phi(A)$. By
Lemma 1 we know that \(\langle a^B \rangle \) is abelian. As \(B \) acts irreducibly on \(A/\Phi(A) \), we have \(A = \langle a^B \rangle \cdot \Phi(A) = \langle a^B \rangle \) and so \(A \) is abelian. The proof of part (f) of [5, Satz 1] now yields that \(A \) is elementary.

Let \(1 \neq a \in A \) and let \(n \in N \) and \(b \in B \) be arbitrary. Then \([b, na] = [b, a][b, n]^a \) and so

\[
[b, 2^na] = ([b, a][b, n]^a, na]
= [b, a, na]^a[b, n]^a
= ([b, a, a][b, a, n]^a)[b, n]^a[b, n]^a
= [b, a, n]^a[b, n]^a
\]
as \([b, a, a] = 1 \).

From \([b, 2^na] \in N\) we obtain by a straightforward computation

\[
[b, 2^{k+\kappa}na] = [b, a, n, \kappa a][b, n, a, \kappa a]^a.
\]

As \(G \in V_2 \), there exists some \(k \) with

\[
[b, a, n] \cdot [b, n, a] = [b, a, n, \kappa a][b, n, a, \kappa a].
\]

In particular, we get

\[
[b, a, n][b, n, a] \in \langle N, a \rangle
\]
and so

\[
[b, a, n] \in \langle N, a \rangle.
\]

Hence \([n, [b, a]] = [n, a^{-b}a] \in \langle N, a \rangle\) and finally \([n, a^{-b}] \in \langle N, a \rangle\).

As \(n \in N \) has been chosen arbitrarily, we get \([N, a^{-b}] \leq \langle N, a \rangle\).

The latter holds for any \(b \in B \) and so \([N, a^{-b}] \leq [N, a] \) for all choices \(b \in B \). As \(B \) acts irreducibly on \(A \), we have \(A = \langle a^B \rangle \) and so we arrive at \(N = \langle N, a \rangle \leq [N, a] \). This implies \(C^*_N(a) = 1 \).

Hence every nonidentity element of \(A \) acts fixed point freely on \(N \) and so \(A \) is cyclic. This, however, contradicts the structure of \(A \).
Using Theorem A, we can now prove

THEOREM B. Let \(G \in V_2 \). Then for all odd primes \(p \), the quotient \(G/F(G) \) has abelian Sylow \(p \)-subgroups.

Proof. Let \(p \) be an odd prime and let \(G \) be a counterexample of least possible order. From [2, 2.9] we infer that \(G \) is a split extension of a uniquely determined minimal normal subgroup \(N = F(G) \) by a complement \(Q \). Moreover, all proper subgroups of \(Q \) have abelian Sylow \(p \)-subgroups. This implies that \(Q \) is a nonabelian \(p \)-group all of whose proper subgroups are abelian. So \(Q \) is nilpotent of class two by a result of Rédei [8, p. 309]. Also, \(N \) is a \(p' \)-group.

We claim that every nonidentity element of \(Q \) acts fixed point freely on \(N \). Indeed, let \(1 \neq b \in Q \) with \(C_N(b) \neq 1 \) be given. As \(Q \) acts faithfully and irreducibly on \(N \), we have \(b \notin Z(Q) \). So there exists \(a \in Q \) with \(z = [a, b] \neq 1 \). Moreover, \(z \in Z(Q) \).

Let \(n \in C_N(b) \). We now compute \([a, n^k b]\). First

\[
[a, n^k b] = an^k \quad \text{for some } n^k \in N.
\]

As \(Q \) is nilpotent of class two, we have \([a, n^k b] \in N \) for all \(k \geq 2 \).

As \(G \in V_2 \), there exists some positive integer \(d \) such that

\[
[a, 2n^k b] = [a, 2^d n^k b].
\]

Let \(n_2 = [a, 1+dn^k b] \). Then

\[
[sn_1, nb] = [n_2, nb].
\]

Hence \(sn_1 n_2^{-1} \in C_k(nb) \).

As \(nb = bn \) and the orders of \(n \) and \(b \) are coprime, we have \(n \in (nb) \). So \(sn_1 n_2^{-1} \) centralizes \(n \). From this we finally get \(n \in C_N(z) \). This implies \(C_N(b) \leq C_N(z) = 1 \) which contradicts the choice of \(b \).

From [6, Theorem 10.3.1, p. 339] we conclude that \(Q \) is cyclic. This contradicts the structure of \(Q \).

COROLLARY. Let \(G \in V_2 \). Then \(G/F(G) \) is metabelian.

Proof. Theorem A implies that \(Q = G/F(G) \) is supersoluble, and so \(Q' \) is nilpotent. By Theorem B, all Sylow subgroups of odd order of \(Q' \)
are abelian. Let S be a Sylow 2-subgroup of Q. As $G \in V_2$, S satisfies the second Engel condition and so is nilpotent of class two. Hence S' is abelian. As Q is 2-nilpotent, S' is a Sylow 2-subgroup of Q'. So Q' is abelian and the result follows.

From this we can deduce a property of infinite soluble groups of depth two.

COROLLARY. Let G be poly- (abelian or finite). Assume that for any $x, y \in G$ there exists some positive integer $s = s(x, y) > 2$ such that $[x, 2^y] = [x, y]$. Then G is (2-Engel)-by-metabelian.

Proof. Let U be a finitely generated subgroup of G. From [4, Theorem B] we infer that U is finite-by-nilpotent, and so U is residually finite. Every finite quotient of U belongs to the variety \mathcal{V} of all (2-Engel)-by-metabelian groups. This implies $U \in \mathcal{V}$ and so $G \in \mathcal{V}$.

The remainder of our main theorem now follows from

THEOREM C. Let $G \in V_2$. Then

(a) $l_p(G) \leq 1$ for all odd primes p,

(b) $l_2(G^2) \leq 1$.

Proof. (a) Let G be a counterexample of least possible order. By [8, p. 693], G is a split extension of its unique minimal normal subgroup $N = F(G)$, which is a p-group, by a complement Q. By the Hall-Higman reduction (see [1, p. 258]), Q is a split extension of a normal Sylow q-subgroup A of Q by a p-group B acting irreducibly on $A/\Phi(A)$. From Theorem A we infer that Q is supersoluble and hence A is cyclic. As all nilpotent subgroups of G satisfy the second Engel condition, every p-element of Q acts as a linear map on N with minimal polynomial dividing $(-1+\lambda)^2$. The result now follows from [6, Theorem 11.1.1, p. 359] as G has abelian Sylow r-subgroups for all primes $r \neq p$.

(b) Let F be the class of all extensions of groups having 2-length one by elementary abelian 2-groups. As the product of a subgroup closed saturated formation containing all nilpotent groups with any formation is
Groups with small Engel depth

saturated, we see that F is saturated.

Let G be a minimal counterexample. Again G is a split extension of a minimal normal subgroup $N = F(G)$ by a complement Q acting faithfully on N. Clearly N is an elementary abelian 2-group. From Theorem A we infer that Q is supersoluble so that, in particular, Q is 2-nilpotent. Let $x \in Q$ be a 2-element. Then (N, x) is a second Engel group and so a straightforward computation shows that x is an involution. This proves $l_2(\sigma^2) = 1$ contradicting our choice of G.

3. Some groups of small depth

In the sequel a collection of examples may be found which illustrate that some stronger versions of the above theorems cease to be true. For example, the class V_2 does not contain all metabelian groups as there are metabelian p-groups of arbitrary Engel length. However

PROPOSITION 1 ([9]). Let G be an extension of an abelian normal subgroup N by an abelian group Q. If the orders of N and Q are coprime, then $G \in V_2$.

Proof. Let $x, y \in G$. Then $N = C_N(y) \times [N, y] = N_1 \times N_2$. We have $[x, y] = n_1 n_2$ for some $n_1 \in N_1$. So $[x, 2y] = [n_2, y] \in N_2$. As y acts fixed point freely on N_2, we infer from [3, Lemma 4] that there exists some positive integer $d = d(x, y)$ with $n_2 = [n_2, d]$. Hence $[x, 2y] = [x, 2+dy]$. Let D be the least common multiple of all $d(x, y)$. Then $[x, 2y] = [x, 2+Dy]$ for all $x, y \in G$.

An obvious generalization of Proposition 1 to groups of higher derived length does not seem to be at hand as is shown by the following example which has been computed on a TR 440 at the Rechenzentrum der Universität Würzburg.

EXAMPLE. Let G be generated by elements n_1, \ldots, n_5, a_1, \ldots, a_5, b subject to the following defining relations:
Let $x = b$ and $y = n_1 a_1 b$. Then $[x, 50y] = [x, 50y]$ but $[x, \kappa y] \neq [x, \kappa y]$ for all $k > 4$. So the depth of G is at least 5, but G has derived length 3.

Another series of groups of depth 2 may be found among Frobenius groups.

PROPOSITION 2. Let G be a Frobenius group with kernel N and complement Q. If N is abelian and Q is metacyclic then $G \in V_2$.

Proof. This follows from [3, Lemma 4].

A similar sort of argument proves that any extension of an elementary abelian 2-group by the dihedral group of order $2p$, where p is any odd prime, has depth 2. So groups in V_2 need not be metanilpotent.

We end with some speculations concerning the general situation. In view of the first corollary to Theorem B one might ask whether there is a bound $f(r)$ depending on r such that for any soluble group in V_r the quotient $G/F(G)$ has derived length less than or equal to $f(r)$. Or, in view of Theorem A, are the ranks of the chief factors of $G/F(G)$ bounded by some function of r? The answer to both questions, however, is negative in general.

EXAMPLE. Let n be any positive integer. By [10] there exist finite groups of exponent 4 and derived length n. Let Q be such a group of least possible order. Then $Z(Q)$ is cyclic and so there exists a faithful and irreducible $GF(p)$ Q-module N (p denotes any odd prime). Let G
be the split extension of N by Q. Now [12] implies that Q satisfies the 4th Engel condition and so an argument similar to that one used in the proof of Proposition 1 shows $G \in V_5$.

By an analogous construction using a split extension of some faithful and irreducible $\mathbb{G}P(q)$ G-module M by G it is possible to disprove the second statement.

Presumably it is essential in this example that the groups under consideration are not generated by two elements. A positive answer to any of these questions for two-generator groups would establish the following CONJECTURE. There exists a function F such that every soluble group in V_p has Fitting length at most $F(r)$.

References

[9] D. Nikolova [D. Nikolova], "Тождества в метабелевых многообразиях A_{k_1}" [Identities in the metabelian variety A_{k_1}], Serdica (to appear).

Mathematisches Institut,
Am Hubland 12,
D-8700 Würzburg,
Germany.