HEREDITARY SEMI-PRIMARY RINGS AND
TRI-ANGULAR MATRIX RINGS
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It is well known that the semi-simple rings with minimum conditions
coincide with the rings of global homological dimension zero and that the
hereditary rings coincide with the rings of global dimension one. Eilenberg,
Jans, Nagao and Nakayama gave some properties of hereditary rings in [4]
and [11], which relate to global dimension of factor rings”. As an example of
non-commutative hereditary ring we know a tri-angular matrix ring over a
semi-simple ring.

Let A be a ring with radical N. If N is nilpotent and 4/N satisfies the
minimum conditions, then we call 4 a semi-primary ring.

The purpose of this paper is to give a visible form of hereditary semi-
primary rings which is similar to the fact that a simple ring with minimum
condition is isomorphic to a matrix ring over a division ring.

In §2 we shall define a generalized tri-angular matrix ring over semi-simple
rings and give properties of such a ring, which is a generalization of [4],
Theorem 8 and [11], Proposition 7.

In §3 we shall show that every hereditary semi-primary ring is isomorphic
to a generalized tri-angular matrix ring over semi-simple rings and we show,
conversely, every generalized tri-angular matrix ring is a homomorphic image
of an hereditary semi-primary ring by modifying slightly the method in [11],
§2.

As an application of results in §§1-3, we show in §4 that if 4 is an

hereditary semi-primary ring, then so is e.e for any idempotent e and 4 con-
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9 Added in Proof.
Chase generalized those results to a generalized triangular matrix ring in [2] and
Nakano also studied such a ring in [4]. Some results in this paper will overlap with
them.
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tains a minimal faithful left ideal which is contained in any faithful 4-projective
module as a direct summand.

We consider, in §5, an hereditary ring with minimum conditions, which
is semi-primary. However, we note that we have two ways in such a ring to
obtain a relation between hereditary rings and generalized tri-angular matrix
rings; namely by using the nilpotency of the radical and the length of com-
position series of indecomposable left ideals. In general there are no relations
between them, however we show that two ways coincide under some assump-

tions.
We always assume that a ring 4 has the unit element and any 4-module

is unitary. Furthermore, any ring is semi-primary except in § 1.

1. basic rings

Let 4 be a ring with unit element I and N is the radical of 4. In this
section we always assume that every idempotent element in A/N is lifted from
those elements in 4, e.g. A satisfies the minimum conditions or N is nil and
so on. Furthermore, we assume that 4/N is a semi-simple ring with minimum

conditions. In such a situation we have

n n(i)

A= 23> Me;,

i=1y=1
where the Ae;,;'s are indecomposable left ideals in 4, e}, ; = e;,; and Je;,; < Aeix,
Aeij % deix if ix7. We put ei=¢;,, and e=2¢;. Then t,(4e) = 4, (see the

1

definition of trace ideal in [1]). Furthermore, it is clear that Homh (e, Ae)

=ede. Since ta(4e) = A, we obtain from [1], Theorem A. 2.

LemMMmA 1. de is a finitely generated ede-projective module and A=
Homg (e, Ae).

ProrosiTION 1. Let e be as above. A is a semi-primary ring such that N*
= (0) if and only if so is ede and N" = (0), where N' is the radical of ede.

Proof. Since N'=eNe, ede satisfies the above condition if so does 4. We
assume that I = ee is a semi-primary ring with N" = (0). From an exact sequence
0- AeN' - Ade— Ae/ JeN' -0 we obtain the exact sequence 0-Homr(Ade, deN')
-»Homc(Ae, de) >Homr(Ade, de/eN') = Homr,x(Ade/AeN', Ae/AeN') - 0, since
Ae is T-projective. Ae/AeN' is a finitely generated I'/N'-module by Lemma 1
and hence, Homrx (Ae/AeN', Ae/AeN') is a semi-simple ring with minimum
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conditions. Therefore, Homr(/e, 4eN') contains the radical N of A=
Homr (e, A¢). However (Homr(de, 4eN')) cHomr(de, dAeN'™) = (0). Hence A

is a semi-primary ring such that N’ = (0).
ProrosiTioN 2. Let e be as above. Then

l.gl.dim 4 = l.gl.dim ed4e,
r.gldim 4 =r.gl.dim e/e.

Proof. Since e is right ede-projective, we obtain l.gl.dim A=1.gl.dim ede
by [5], Theorem 7. On the other hand l.gl.dim ede>1.gl.dim 4 by [7], Lemma
1.2. Replacing Ade by ed, we have the second half.

CoroLLARY 1. A is left hereditary if and only if so is ede. Furthermore,
ede/N' is a directsum of division rings.

Remark 1. In Proposition 2 we only need that ra(4e) = 4.

Remark 2. 1f we consider an hereditary semi-primary ring, we may restrict

ourselves to the case where the factor ring with respect to its radical is a

direct sum of division rings from the above results.

2. Generalized tri-angular matrix rings

From now on we always consider a semi-primary ring 4 and denote its
radical by N(4). In the next section we shall study an hereditary semi-primary
ring and show that it is isomorphic to a generalized tri-angular matrix ring
over semi-simple rings (see the below). Thus, we study, in this section, some
properties of such a ring.

Let Ry, Rz, ..., Rs be rings and M; ; a left R:- and right R;-module for

i>j and M;;=R;. We consider a family of bilinear R; — R; homomorphisms.
@t Mi,z<§>Mz,k—>Mi,k
1
(1 @ Mi,tgi)Rt =M,
X ¢
2 Rigi}Mi,t = M,

and a family of diagrams

Li®¢k
M ;i QM@ M,g—>M;,; QM
R, Ry R;j
2) l ¢l @Ik l ¢l

!
Pik
M@ My ————> M,k
R
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where I means the identity mapping.

Next, we consider the following sets

71,1 0
ma, 1 72,2
Tw(Ri ; M;,;) = l s : 7i,i € Ri, mi,; € M;,j
Mu,1° * * M, n-1 Tn.n

We can make it a ring as follows:

(mi,7) = (m;, ;) = (mi,j £ ms, ;)

3)
( (mi,;) + (m}, ;) = (¢ i(mi i@ my, ).

It is clear that this product is associative if and only if the diagrams of
(2) are commutative.

In this case, we call it a genmeralized tri-angular matrix ving over R;, and
we denote it briefly by g.t.a. matrix ring over R;. M; M, ; means the image
of Mi,x® Mz.; by ¢%, ;.

We are only interested, in this paper, in a case where all R; are semi-

primary. Then a g.t.a. matrix ring over R; is also semi-primary.

LEmMA 2. Let A be a g.t.a. matrix ring Ta(Ri ; M; ;). If A is hereditary,

then every R;-submodule in M, ; is Ri-projective, and hence, all R; are hereditary.

Proof. Let M} ; be an R;-submodule in M; j, or a left ideal in R.

j
Let Lo = 0 0
i\ “mi; |, e M,
0 0
L=A4Ly and A = 0
il Miy - Mii-x O
M-H] * Ri+1 0
Mp,1* - Ra

Then Y% is a two-sided ideal in 4. Since L is A-projective, L/AL is A/U-pro-
jective. From types of L/UL and A/, we know that Mj; ; is Ri-projective.
Especially we obtain that every left ideal in R; is R;-projective. Hence, R; is
hereditary.

By replacing A and L by
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k k
0 0\ and Ni , where N = N(Rg).
i 0 Mk+1,k 0
0 M, .
A4h,k

We obtain
i—k+1

LEMMA 3. Let A be as above. If A is hereditary, then >, M kvt Mese,r is
t=1
a direct summand of M, as an Ri-module for all >k, where M; ; = N(R;).

J
Lemma 4. Let A=Tx(R;; M;;) and ej=Tx(0,...,0,1;,0, ... ;0),
e=>e;. Let A bea left A-module such that eA = A. Then .dimaA = l.dimereA.
J=1
and gl.dim A>gl.dim ede, where 1; is the unit element of R;.

Proof. It is clear that Je=ede. Hence 4e® A=ele@ A=A as a left A-
eNe eNe
module. Since r.dimepede = r.dimepe ede =0, we have l.dimeaeA = 1.dima de® A

=1.dimsA and gl.dimA>gl.dim ede by [5], Proposition 15 and Theorem 7.

THEOREM 1. Let R; be semi-primary rings with radical N;. A g.t.a. matrix
ring Tn(R; ; Mi,;) over R; is herveditary if and only if the following conditions
are satisfied.

a) All R; are hereditary,

b) ¢l , is monomorphic,

c) M,j/;iMi,tM,j(’z M; ;) is Ri-projective; M; ;< M; ;,

d) M;,; =_]JWi,j O MijiMjsrj® ¢+ & M, i Mi-1,; ® M;;N; as a left Ri-
module, where M;, ;= Nj.

Proof. Let A= Tu(R;; M;;). Itisclear that N'= N(A) = Ta(N,, ..., Nn;

1

M;)and N'=>®{ 0 . We put L;=[N;
0 N; 0 My,
Mi+1,i :
. Mn,i
Mn,i
and A; = Tu-i+1(Ri, . . ., Ry ; M;,;). Then we may regard that L; is a left A;-

module. Let ¢; be as above. Then e¢;L;=L; and 4; =e;de;. Hence l.dima L;

=l.dima,L; by Lemma 4. Therefore, we know that 4 is hereditary if and only
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if L; is A;-projective for all 7. For the sake of simpleness to explain, we con-
sider a case of i=1. We denote L;, 4, by L, 4. Then

M,
M,
L=L/NL=
Mz,
where M:,=N,/N}, M},=M,,/(Mi,\Ni+ +++ + N;M,).
Let { ) be a set of non-isomorphic primitive idempotent elements in R;.
~ 7. —
We put f§'=Ta(0, ...,0, /7, ...,0;0). Since M}, is an R; = R;/N;-
module, M},=®L{" ; L’ = Riyi" = Rif\s), »"€ M;,;. From the idea of
t

minimal projective resolution (cf. [3]), we know that L is A-projective if and

only if

(4) L=>23>6 A3, where 3 =( 0Y)and

0

z' yt(l)

0

0 0

‘ 0 o 0.

(5) A5 = Ry \= A4S =| Rifily )
My, i.’)’.t(” Mﬂ,if_(l'(t)
M, iyt“) Mn,if(ll<)t)

(natural isomorphism).

Let M}% = Riyv{’cM;,. We assume that 4 is hereditary. Then we obtain
M;1=P;® (Atl,, N1+ +*« + M i-1M;-1,;) for some Ri-module P; from Lemma 3.
Hence Mi, 1N+ * + * +Mi,i-iMi-1,1+ NiMi,1 = NiPi® (M, \Ni+ * * * + M i-:M;-1,1).
Therefore, we may assume that y{' € P;,. Then P;=M}t=M;, since N; is
nilpotent. Now, 4) is equivalent to facts that M;,= ;GBR; 9" and that

1-1

SIM;, iy and )My ;M. + M, are direct sums, respectively. The above argu-
t =1

ments are true by replacing 1 by any k. Furthermore, we obtain from (2)

(6) My, iM;, ;M;, n < My, ;M. 5 for all k=i=j=>h.
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. i—1
Since Mp, i@ M ;= Mp,:QM; ;D M, ® (2 M; :M:,;), we obtain from (6)
t=j

i—1
My, iM;, S My, iMi, ; + lz;‘_Mk,tMt,jg My, iMi,; +
=j

i—2 i
My, i-iMi-1,; + tZMk,tMl,jg >3 My,sMs,; + Mg, Nj.
=3

s=7+1
Therefore,
k-1
(7) Mz ;N; + MpjexMir,j+ =+« + M p-1Mp-1,;< Ele,sMs,j‘i"Mk,jM-
s=j+

Hence M, ;= 23® Mg, Ms,; ® M, ;N;® Mr,; from the above observation. Which
shows d), a) and ¢) by Lemmas 2 and 3. Furthermore, from (5) we obtain
FEay =3, Hence (4) and (5) implies ¢, is monomorphic on M: ;Q M;,;.
Using this argument we shall show that ¢, is monomorphic for all i=;j=Fk.

Let I'= Tn-ji1(Rj, ..., Ry Mys) and L=/ 0 \. Since I is hereditary by
M;k
Almk

lemma 4, we know from the above argument that ¢7,, is monomorphic on

M; ;@ M;r. However, M;r= M in this case, and hence, ¢Z  is monomor-
phic on M;, ;@ M, k.

Conversely we assume that a)-d) are satisfied. From a) we have ;@ Ry
= N;. Froma), c) and the remark after (5), we obtain M} = M, = tZ@Rfyéi’.
Since ¢} : is monomorphic on M ;® M, by b), we have (5) fromd). Further-

more, d) and a) imply (4).

CoroLLARY 2. Let A be a g.t.a. matrix ring over semi-simple rings. If sof,k

is isomorDhic, then A is hereditary.

Proof. From the assumption, we have M; ;- = M; ;—; for all i and M ;=
(0) for all i>j+ 1. Hence A satisfies a)-d).

Remark 3. An usual tri-angular matrix ring over a semi-simple ring R is

a special case of Corollary 2.

TreorREM 2. Let R; be semi-primary rings and M;; R; — R; modules. Let
Ai= Tn.—iﬂ(Ri, e o ey Rn 5 Ml,j). Then gl.dim 11i+1égl.dim A,ggldim Ai+1+
gldim R; +1.

Proof. From Lemma 4, we obtain gl.dim 4;+:<gl.dim 4;. We denote 4;,
Aivy by A, I. Then N=N(A) = Ta-it1i(Niy . . ., Nu ; M;i;), where N; = N(R;).
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N=L;®N(I') as a left 4-module, where L; is the same as in the proof of
Theorem 1. From Lemma 4 we have gl.dim 4 =1+ 1LdimaN =1+ sup (l.dima
L;, LdimprN(I")). If we use the same notations as in the proof of Theorem 1,

then
0->9¢70) » D AFP =@ P~ Li >0
J=i 8
; ; ) i)
is exact, where P} =>,47Y. We consider P =>1® A7 —> A N;}-0. Then
3 S 0
. . 0
¢"M7I0) =(K; , where 0> K;>> O R;f{’~>N;~0 is exact and N} ; is an

I3
Ni+1,i
.

! .
n, 1

R;-module. Hence we can see directly that ¢ '(0) =(K;: ; Nji is an
Niiy,i

Nn,i
Rj-module. If we repeat this argument on K; we have a minimal A-projective

resolution of L;:
. dx . di . do
—> 2P PL—> =SB Pi—>>,® Pl—>Li—0

and the first row of each P’ forms a minimal R;-projective resolution of N;.
Hence if gl.dim R; = m, then d»..(0) is a I-module. Hence l.dimadn' (0) <gl.dim
I by Lemma 4. Therefore, 1.dimaN<gl.dim R+ gl.dim I. Thus, we obtain
gl.dim A<gl.dim R; + gl.dim I"+ 1.

CoroLLARY 3. We assume that all R; are semi-simple rings in the above.

Ther gl.dim A;+;<gl.dim 4;<1+ gl.dim 4;+; and gl.dim A<n~—1.

Let 4 be a g.t.a. matrix ring T»(R; ; M;;) and e; be as in Lemma 4. For
an element a in a two-sided ideals U in A eiae;=UA. Hence A = T,H(S; ; N;j),
where S; is an ideal in R; and N,,; is an R; — R; module in M;;. Hence we

obtain from Corollary 3.

Tueorem 3. Let A be a g.t.a. mairix ring T.(R; ; M;,;) over semi-simple
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rings R;. Then for any two-sided ideal A in A we have
gl.dim 4/A<n—1.

Furthermore, we assume that all R; are simple rings and WU+ N/N zZ@R;t.
t=1
Then gl.dim 4/UA<n—s—1, where N is the radical of A.

3. Hereditary semi-primary rings
In this section we shall determine a type of hereditary semi-primary rings.
Let 4 be such a ring and N the radical. By virtue of Remark 2, we shall
first restrict ourselves to the case where /N is a direct sum of division rings.
Then we obtain 1= >)e;, where {e;} is a set of non-isomorphic primitive idem-
potent elements in 4. Since N’=(0) for some ¢, we have an integer s for e;
such that N¥; = (0), N*"'e; = (0). We denote such an integer s by #(e;). Then

we can rearrange e; as follows: 7(e;)=n(ei+) for all i.

We quote here a well known results by [3] and [12].

LeMMA 5. Let A be an hereditary semi-primary ring. Then every A-projec-

tive module is isomorphic to >, D (Ae;)* V.

LeEmMA 6. Let A be as above. If e is an idempotent element in A such that
n(e) is minimal among n(e}), where e runs through all primitive idempotent

elements in A. Then n(e) =0.

Proof. If Nex (0), then Ne=>.@ (4e;)* by Lemma 5. Hence n(e) > n(e;),
which is a contradiction.

LemMA 7. Let A be an hereditary semi-primary ring such that A/NX<>)®
di ; 4; division ring. Then eNej = (0) for i<j and eide;=< 4;.

Proof. From Lemma 6 we know that Ne, = (0). Therefore, e;Nes = (0)
for all & We assume that e;Ne; = (0) for i<j and 7>k  Since Nep is 4-

projective, we have from Lemma 5 and the assumption %(e;)>n(e;+:)
Nep= 20 @ (de)™.
I>k
Hence, e;Ner=>)® (eide,)’ = > P (e;Ne))® = (0) for :=<k from the above as-

sumption. Therefore, ¢;Ne; = (0) for all :<j. Since e;Ne; = (0), 4;<ei/e;Ne;

= eide;.

b M" means a directsum of »# copies of M,
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TueoreMm 4.  Let 4 be an hereditary semi-primary ring such that A/N=
}_'_.: @ 4d;. Then A is isomorphic to a g.t.a. matrix ring over d;, where N is the

radical of A and the 4;'s are division rings, ([2] and [14]).

Pyroof. Since 1= ge;, A=‘E@eizfej and ejdej = (0) if i<j. If we put
M;,; = e;dej and <ka is a product',of M; ; and Mj,r, then A=Tx(4dy, ..., 4n;
M; ;) by Lemma 7.

We shall generalize the above theorem.

Let 4= Tn(R;i; M,;) be a g.t.a. matrix ring over rings R;. Let

54
Adz;i,?i_hlhj 8
M= . =M, i(sixs;).
M.i' . Mi,j l
Then we can define a natural operation of elements in (R;)s, (resp. (R;)s;)
from the left side (resp. right side) on M;,;. We put I'= Tw((Ry)s,, « - . , (Rn)s,;
M;,;), then I" is also a g.t.a. matrix rings over (R,)s, with naturally extended

bi-linear mapping @7  : ((Xt,p))(ﬁ%‘ ((y,,q))»((Esof.k(xt,p ®p,a)), xt,pE M j,
Sp

Yr,a € Mj. k.

Let ¢f”,, be the matrix units in (Ri)s; and E; = Tn(0, . .. ,0 e1,,0 - -0 ; 0).
If we put E = 2 E; then tn(I'E) =T" and EI'Ex 4. Hence we have from Pro-
position 2

gl.dim 4 = gl.dim I
We call I" an induced g.i.a. mairix ring from A.

TaeoreM 4. Let A be an hereditary semi-primary ving. Then A is isomor-
phic to an induced g.t.a. matrix ring T(R; ; Wi,;) over simple rings R; from a
g.t.a. matvix ving as in Theorem 4. m{,k is monomorphic for all i=j=k and
M+ Wse1,7 + s + M i Mi-1,7 is a directsum in W;,; as a left Ri-module, where

=1
Mi ;=T ; D > Wi, Me,; as a left Ri-module.

t=g+1

Proof. Let A/N=>\®R; and e=>\¢; as in §1. Then A= Homep.(Je, Ae)
and ede is an hereditary semi-primary ring by Propositions 1 and 2. Further-
more, Je is a finitely generated e/e-projective module, and hence,

Aei =20 (fiD)%,
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where I' = ede, and {f,) is a set of non-isomorphic primitive idempotent elements
in I' and all s; are finite. We may assume z(f;)=#»(f;+,) for all i. Hence it
is clear that A= Tu((f:Ifs, . -« (fnlfn)s, s (fil'fi(sixs;)). The second
part is clear from Theorem 1.

We shall modify slightly the above theorem.

LemMa 8. If n(e) =nleiv) = - - - =nleirs), then epde,=(0) for kE<i+s,
i<p<its—1 and kxp.

Proof. Since Ney = >,® (4e)® for i< p<i+s from the assumption, e.Nep
= > @ (erde))?”. Hence if k<i+s, erde; = (0) by Lemma 7.

IZi+s+1
LemMa 9. #nleiry) <un(e) <n(eir) + 1.

Proof. Let t=n(e;+,). Nei= ; 16{9 (4e;)>.  Then N' %= p3 (N'"e;)%
= (0). Hence n(e) <t +1. - =

First we assume that A is an hereditary semi-primary ring such that 4/N
=>1®4;. Weassume N" % (0), N"=(0). Then it is clear that n(e,) =% — 1.
If we classify ejs by a relation e~e' & nu(e) =n(e'), then we have (n—1)
classes by Lemma 9. Furthermore, if ¢;, ..., ¢i+s-; are in a class then we
put R; = eide;® « « + Dejre-1deii4-1. Then a= Tu(R; ; M j), where
M, iMi,jer * M, jvt-1
Mg+ My, 5+t-1

.........

(8) Mi,; =

itt-1,7 *°° Mi+t—1,j+t—1

and N= My, oW1 n-2° * * Mo, 1% (0). Therefore, M;, ;2M;,i-1Mi-1,i-2* * * Mjs1,5
% (0). Hence we have in general.

TueoreM 4. Let A be an herveditary semi-primary ring such that N" % (0),
N"=(0). Then A is isomorphic to an induced g.t.a. matrix ring Tn(R,, . . .,
R, ; Mi;) over semi-simple rings such that all M; ;= (0). Furthermove,
Tp-iti(Riy . . ., Ra ;s My ;) is also an hereditary semi-primary ring with radical N;
such that N7~ = (0), N} ™"*'=(0).

Remark 4. The expression of .1 in Theorem 4'" is not unique. For example,

ok
no
NN

[N
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Then A is hereditary by Corollary 2. However we have two expressions as

Theorem 4'":
4 g
Tola e {910,
(4 4] [ 4] [4] 4] [4 4] [4]

|

The latter is as in Theorem 4'".
CoroLLARY 4. Let A be as above. Then for any two-sided ideal W in A
gl. dim 4/A<n - 1.

We shall give one more remark for this expression.

From Theorem 4", we do not lose a generality if we consider a case of
AIN=2B4i. If ne) =nles) =+ =n(eie) >nlei-1) =+ =nleisee)
>+« then for any j such that i<j<i+¢ we have Nej= Ades® - -+, where
i+t+1<s<i+t++#. Hence esNej= (0). Therefore, if M;,; is as in (8), then
each column of M;, ;-1 is not zero. Since M;, ;2 M; ;i-1M;-y,i-2* * * Mj+1,j, each
column of M;,; is not zero. Conversely, in an expression in Theorem 4'", if we
assume that each column of M;,;-; is not zero, then each unit element ¢ of simple
components of R; has the same n(e) and converse. Under such an assumption
we have a unique expression up to isomorphism.

We call such a representation of hereditary ring a left normal vepresentation
as a g.t.a. matvix ring.

If we start from properties of eN instead of Ne, we have the similar argu-

ments as above.
By #'(¢) we denote an integer such that eN"x (0), eN™" = (0). In general,

there are no relations between #(e) and #'(e). For instance

0
Then n(es) =1 and #'(e;) = 0.

Nhobhi
hok

4
4 4
However from the above observation we have

ProrosiTioN 3. Let A be an hereditary semi-primary ving such that N * = (0,
N"=1(0). Then for any idempotent element ¢ n(e) =n—n'(e) if and only if A

has a vight and left normal representation as a g.t.a. matrix ving.
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Finally we give a characterization of a g.t.a. matrix ring over semi-simple
rings. We recall the definition of connected sequence of primitive idempotents,
(cf. [11], §1. We do not need an assumption N°= (0)).

A sequence (e, e, ..., es) of primitive idempotents in 4 is called con-
nected if ¢;+1Ne;% (0) for i=0, ...,n—1 and we denote the maximal length
of connected sequence by ().

ProposiTION 4. Let A be semi-primary. Then gl.dim 4/N*® =1(4) = I(4/N*)
and N'"™" = (0).

Proof. 1t is clear that I(4)=I(A4/N?. If eNf= (0) and eNfS N’ then we
may assume eNfC N°, eNfEN®''. Then eNf =eN°f. Hence, there exist primitive
idempotents e, =f, e;, . . . , es=e such that e.,Ne;EN®. Hence, (f, e,...,
es-1, €) is a connected sequence in 4 and A/N®  Therefore, 1(4)<I(A/N?).
We know gl.dim 4/N®=1(4/N*) by [11], Proposition 2.

TaeoreM 5. Let A be a semi-primary ving with radical N. Then the following
conditions are equivalent.

1) 4 is a g.t.a. matrix ving over semi-simple rings.

2) I(A) < oo,

3) gl.dim A/N*< .

4) A is a homomorphic image of an hereditary semi-primary
ving R such that 1(A) =1(2). (cf. [2], Theorem 4.1 and [11], Theorem 5).

Proof. 1) —»2). Let A= Tx(Ri; M;,,); R; semi-simple rings and I"= T,(R;; 0).
Then 4=TI®N. Since we can replace idempotents in a connected sequence
by isomorphic ones, we may assume that idempotents in a sequence are in I.
Then ¢;:1Ne; = (0) implies p(i) <p(i+ 1), where ¢; € R,i,. Hence, every length
of connected sequence does not exceed #.

2) -»3). It is clear from Proposition 4.

3)—>4). Let Ei, ..., Es, be mutually orthogonal idempotents in A such
that E;AE;/E:NE; is a simple component of A/N. Since I(4) < o, E;NE; = (0).
Let '=>\®E;AE;C 4. We use a similar argument to [11], §2. Put 2=T®

NONQND - - - EBN,'—®N® .. -gN@ «++. By the natural multiplication 2
r r

8

becomes a ring. If NQN: - - @ N+ (0), then there exist idempotents e;, f;in
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I and #; in N such that essfs® * * - Qemif1=0. Hence, ¢;Nfi= (0) and fi..ei

HA)+1
x 0 for all , which means fi+1 X ¢ and fi+:Nfiv1% (0). Therefore, NQ - -+ ®@N
= (0). It is clear that N(2) = NENQND - - - =!2@N. We have a natural
epimorphism ¢ of 2 to A by setting ¢ (r+n+7Qus+ ) =r+n+ n.n;
+ +++). From the construction of 2 we know that 2 is hereditary and /(2)
>I(4). However N(2)'™* = (0). Hence, I(2)<I(A) by the following proposi-
tion 5.

4) -»1). It is clear from Theorem 4.

Remark 5. From Proposition 4 and Theorems 2 and 5 we obtain /(4) =
gl.dim A/N?>gl.dim 4/% for any twoside ideal A of A.

4. Applications.

In this section we shall give some properties of hereditary semi-primary
rings as applications of results in § § 1-3.

From Theorems 4, 4" and 4" we have

TrEOREM 6. Let A be an hereditary semi-primary ring with nilpotency n of
the vadical. Then for any two-sided ideal U in A

gl.dim A4/%<n —1.

Furthermore, if A/N is a directsum of m simple rings and N+ /N is a directsum

of s simple rings, then
gldim A/A<m —s+1.

(cf. [4], Theorem 8 and [11], Proposition 7).
The following proposition shows that the first inequality in the theorem is
best, which was given in [4], Corollary 11.

ProposiTiON 5. Let A be an hereditary semi-primary ring. Then 1(A) = I1(A/N?)
=gl.dim A/N? is equal to (the nilpotency of N) — 1.

Proof. From Theorem 4" we know [(A) + 1 = the nilpotency of N.

ProrosiTion 6. Let A be an hereditary semi-primary ving. If A/N is a simple

ring, then so is A.

ProrosiTiON 7. The center of an hereditary semi-primary ving A is a dirvectsum
of fields. Especially A is indecomposable if and only if its center is a field.
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Proof. We may assume that 1 is isomorphic to a g.t.a. matrix ring T
(R; : M;,;) over simple rings R;. It is clear that each component of center C
of A is contained in the center of R;. We denote the center of R; by C;. For
M; ;= (0) we put L;; = {c|= C;, there exists a unique element ¢’(¢) in C; such
that cm = mc'(¢) for all me M; ;}, and Rj,;={c'|e Cj, there exists a unique
element c(¢’) in C; such that mc' =c(c")m for all me M; ;}. It is clear that
L;; and Rj,; are fields and are isomorphic each other. We consider a path
from the index 1 to ¢; 41 =1,4,..., i =i such that M., = (0) or Mi,., i, >
(0) for all 2. By I we denote all indexes which is connected to 1 by the above
path. Then A= 4,® 4,c where 4, consists of all elements in 4 whose (i, j)-
components are zero for i, je I°. If A is indecomposable, then every index is
connected to 1. Therefore, in this case we know from the above observation
that C is isomorphic to a subfield of ORL k. Hencein general C is a directsum

of fields.

ProprosiTioN 8. Let A be an hereditary semi-primary ving. We assume A is
indecomposable and K is the center of A. A%L is herveditary and semi-pvimary
for all extension field L of K if and only if A/N is separable over K, (K-dim A/N
=0).

Proof. By Theorem 4" A isisomorphic to a g.t.a. matrix ring Ta(R; ; M; ;)
over simple rings R;. If A%L is hereditary, then R,@L is hereditary by
Lemma 2, since A@I?L = T,.(R,-(%L ; Mi,j(%L). Since A@L is semi-primary, so
is R,-(%)L. Let C; be the center of R;. Then C,@L is the center of R,-QIZ()L.
Hence C,-@;L is a directsum of fields by Proposition 7. Therefore, R,@L is a
semi-simple ring with minimum conditions for any L by [10], p. 114, Theorem
1. Thus, we obtain from [6], Theorem 1 that [R; : K]< . Since C; is
separable over K, so is R;. Conversely, if 4/N is separable over K, then [ 4/
N : K]1< o by [13], Theorem 1. Hence, N‘?L is the radical of A(%L. Since

N is A-projective, N %L is A® L-projective. Therefore, 41® L is semi-primary
K

and hereditary.

LemMma 10. Let A be a g.t.a. matrix ving Tn(dr 5 Mi;) and I'= Ta(4s, . . .

0, ..., dn; Mri=(0) if kor j=1). If A is hereditary then so is T.

Proof. Let e=Tx,(, ...,1;,0... ;0 and E=1-—e¢. ThenI'=EAE. EA
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= FEAE® Ede. Ede is a left ideal of I'' = Tw-i+1(di, . . . , 4n ; Mz,;). Hence,
Ede is I'-projective. Furthermore, by Lemma 3 we obtain 0= ldimrEAde=
Ldimr.Ede = l.dimrE fe, where I = Tp-i(di+1, . . . , dn s My,j). Therefore, E4
is I'-projective. Since N(I") = ENE, ENE is I'-projective.

THEOREM 7. Let A be an hereditary semi-primary ving and M a finitely
generated projective A-module. Then Homp (M, M) is hereditary and semi-primary

and so is ede for any idempotent element e in A.

k
Proof. M= > ® (dei;))%. Hence, Homa(M, M) = Tr(eigAei)si 5 eikyAeip)

J=1
(st X sp)), whichis an induced g.t.a. matrix ring from I'" = Tk (eij,d¢e:i;, 5 €ipyAeiq)-
From Lemma 10 we know I' is hereditary and semi-primary. Hence, so is A

and ede = Homa(Je, Ade) is hereditary.

ProrosiTioN 9. Let A be an hereditary semi-primary ring and M a projective
left A-module. Then the annihilator ideal W of M in A is a divect summand of A
as a left module and A/W is hereditary.

Proof. We may assume that A/N is a directsum of division rings. Since
M=x % (4¢))%, A is equal to the annihilator ideal of Z;“_‘,Ae,-. If we denote the
annihilator ideal of Ae; in A4 by U;, then ¥ = ({\‘)I,‘. Let A= Tx(4d;i ; M; ;) and
ei = Tn(0, 1piy, 05 0). Then Aei=Tn(0, ..., 4oy, 0; M}, 1= (0) for I%p(d),
M}, o) = Mg, ,iy). It is clear that Wier = Adep if Mg, )= (0) and Wer= (0) if
Mp, oy = (0). Hence, U; = D14er. Therefore, U = é,:Aem). We note that M), x
= (0) if kxsome I(¢). Hence, 4/% =ede for some idempotent element e.

Therefore, 4/% is hereditary from Theorem 7.

ProrositionN 10. Let A be as above. Then there exists a minimal faithful left
ideal L and every faithful left A-projective module contains an isomorphic image
of L as a direct summand.

Proof. Let A/IN=X2)® 4; and Tw(R; ; M; ;) a g.t.a. matrix ring as a normal

plr+1)—1
right representation, namely Ri= > \® de, Mp,, isa dp — 4, module and M, ;

k=p(i)
is as in (8) and furthermore, each row of Ii;; is non-zero. From this as-
sumption we can see as above that AE;= L is a faithful left ideal in 4 where
Ey=Tn(1;, 0; 0). Let M be a faithful projective 4-module. Since MXT> P

(4e))% and e:M = (0) for primitive idempotent e; in AE;, M AE,® M.
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CoroLLARY 5. Every herveditary semi-primary ring is a subdirvectsum of finite
many of hereditary rings in the endomorphism ring of vector space over a division

ring.

Proof. Let L be a minimal faithful left ideal and L= Ae,® - - - D Ae;.
Then it is clear that Ae;(i=1, ...,# is a right module over a simple ring
(4i-module in the above). Hence, we have the corollary from Proposition 9.

As a related problem to Corollary 5, we consider hereditary rings in the
endomorphism ring of finitely generated module M over a division ring 4. Let
A be such a ring and N=N(4). Then we have a chain of A-module : M >
NM> -+« DN 'MDN'M=(0). We put A ={xl€Hom.(M, M), xtN'McN'M
for all i}). M=M®M,® - -+ ®M; as a 4-module such that N'M = M;.,@® -«
®M;. Then it is clear that A = T¢(4n,, . . . , 4n, ; d(niXn;)) where [M; : 4]
=n;, and N(4)*=(0), N(Z1)*™' = (0).

LemMma 11. A(qu)§(q><s)2’A(p><s).

0
Proof. Let e,~=i< 1,0 -0) in 4(pxq). Then 4d(pxq) => Deid,. Hence
0

0
4(pxq) (?A(qxs) =>%i@d(gxs). It is clear that ¢;® 4(g x s)zi<4- . -A).
q
0

From this lemma and Corollary 2 we know that A4 is hereditary.

Prorosition 11. Let A be an herveditary semi-primary ring in a simple ving
dn with nilpotency t of N and we assume that A has the unit element of 4,. Then
therve exists a maximal hereditary semi-primary ring in 4, with nilpotency t which

contains A.

Proof. Let A be as above, I” be an hereditary semi-primary ring containing
A and let its radical N’ have the nilpotency . We may assume I'=1. We
consider a chain; M DN'M> -+« DN" M >(0). It is clear that this chain
is a composition series as a I'module. Furthermore, this is a chain as a A-
module and M has a composition series of length # as a 4-module. Hence,
N'M2NM, N?M2NN'M2N?M- - -. Hence N'M = N"M. Therefore, I' = 1.

Prorosition 12. Let dn be a simple algebra over a field K and A an hereditary
algebra with [A : K]< o, We assume that A contains the unit element of da

and its radical has the nilpotency t. A is a maximal herveditary ring with nilpotency
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t t
t in dn if and only if AINX D)@ dn, and > n; = n.
i=1

i=1

Proof. The “only if” part is clear from Proposition 11. We prove the “if”
part. From the assumption and Theorem 4" A= T\(R; ; M;, ;) ; Tiis a simple
algebra and M; ;= (0). Let 1=e¢ +e&+ -+ +e, where ¢ is the unit element
in R;. Further ¢ = Mgize,-, ; is a decomposition of ¢; into the mutual orthogonal
primitive idempotents] _in 4,. Then we may assume that those ¢}, ;s are a subset
of matrix units in 4,. eide;( = dn) Ceidne; = dniy. Hence, n;<n(i). However
since 2n; =n, n; = n(i) for all i. Therefore, eide; = eide; since [A : K]< oo,

Furthermore, e;dne; = eidneiM;, je;dne; = M, ;, since M; ;= (0).

5 Hereditary rings with minimum conditions

In this section we shall study hereditary rings with left or right minimum
conditions. Such a ring is also semi-primary. Hence, all results in §§2 and
3 are valid for this ring. However, we give another approach to those results.

First we consider 4 such that 4/N=2,®4;. Let 1= >l as in §3. For
any idempotent element ¢ we define /(¢) as follows: [(e) =the composition
length of Ae as a left ideal. We can arrange {e} as [(e;))=I(e;+;) for all i.
Then we have similar results for /(e)) to n(e;). From Lemma 5, we have

Lemma 7 for I(¢;) and etc.

LemMma 12. Let A be a g.t.a. matrix ring Tn(d; ; Mi.,j) over division rings
di. Then I(¢g;) = A_Z'.'I[M,-,,- : 471, where ¢;= Tx(0, .. ., 11,-, 0,...;0).

Thus, we hav:a_'f:'om Theorem 4"

TareoreM 8. A is an hereditary ving with left minimum condition if and only
if A is isomorphic to a g.t.a. matvix ring Tu(R; ; M; ;) over semi-simple rings
Ri, which satisfies the conditions in Theorem 4" and M;,; is a finitely gemervated
Ri-module for all i>j.

We note we do not have a relation as Lemma 8 for /(¢;) and that there are

no relations between I(¢;) and x(e;) in general.

Prorosition 13. Let A be an hereditary g.t.a. matrix ring Tn(4di ; Mi,;) over
division vings. Let tr =M,k : 4;1. Then (&) =1+ Ditul(er), where Mj = Mjx/
k>1

?:}Mj. M, 1.
Proof.
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0
Mﬂ,i
R .
Ne;/N’e; =

M,

and Mj,; is a left 4;-module. Hence, since Ne; is A-projective, Ne;i = >® (dep)™

and Ne; is a maximal A;,-module in de;, [(e;)) = > tel(er) + 1.

Prorosition 14. Let A be an hereditary semi-primary rving such that A/N =
2"‘_1,69 di. Then N"=(0). Furthermore, N" ' (0) if and only if e;+14e; = (0) for
Zzll i. In this case 1) eidej= (0) forall i=j. 2) Leide; : di1=[eide; : 4;]1, [eide;:
4;1="Teidej : 4;] (resp. Leide; : 4;1=Leide; = 4], Leide; © 4i1=Teide; : 4:]) if
j'=j (resp. i=i"). 3) (&) >1(eir1). 4) If A satisfies the left minimum condition,
then 1(e) >1(e') is equivalent to n(e) >n(e').

Proof. We put M; ;=ede;, Then A is a g.t.a. matrix ring T»(4; ; M; ;).
Hence N"=(0). N"'=MunsMn-1n-2-+ M. Since ¢, is monomorphic
by Theorem 1, N"'% (0) if and only if ei+ide;i= My, i (0) for all i. We
assume that all Mis.,i> (0). Then M; ;2M; i-xMi-1,i-2+ *Mjw,;% (0). 2) If
j'=j, then M;;2M; My ;. Hence [M;;: 41=[M;; : 41 and [M;;: 4;1=
[M; ;. © 4;] since ¢ is monomorphic. 3) By Lemma 12 and 2) we obtain /(e;)
= i}rl[Mj,; D 41> i‘.ﬂ[M;,m : 4i1=1(ei+1). 4) is clear from definition of
() and n().

ProrosiTion 15. Let A be as in Proposition 13. If N" ' is a non-zero irveducible
left A-module, then d; is monomorphic to di+y and A satisfies the left minimum

condition.

Proof. N" '=Mun-y-+ M, Since Aen = enden= 4o, N 'is an irreducible
d,-module and hence, [N"™': 4,]=1. Furthermore, N” ' contains an isomor-
phic image of My, n-1* * * Mi+1,i as a left 4-module. Hence [Mi1,; @ 41l =1,
say Mivi,i= divvmi;+1. Since Mi.y,; is a right 4;-module, 67+ = m;+10' for some

0'e 4;. It is clear that a mapping 0 —»¢’ is a monomorphism of 4;+1 to 4.

LemmMma 13. Let A be an hereditary g.t.a. matrix ving over 4; such that [M;, ;:
41=[M;;: 41=1 for all i, j. Then A is isomorphic to a usual tri-angular

matvix ving over 4, wheve 4= 4;.
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Proof. First we choose a generator mi,i-: of M; ;- for i=2,...,n;
M; i-1=mi,i-1di-1. We define a generator m;,; of M; ; as follows: m;,; = m; i-1
«cmy+1j. Since A is hereditary, m; ;0. It is clear from the definition of
mi,j, Mi, jMjk=mir. Asin the proof of Proposition 15 we obtain an isomorphism
ai,j of 4; to 4; such that xm; ;= m; jx*"7 for x= 4;.  Since m; jmj k= mir, We
have a;i jaj,r=aik. Let I" be a usual tri-angular matrix ring T»(4 ; 4) over
4. We define a mapping @ of I" to 4 as follows: for an element 7= T(ri,;)
O(y) = Tn(yi'mi, ), where m;;=1;. Then we can easily check, by noting the
above observation, that @ is isomorphic.

TueoreM 9. Let A be an hereditary ving such that A/N is a directsum of n
division rings. Then the following conditions are equivalent :

1) 4 is a usual tri-angular matvix ving over a division ring.

2) A is a general uniserial ring and N" ' = (0).

3) Lende, : eide] = [endes : endenl =1 and N" ' % (0).

4) Ile), 7(en) <n, and N" = (0).

5) n(e) =1(e)) =r(en) and N" "= (0).
Where N is the radical of A and {e:} is the set of non-isomorphic primitive idem-
potent elements as the beginning of this section, and r(e) is the composition length
of ed as a right A-module.

Proof. From the assumption and Theorem 4", we know that A= Tn(4; ;
M;,;), where the 4;s are division rings.

1) -»2) is clear.

2) »3). Since Ae; has a unique composition series, we obtain that [A/;; :
4;1=1 (resp. [M;; : 471=1) for all i>]j.

3) »4). By Proposition 14 we have [M;;: 41<[Mn:: 4ds1=1. Hence
I(e), r(ew) <nm.

4) -»5). 4) implies clearly that I(e;) =# —i+1 for all ; and hence [M;,; :
4;1=1. Therefore, n(e) = l(e;).

5) »1). Since n(e;) =#n(ei+1) +1 by Lemma 8, #n(e), #(es) =n. Therefore,

[M;;: 41=[M;;: 471=1 as above. Hence, we have 1) from Lemma 12.

Remark 7. In Theorem 9 if we replace the assumption “4/N is a directsum
of n division rings” by simple rings, then Theorem 9 is true provided we replace
1) by 1') : 4 is a g.t.a. matrix ring T»((d)s; ; M; ;= (si X s;)-matrices over 4).
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Appendix.

Let R be a discrete rank one valuation ring with quotient field K and >]
= K,. We know, by [8], Theorem 6.2, all types of hereditary orders over R
in >). We shall give another proof by a similar argument to §4.

By standard argument (cf. [8], §1) we may assume that R is complete.
In this case we can use Lemma 5. Let p be a unique maximal ideal in R and
{e;} the set of primitive idempotent elements as in §1. Then ede is an
hereditary order in ¢>¢, where e= Zei and ede/eNe is a directsum of division
rings. L

First, we assume that 4 =ede and >)=e¢>e. Since >l is an irreducible
left ideal in >) by [1], Proposition 2.8, we may assume that e¢; is a matrix
unit e;; in >). Furthermore, we may assume that 4 is contained in a maximal
order 2= R,. By [8], Lemma 3.2 we know that N(2) =p2<N. Let 4 =4/
N(9Q).

LemMa A. If Ne;=< Aej, then 1) ¢j,; < A, Ne; = Aej,i, Ne;/vRe; is A/pQ-projective
and 1(g;) =1 +1(e;) or 2) Ne; = Avej, ;.

Proof. Let ¢ : Aej— Ne; be an isomorphism. ¢(e;) = ne; = ejne; for some
ne N. Since pe N, there exists 2 in A such that Aejue; = pe; = e;dejne;. Hence,
p=eiene;. Therefore, 1) eide; = pee;,j and ejne; = e'ej,i or 2) eide; =¢, and ene;
= pe'ej,;, where ¢, ¢ are unit elements in R. Case 1). Ne; = Aejne; = Aej; and
©(pQRe;) = pQej,; = pRe;. Hence, Ne;/pRe; <~ A/pe;. Since Ae;,; is irreducible,
(&) =1(ej) +1.

LemMa B. A/pQ is an hereditary ring with minimum conditions.

Proof. Since N =>)Ne;, N/p2=>® N/pQe; is A/p@-projective by Lemma
A and a fact that Ne; is indecomposable.

Lemma C. We assume 1(e;)=1(¢i+1) for all i, then 1(e;) >1(ei+1).

Proof. We assume that [(e,) <I(@n-1) <+ - <I(€;+1). Since for n <j<i+1
Nej = Aej+1 by Lemma A. Hence ¢j+.NejXe¢j+14e;+1. Therefore, ede = Th-i(R/
b ; M; ;= R/p) by Theorem 4' and the assumption 224, where e= ki 1ek' If
l(e;+) =1(¢;), then Ne; = Ae¢j+» by Lemma A. Hence, ¢4¢ = Tn—i+1(R};)+; Mii,i
=(0), Mr:i=R/p for (B, D) = (i+1, 7)), where ¢ =¢;+e¢. Therefore, N has
the same components on %" and i + 1** columns. Since 4 = Homa(N, N) by [7],
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Theorem 6.1, A= ¢i+1,i, €,i+1, which is a contradiction.

From this lemma we have that e;4¢; = R for i>j. Therefore, we have

TueoreMm. Let R be a discret rank one valuation ring with quotient field K.

An hereditary order over R in K, is isomorphic to

R » »p

R R
R R R

where b is a unique maximal ideal in R.
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