THE Pⁿ-INTEGRAL

P. S. BULLEN

(Received 3 July 1970; revised 20 April 1971)

(Communicated by B. Mond)

1. Introduction

In [5] James defined an *n*th order Perron integral, the P^{n} - ntegral, and developed its properties. His proofs are often indirect, using properties of the C_kP -integrals of Burkill, [3]. In this paper a simpler definition of the P^{n} -integral is given — the original and not completely equivalent definition, was probably chosen as James considered this integral as a special case of one defined in terms of certain symmetric derivatives, [5], when end points of the interval of definition had naturally to be avoided. We then give direct proofs of the basic results, give a characterization of P^{n} -primitives, and connect the integral with certain work of Denjoy, [4].

2. Peano Derivatives

Suppose F is a real-valued function defined on the bounded closed interval [a, b] then if it is true that for $x_0 \in]a, b[$

(1)
$$F(x_0 + h) - F(x_0) = \sum_{k=1}^r \alpha_k \frac{h^k}{k!} + O(h^r), \quad \text{as } h \to 0$$

where $\alpha_1, \dots, \alpha_r$ depend on x_0 only, but not on h, or r then α_k , $1 \le k \le r$, is called the *Peano derivative of order k of F at x_0*, and we write $\alpha_k = F_{(k)}(x_0)$. If F possesses derivatives $F_{(k)}(x_0)$, $1 \le k \le r - 1$, write

(2)
$$\frac{h^{r}}{r!}\gamma_{r}(F;x_{0},h) = F(x_{0}+h) - F(x_{0}) - \sum_{k=1}^{r-1} \frac{h^{k}}{k!}F_{(k)}(x_{0}),$$

and define

$$\overline{F}_{(r)}(x_0) = \limsup_{h \to 0} \gamma_r(F; x_0, h)$$

(3)

$$\underline{F}_{(r)}(x_0) = \liminf_{h \to 0} \gamma_r(F; x_0, h)$$

Further, by restricting h to be positive, or negative, in (1), or (3) we can define

219

P. S. Bullen

one-sided Peano derivatives, written $F_{(k),+}(x_0)$, $F_{(k),-}(x_0)$, $F_{(k),+}(x_0)$ etc. If we say $F_{(k)}$, $1 \leq k \leq r$, exists in (a, b) we will mean that $F_{(k)}$ exists in]a, b[and that the appropriate one sided derivates exist at those of the points a and b that are in (a, b).

3. Riemann Derivatives

Let x_0, \dots, x_r be (r+1) distinct points from [a, b] then the *r*th divided difference of F at these (r+1) points is defined by

(4)
$$V_r(F) = V_r(F;x_r) = V_r(F;\{x_k\}) = V_r(F;x_0,\cdots,x_r)$$
$$= \sum_{k=0}^r \frac{F(x_k)}{w'(x_k)},$$

where

(5) $w(x) = w_r(x) = w_r(x; x_k);$ etc. = $\prod_{k=0}^{r} (x - x_k).$

Given the (r + 1) points P_k , $0 \le k \le r$, with coordinates $(x_k, F(x_k))$, $0 \le k \le r$, respectively, there is a unique polynomial of degree at most r passing through these points given by

(6)
$$\pi_r(F;x;P_k) = \pi_r(x;P_k) = \pi_r(x;x_0,\cdots,x_r) \text{ etc.}$$
$$= \sum_{k=0}^r F(x_k) \prod_{\substack{j=0\\j < k}}^r \frac{(x-x)_j}{(x_k-x_j)}.$$

Using the divided difference we now define another derivative. Suppose all of x_1x_1, \dots, x_r are in [a, b] and

(7)
$$\begin{aligned} x_k &= x + h_k, \ 0 \leq k \leq r, \text{ with} \\ 0 \leq \left| h_0 \right| < \cdots < \left| h_r \right|, \end{aligned}$$

then the rth Riemann derivative of F at x is defined by

(8)
$$D'F(x) = \lim_{h_r \to 0} \cdots \lim_{h_0 \to 0} r! V_r(F; x_k)$$

if this iterated limit exists independently of the manner in which the h_k tend to zero, subject only to (7). In a similar manner we define the upper (lower) or one-sided derivatives by replacing all r + 1 limits by upper (lower) or one-sided limits; these will be written $\bar{D}^r F(x)$, $\bar{D}^r_+ F(x)$ etc. If we say $D^r F$ exists in (a, b) we make the same gloss as for $F_{(r)}$. The following result can be found in [2].

The p^n -integral

THEOREM 1. (a) If $x \in [a, b[$ then $D'_+F(x) = F_{(r),+}(x)$, provided one side exists.

(b) If $F_{(r)}$ exists at all points of [a, b] then $F_{(r)}$ possesses both the Darboux property and the mean-value property.

The usual rth order derivative of F at x, $x \in (a, b)$, will be written $F^{(r)}(x)$.

4. n-Convexity

A real-valued function F defined on the closed bounded interval [a, b] is said to be *n*-convex on [a, b] iff for all choices of n + 1 distinct points, x_0, \dots, x_n , in [a, b], $V_n(F; x_k) \ge 0$, [2, 5]. If -F is *n*-convex then F is said to be *n*-concave. The only functions that are both *n*-convex and *n*-concave are polynomials of degree at most n - 1, [2, Lemma 1].

If n = 1 this is just the class of monotonic increasing functions and for n = 2 it is the class of convex functions; (the class n = 0 is just the class of non-negative functions, but we will usually only be interested in $n \ge 1$).

Various properties of n-convex functions were obtained in [2]. We state them here for convenience.

THEOREM 2. Let $P_k = (x_k, y_k)$, $1 \le k \le n$, $n \ge 2$, $a \le x_1 < \cdots < x_n \le b$, be any n distinct points on the graph of the function F. Then F is n-convex iff for every such set of n points the graph lies alternately above and below the graph of the polynomial $\pi_{n-1} F; x; P_{12}$, lying below if $x_{n-1} \le x \le x_n$. If so then $\pi_{n-1}(x; P_k) \le F(x)$, $x_n \le x \le b$; and $\pi_{n-1}(x; P_k) \le F(x)$ ($\ge F(x)$) if $a \le x < x_1$, n being even (odd).

The definition, (6), of $\pi_r(x; P_k)$ can be extended to cover the case when not all of the P_k are distinct. Thus if only s of these points are distinct then besides giving the values at the s points, a total of r + 1 - s derivatives must also be given — either r + 1 - s derivatives all at one point, or r + 1 - s first derivatives at r + 1 - s distinct points, (when $r + 1 - s \leq s$), etc. Of the many possible extensions to Theorem 2 we state

THEOREM 3. Let $P_k = (x_k, y_k)$, $1 \le k \le r$, $a_1 \le x_1 < \cdots < x_r \le b$, be r distinct points on the graph of the function F. Suppose that $F_{(s),+}(x_1)$ exists, $1 \le s \le n-r$. Then Theorem 2 holds if $\pi_{n-1}(x; P_k)$ is taken to have

$$\pi_{n-1}(x_s; P_k) = F(x_s), \ 1 \leq s \leq r, \ \pi_{n-1}^{(s)}(x_1; P_k) = F_{(s)+1}(x_1), \ 1 \leq s \leq n-r,$$

and if P_1 is considered as n - r + 1 points at and to the right of P_1 but to the left of P_2 .

THEOREM 4. (a) If F is n-convex on [a, b] and $P_k = (x_k, y_k)$, $1 \le k \le n$ are n distinct points on the graph of F, $a \le x_1 < b$, let $x_k = x_1 + \varepsilon_k h$, $0 < \varepsilon_2 < \infty$

 $\cdots < \varepsilon_n$. Then as $h \to 0 + \pi_{n-1}(x; P_k)$ converges uniformly to the right tangent polynomial at x_1 ,

$$\tau_{n-1+}(F;x;x_1) = \tau_+(x) = F(x_1) + \sum_{k=1}^{n-2} \frac{(x-x_1)^k}{k!} F^{(k)}(x_1) + \frac{(x-x_1)^{n-1}}{(n-1)!} F_{(n-1)+}(x_1), \qquad x_1 \le x \le b.$$

Further on the right of $x_1, \tau_+ \leq F$.

(b) A similar result holds for the left tangent polynomial at $x_1, \tau_-(x; x_1)$, $a \leq x \leq x_1, a < x_1 \leq b$. However in this case if n is even (odd) then on the left of $x_1 \tau_- \leq F(\geq F)$.

(c) At all but a countable set of points x_1 , a similar result holds for the tangent polynomial at x_1 , $\tau(x_1; x)$, a < x < b, $a < x_1 < b$. However if n is even the graph of τ lies below that of F, whereas if n is odd the graphs cross, τ being above on the left of x_1 , and below on the right of x_1 .

THEOREM 5(a). If F is an n-convex function on [a, b] and

$$a \leq x_1 < \cdots < x_n \leq b, \ a \leq y_1 < \cdots < y_n \leq b, \ x_k \leq y_k, \ 1 \leq k \leq n,$$

then $V_{n-1}(F; x_k) \leq V_{n-1}(F; y_k)$.

(b). If F is n-convex in $[a, b], |F| \leq K$, then

$$|F_{(k)}(x)| \leq AK \sup \left\{\frac{1}{(b-x)^k}, \frac{1}{(x-a)^k}\right\}, \quad 0 \leq k \leq n-1$$

where A is a constant independent of k, F and x, and where if k = n - 1 the derivative is to be interpreted as $\sup(|F_{(n-1),+}(x)|, |F_{(n-1),-}(x)|)$.

(c). If F is n-convex on [a,b], $a \leq x \leq y \leq b$, $a \leq x + h \leq y$, and $x \leq y + k \leq b$ then

$$\gamma_{n-1}(F;x;h) \leq F_{(n-1)-}(y) \text{ and } F_{(n-1),+}(x) \leq \gamma_{n-1}(F;y;k),$$

where γ_{n-1} is as defined in (2).

THEOREM 6. If F is n-convex on [a, b], $a < \alpha < \beta < b$, $E_{\lambda} = \{x : \alpha \leq x \leq \beta$ and $\overline{F}_{(n)}(x) \geq \lambda\}$ then

 $km^{*}(E_{\lambda}) \leq 2n\{F_{(n-1),-}(\beta) - F_{(n-1),+}(\alpha)\}.$

THEOREM 7. If F is n-convex then (a) $F^{(r)}$ is (n-r)-convex, $1 \leq r \leq n-2$, (b) $F^{(n-1)}$ exists at all except a countable set of points,

(c) $F^{(n)}$ exist a.e.

(9)

THEOREM 8. If $n \ge 2$, and (i) $F_{(1)}, \dots, F_{(n-1)}$ exist in [a, b], (ii) $\overline{F}_{(n),+}(x) \ge 0$, $x \in [a,b] \sim E$, |E| = 0, (iii) $\overline{F}_{(n),+}(x) > \infty$, $x \in [a,b] \sim C$, C countable then F is n-convex. If F is defined on [a,b] as well as $F_{(k)}$, $1 \le k \le n-1$, let us write

(10)

$$\omega_n(F;a,b) = \omega_n(a,b)$$

$$= \max\left\{\sup_{a < x < b} |(x-a)\gamma_n(F;a;x-a)|, \sup_{a < x < b} |(b-x)\gamma_n(F;b;b-x)|\right\};$$

this quantity was introduced by Sargent, [10].

In [2] it was shown that F is the difference of two *n*-convex functions iff $\sum_{k=1}^{m} \omega_n(F; a_k, b_k) < K$ for all finite sets of non-overlapping intervals, $[a_k, b_k]$, $1 \le k \le m$. It was also shown in [2] that if F is *n*-convex then

(11)
$$\omega_n(F;a,b) \leq n\{F_{(n-1)}(b) - F_{(n-1)}(a)\}.$$

5. The Pⁿ-integral

Let f be a real-valued function on [a, b] then a function M continuous on [a, b] is called a Pⁿ-major function of f on [a, b], or just a major function, if there is no ambiguity, iff

(a) $M_{(k)}$ exists and is finite on $[a, b], 1 \le k \le n-1$,

(b) $\underline{M}_{(n)}(x) \ge f(x), x \in [a, b] \sim E, |E| = 0,$

(c) $\underline{M}_{(n)}(x) > -\infty$, $x \in [a, b] \sim C$, C countable,

(d) $M_{(k)}(a) = 0, \ 0 \le k \le n-1.$

If -m is a major function of -f then m is called a minor function, or more precisely, a Pⁿ-minor function of f on [a, b]. It is clear from these definitions that f need only be finite a.e.

This definition differs from that in [5], in the use of the end-points in (a), in the existence of the sets E and C, and also in condition (d). In [5] the major function is normalized instead by requiring it to be zero on a given set of n distinct points a_1, \dots, a_n ; let us call these functions, *J*-major functions over $(a_k)_{1 \le k \le n}$.

Standard arguments, using Theorems 3 and 8, show that if M is any major function, m any minor function; then M - m is a non-negative *n*-convex function, [compare with 5, Lemmas 5.1, 5.2].

For $a < c \leq b$ define

 $\tilde{F}(b) = \tilde{P}^n - \int_a^c f = \inf\{t: t = M(c), M \text{ is a major function of } f\}, the upper P^n-integral of f on [a, b]; in a similar way we define the lower P^n-integral, <math>P^n - \int_a^c f$; if there is no ambiguity we will just write, $\int_a^c f$ or, $\int_a^c f$. If $\tilde{F}(c) = F(c)$, we write the common value, $F(c)^c = P^n - \int_a^c f$ (or just $\int_a^c f$), and if further this value is finite we say f is P^n -integrable on [a, c].

If f is P^n -integrable in the sense of [5], let us say f is $J - P^n$ -integrable over $(a_k; b)$.

THEOREM 9. (a) f is Pⁿ-integrable on [a, b] iff for each $\varepsilon > 0$ there exists a major function M and a minor function m, such that $0 \leq M(b) - m(b) \leq \varepsilon$.

(b) f is P^n -integrable on [a, b] iff given $\varepsilon > 0$ there exist continuous functions M, m on [a, b] such that (i) $M_{(k)}$, $m_{(k)}$ exist and are finite in [a, b], $1 \le k \le n-1$ (ii) $-\infty \ne M_{(n)}(x) \ge f(x) \ge m_{(n)} \ne \infty$ (iii) $M_{(k)}(a) = m_{(k)}(a) = 0$, $0 \le k \le n-1$ (iv) $0 \le M(b) - m(b) < \varepsilon$.

(c) If f is Pⁿ-intergrable on [a, b], f = g a.e. then g is Pⁿ-integrable on [a, b] and $\int_{a}^{b} f = \int_{a}^{b} g$.

PROOF. (a) Immediate.

(b) The case n = 1 is due to McGregor, [6].

Obviously we have to show that if f is *P*-integrable then there exist functions M, m satisfying the conditions (i)-(iv) of (b) with n = 1. Since f is P-integrable there exists functions M, m as in (a), with n = 1: if $F = P - \int_a^x f$ then F' exists and is finite almost everywhere (Theorem 20 below or [8, p. 202]), further F - m and M - F are monotonic increasing (Theorem 10(a) below) and so m = F - (F - m), M = F + (M - F) have finite derivatives almost everywhere. Let $E = \{x: \text{ either } M' (x) = \pm \infty, m(x) = \pm \infty, \underline{M}(x) = -\infty \text{ or }$ $\overline{m}'(x) = \infty$ then E is of measure zero and can be covered by a set \vec{E} that is a G_{δ} is also of measure zero and hence by a result due to Zahorski, [12], there is a function w on [a, b] such that (i) w is absolutely continuous, (ii) w' exists everywhere. (iii) if $x \in \tilde{E}$, $w'(x) = \infty$, (iv) if $x \notin \tilde{E}$, $0 \leq w'(x) < \infty$, (v) w(a) = 0, $w(b) < \varepsilon$. Now define $\tilde{m} = m - w$ $\tilde{M} = M + w$ then we see that they are the required functions since (i) \tilde{M} , \tilde{m} are continuous on [a, b], (ii) if $x \in \tilde{E}$, $\tilde{M}'(x) \ge M'$ $(x) + w'(x) = \infty$ and so M'(x) exists with value ∞ ; if $x \notin \tilde{E} \ \tilde{M}'(x)$ exists and is finite, (iii) similarly \tilde{m}' exists everywhere in [a, b], (iv) $\tilde{M}' \ge f \ge \tilde{m}'$, (v) $\tilde{m}(a)$ $= \tilde{M}(a) = 0$, (vi) $0 \leq M(b) - m(b) \leq \varepsilon$. The general case follows similarly using the extension of Zahorski's function introduced in [2, Theorem 16]

(c) Immediate.

THEOREM 10. (a) For all major functions M, minor functions m, of f, $M - \tilde{F}$ and F - m are non-negative n-convex functions.

(b) $\tilde{F}_{(k)}$ exists in]a, b[$1 \leq k \leq n-2$; $\tilde{F}_{(n-1)}$ exists except on a countable set.

(c) If f is Pⁿ-integrable then $F_{(n-1)}$ exists on]a, b[.

(d) If f is Pⁿ-integrable $F(a) = F_{(k)}(a) = 0, 1 \le k \le n-1$.

PROOF. (a) Immediate.

(b) Immediate using (a), the definition of M and Theorem 7.

(c) By Theorem 1 and Theorem 5(a) and (b) if g is n-convex in [a,b], |g| < K then if $a < \alpha < x_1, \dots, x_n \leq \beta < b$, $|V_{n-1}(g;x_k)| < KA$, A de-

pending on α , β but not on x_1, \dots, x_n . So taking g = F - M, M a suitable major function of f we have

$$\left| V_{n-1}(F; x_k) - V_{n-1}(M; x_k) \right| < K\varepsilon.$$

Letting $x_k \to x, 1 \le k \le n$, the existence of $F_{(n-1)}(x)$ follows from that of $M_{(n-1)}(x)$, and Theorem 1. Thus $F_{(n-1)}$ exists in]a, b[.

(d) Immediate since F lies between two functions M, and m, both of which are $0(x - a)^{n-1}$ near a.

COROLLARY 11. If f is P^n -integrable then (a) for every major function M, and every minor function m, M - F and F - m are r-convex on [a, b], $0 \le r \le n$, (b) $F_{(r)}(b)$ exists, $1 \le r \le n - 1$.

PROOF. (a) The cases r = 0, *n* are just Theorem 10(a). By Theorem 5, and using the notation introduced there, since M - F is *n*-convex, we have that $V_{n-1}(M - F; x_k) \ge V_{n-1}(M - F; z_k)$. Letting $z_k \to a$, $1 \le k \le n$ we have by Theorem 10(d), that $V_{n-1}(M - F, x_k) \ge 0$; that is, M - F is (n-1)-convex. In a similar way we can show that M - F is k-convex, $1 \le k \le n - 2$, and that F - m is k-convex, $1 \le k \le n - 1$.

(b) Since, from (a), M - F is (k + 1)-convex, $1 \le k \le n - 1$, and $V_k(M; x_j) = V_k(F; x_j) + V_k(M - F; x_j)$ it follows, by Theorem 5, that $\lim_{\substack{x_j \to b \\ 0 \le j \le k}} V_k(F; x_j)$ exists.

Further M - F is k-convex, so $V_k(M - F; x_j) \ge 0$ and so $V_k(M; x_j) \ge V_k(F; x_j)$; similarly $V_k(F; x_j) \ge V_k(m; x_j)$ and so since both $M_{(k)}(b)$ and $m_{(k)}(b)$ exist the above limit is finite.

THEOREM 12. (a) If f is P^n -integrable on [a, b] it is P^n -integrable on any sub-interval $[\alpha, \beta]$. Further, if F is the P^n -integral of f on [a, b], then

$$\int_{\alpha}^{x} f = \int_{a}^{x} f - \tau_{n-1}(F; x; \alpha), \qquad \alpha \leq x \leq \beta.$$

(b) If f is Pⁿ-integrable on [a, b] then it is $J - P^n$ -integrable over $(a_k: b)$ and

$$J - P^{n} - \int_{(a_{k})}^{b} f = P^{n} - \int_{a}^{b} f - \pi_{n-1}(F;b;a_{k}),$$

F being the P^n -integral of f.

PROOF. (a) If $\varepsilon > 0$ and M a major function of f such that $0 \le M(b) - F(b) \le \varepsilon$, then since M - F is k-convex we have by Theorem 5(b) that $0 \le (M - F)_{(k)} (\alpha) (b - a)^k \le A \varepsilon$.

If we write M^* for $M - \tau^n(M; \alpha)$ and define F^* similarly then

$$0 \leq M^*(\beta) - F^*(\beta) \leq \underline{F}\varepsilon.$$

Since B does not depend on M this is sufficient to prove (a).

(b) Let M be a major function of the type occurring in Theorem 9 (b), then it is immediate that $M^* = M - \pi_{n-1}(M; a_k)$ is a J-major function. Defining m^* in a similar way, we have that

 $|M^{*}(b) - m^{*}(b)| \leq M(b) - m(b) + |\pi_{(n-1)}(M - m; b; a_{k})|$

which by Theorem 9 (b), and Definition 5.3 of [5] is sufficient to complete the proof.

If n > 1 the converse of Theorem 12(b) is not true in general. Consider

$$f(x) = (1 - x)^{-3/2}, -1 < x < 1;$$

= 0, x = ± 1.

Then $F(x) = (\sqrt{3}-2)x + 1 - (1-x^2)^{1/2}$ is the $J - P^2$ -integral of f over (0, 1/2; x). However f is not P^2 -integrable on [-1, 1] since $F'(-1) = -\infty$.

Corollary 13. If f is Pⁿ-integrable on [a,b], and F is its Pⁿ-integral, $\varepsilon > 0$, then a major function M and a minor function m can be chosen so that if R = M - F, r = F - m then

(12)
$$0 \leq \max \left\{ R_{(k)}(x), r_{(k)}(x) \right\} \leq \varepsilon, \qquad a \leq x \leq b, \ 0 \leq k \leq n-1.$$

(b) If f is Pⁿ-integrable on [a,b] and on [b,c] then f is Pⁿ-integrable on [a,c]. Further if F^1 is the Pⁿ-integral of f on [a,b], F^2 the Pⁿ-integral of f on [b,c] then

$$F(x) = F^{1}(x), \quad a \leq x \leq b$$

= $F^{2}(x) + \tau_{n-1,-}(F^{1};x;b), \quad b \leq x \leq c$

is the P^n -integral of f on [a, c].

PROOF. (a) Since $R_{(k)}(x)$, $0 \le k \le n-1$, exists for $a \le x \le b$, it follows from Theorem 1(b) that it suffices to prove (12) for $a \le x < b$. If $[\alpha, \beta]$ is any subinterval of [a, b], $a < \alpha < \beta < b$, then the first inequality obtained in the proof of Theorem 12(a) implies (12) holds in $[\alpha, \beta]$.

Let $\beta_0 = a < \beta < \beta_2 \dots < b$, with $\lim_{j \to \infty} \beta_j = b$; and let ε_j , $j \ge 0$ be a sequence of positive numbers to be specified later.

Let R^j be chosen to satisfy (12) in $[\beta_j, \beta_{j+1}]$, with $\varepsilon = \varepsilon_j$; since in fact R^j is defined on $[\beta_j, b]$ we can also require that $0 \le R^j \le \varepsilon_0$ on that interval.

Define the functions P^j and Q^j on $[\beta_j, \beta_{j+1}], j \ge 0$, inductively as follows.

$$P^{0} = 0, \qquad Q^{0} = P^{0} + R^{0}$$

 $P^{j}(x) = \tau(Q^{j-1}; x; \beta_{j}), \qquad Q^{j} = P^{j} + R^{j}.$

Then,

$$\begin{aligned} \left| \mathcal{Q}_{(k)}^{0} \right| &\leq \varepsilon_{0}, \qquad 1 \leq k \leq n-1 \\ \left| \mathcal{Q}_{(k)}^{j} \right| &\leq \varepsilon_{j} + \sum_{i=k}^{n-1} \mathcal{Q}_{(i)}^{j-1}(\beta_{j}) \frac{(\beta_{j+1} - \beta_{j})^{i-k}}{(i-k)!} \end{aligned}$$

Choose $\beta_j, \varepsilon_j, j \ge 0$ so that

$$\left|Q_{(k)}^{j}\right| \leq \varepsilon, \quad 0 \leq k \leq n-1, \quad j \geq 0.$$

Now define

$$R(x) = Q^{j}(x), \qquad \beta_{j} \leq x < \beta_{j+1}$$
$$= \lim_{y \to b} R(y), \qquad x = b.$$

It can then be checked that M = R + F is a major function of f with (12) satisfied.

A similar construction can be used to obtain a suitable minor function.

(b) Let M^1 be a major function of f on [a, b] chosen so that (12) holds with $\varepsilon = \varepsilon_1 e^{c-b}$ and let M^2 be any major function of f on [b, c]. If then

$$M(x) = M^{1}(x), \quad a \leq x \leq b$$

= $M^{2}(x) + \tau_{n-1,-}(M^{1};x;b), \quad b \leq x \leq c,$

M is a major function of f on [a, c] and

$$0 \leq F(c) - M(c) \leq F^2(c) - M^2(c) + \varepsilon_1;$$

this is sufficient to prove (b).

THEOREM 14. If F is a real-valued function on [a, b] such that (a) $F_{(k)}$ exists in [a, b], $1 \le k \le n-1$, (b) $F_{(n)}(x)$ exists, $x \in [a, b] \sim E$, |E| = 0, (c) $F_{(n)}$, $F_{(n)}$ are finite everywhere on a countable set then if $f(x) = F_{(n)}(x)$, $x \in [a, b] \sim E$, and is zero elsewhere then f is Pⁿ-integrable and

$$\int_a^x f = F(x) - \tau_{n-1,+}(F;x;a).$$

PROOF. Immediate.

The converse of this is less immediate and is proved later, Theorem 20 below.

THEOREM 15. If f is P^n -integrable on [a,b] then f is P^{n+1} -integrable on [a,b] and

$$P^{n+1} - \int_a^b f = \int_a^b (P^n - \int_a^x f) dx.$$

PROOF. This is given in [5, Theorem 7.2], although in the present case of unsymmetric derivatives the details are much simpler.

6. The P^n - and C_{n-1} -Integrals

As a result of the above modifications in the definition of the P^n -integral the relationship between this scale of integrals and the Cesàro-Perron scale of Burkill, [3], is much neater.

The C_0P -integral is the classical Perron integral. The C_nP -integral is defined by induction as follows.

(i) A function f is C_n -continuous on [a, b] if it is $C_{n-1}P$ -integrable and

$$\lim_{h \to 0} \frac{n}{h^n} C_{n-1} P - \int_x^{x+h} (x+h-t)^{n-1} f(t) dt = f(x),$$

for every x in [a, b].

(ii) If f is $C_{n-1}P$ -integrable on [a, b] then the upper C_n -derivative of f at x is

$$C_n \bar{D} f(x) = \limsup_{h \to 0} \frac{n+1}{h} \Big\{ \frac{n}{h^n} C_{n-1} P - \int_x^{x+h} (x+h-t)^{n-1} f(t) dt - f(x) \Big\}.$$

The lower C_n -derivative of f at x is similarly defined.

(iii) If f is defined on [a, b] then M is called a $C_n P$ -major function of f on [a,b], iff

- (a) M is C_n -continuous on [a, b],
- (b) $C_n \underline{D}M(x) \ge f(x), \quad x \in [a, b] \sim E, \quad |E| = 0,$ (c) $C_n \underline{D}M(x) > -\infty, \quad x \in [a, b] \sim C, \quad C \text{ countable,}$
- (d) M(a) = 0.

A $C_n P$ -minor function is defined in a similar manner.

(iv) If for every $\varepsilon > 0$ there is a $C_n P$ -major function M and a $C_n P$ -minor function m such that $|M(b) - m(b)| < \varepsilon$ then f is said to be $C_n P$ -integrable in [a, b].

This definition is more general than that in [3] because of the existence of the exceptional sets E and C. However just as Theorem 9 (b) shows that the existence of these sets does not widen the scope of the P^n -integral it can also be shown that the above definition is equivalent to the usual one; see for instance the foot note on page 162 of [1].

THEOREM 16. f is Pⁿ-integrable on [a,b] iff it is $C_{n-1}P$ -integrable in [a,b]. If F is the Pⁿ-integral of f then

$$F_{(n-1)}(x) = C_{n-1}P - \int_{a}^{x} f$$

$$F(x) = P - \int_{a}^{x} C_{1}P - \int_{a}^{x} C_{2}P - \int_{a}^{x} \cdots C_{n-1}P - \int_{a}^{x} f.$$

The p^n -integral

PROOF. (a) If f is $C_{n-1}P$ -integrable then the proof of Theorem 9.1 in [5] shows f is P^n -integrable. The proof now has fewer awkward details and can include the end points of [a, b] in its argument.

(b) If f is P^n -integrable then as in [5, Theorem 11.1], if M is a P^n -major function then $M_{(n-1)}$ is a $C_{n-1}P$ -major function. Further, by (12), we can choose M so that $0 \leq F_{(n-1)}(x) - M_{(n-1)}(x) \leq \varepsilon$ for all of x, $a \leq x \leq b$, which completes the proof.

It is seen from (13) that if F is a P^n -integral then $F_{(k)}$ is C_k -continuous, $0 \le k \le n-1$, [5, Lemma 11.1]. This is one place where C_k -concepts give information not obtainable directly; there seems to be no other continuity concept that describes the bounds set on the lack of ordinary continuity of Peano derivatives.

It follows from Theorem 16 and [9] that the P^n -integral can be given a descriptive definition. Following the spirit of this paper we will do this directly in the following section.

7. The D^n -Integral

Most of the concepts introduced in this section are based on ideas due to Sargent, [9, 10]; the notation has been changed slightly to agree better with the present work.

A function F is said to be AC_n^* over (or on) a bounded set E iff (a) $F_{(n-1)}$ exists in some interval containing E, and (b) for every $\varepsilon > 0$ there is an $\delta > 0$ such that, using notation of (10),

$$\sum_{k=1}^{m} \omega_n(a_k, b_k) < \varepsilon$$

for all finite sets of non-overlapping intervals, $[a_k, b_k]$, $1 \le k \le m$, with end points in *E*, and such that

$$\sum_{k=1}^{m} (b_k - a_k) < \delta.$$

A function F is ACG_n^* over (or on) a bounded set E iff (a) $F_{(n-1)}$ exists in some interval containing E and (b) $E = \bigcup_{k+N} E_k$ with f being AC_n^* on each E_k , $k \in N$; where N is the set of natural numbers.

If n = 1 these concepts reduce to the classical ones of AC^* and ACG^* respectively, [8]. The main properties of these classes of functions are collected in

LEMMA 17. (a) If F is AC^*_n over a set E then (i) F is AC^*_n over \overline{E} , (ii) $F_{(n-1)}$ is AC over E, (iii) $F_{(n-1)}$ is approximately derivable a.e. on E, $F_{(n)} = AD F_{(n-1)}$ a.e., and $F_{(n)}$ is Lebesgue integrable on E, (iv) if E is a bounded closed set with contiguous intervals $[a_k, b_k]$, $k \in N$ then $\sum_{k \in N} \omega_n(a_k, b_k) < \infty$. (b) If F is such that $F_{(n-1)}$ exists in some interval containing a bounded closed set E and (ii) and (iv) of (a) hold then F is AC^*_n on E.

(c) F is ACG_n^* on [a, b] iff (i) $F_{(n-1)}$ exists in [a, b] and (ii) $[a, b] = \bigcup_{k+N} Q_k$, Q_k being closed and F being AC_n^* on Q_k , $k \in N$.

(d) If F, G are ACG^*_n over [a, b] and $F_{(n)} = G_{(n)}$ a.e. then (i) F - G is a polynomial of degree at most (n - 1), (ii) $\gamma_n(F; x; h) = \gamma_n(G; x; h)$, $a \leq x \leq b$, $a \leq x + h \leq b$.

PROOFS. The proofs of (a), (c), (d) are either immediate or are in [10]; the proof of (b) is an adaption of the proof of the similar result in [9].

A function f is said to be D^n -integrable on [a, b] iff there is a function F such that (a) F is ACG^*_n on [a, b], (b) $F_{(k)}(a) = 0$, $1 \le k \le n - 1$, (c) $F_{(n)}(x) = f(x)$ a.e. Further we call F the D^n -integral of f, and write $F(x) = D^n - \int_a^x f$. It follows from Lemma 17 that if such an F exists it is unique and from Theorem 10 and [9, 10] that the P^n - and D^n -integrals are completely equivalent. This we now prove directly.

THEOREM 18. Suppose f is Pⁿ-integrable on every $[\alpha, \beta]$, $a < \alpha < \beta < b$ and put $I(\alpha, \beta) = \int_{\alpha}^{\beta} f$. Suppose further that

(a)
$$\lim_{\alpha \to a} \frac{I(\alpha, \beta)}{(\alpha - a)^{n} - 1} = 0,$$

and (b) there is a polynomial p of degree at most n-1 such that

$$\lim_{\beta \to b} \frac{I(\alpha, \beta) - p(\beta)}{(b - \beta)^{n-1}} = 0,$$

then f is P^n -integrable on [a, b] and

$$\int_a^b f = \lim_{\substack{\alpha \to a \\ \beta \to b}} I(\alpha, \beta).$$

PROOF. Let us put

$$F(x) = 0, \quad x = a,$$

= $\lim_{\alpha \to a} I(\alpha, x), \quad a < x < b,$
= $\lim_{y \to b} F(y), \quad x = b,$

Then $F_{(k)}(x)$ exists, $1 \le k \le n-1$, and $a \le x \le b$; further $F_{(k)}(a) = 0$, $1 \le k \le n-1$. We show that F is the Pⁿ-integral of f on [a, b]. Let $a < \cdots < x_{-1} < x_0 < x_1 < \cdots b$ with $a = \lim_{k \to -\infty} x_k \ b = \lim_{k \to \infty} x_k$; The pⁿ-integral

write $I_k(x)$ for $I(x_{k-1}, x)$, $x_{k-1} \leq x < x_k$; suppose $\varepsilon_k > 0$, $k \in \mathbb{Z}$, (where Z is the set of integers), is a sequence of positive numbers to be specified later.

Let M_k be a major function of f on $[x_{k-1}, x_k]$ such that

$$0 \leq M_k(x) - I_k(x) < \varepsilon_k \inf\{(x-a)^{n-1}, (b-x)^{n-1}\}$$

and put $R_k = M_k - I_k$.

Now define

$$M(x) = F(x) + \sum_{\nu = -\infty}^{k-1} R_{\nu}(x_{\nu}) + R_{k}(x), \qquad x_{k-1} \leq x < x_{k}$$

= 0, $x = a$,
= $F(b) + \sum_{\nu = -\infty}^{\infty} R_{\nu}(x_{\nu}), \qquad x = b$.

Then for $\alpha \leq 0$ and $-\alpha$ large enough

$$0 \leq M(x) - F(x) \leq (x - a)^{n-1} \sum_{v = -\infty}^{k-1} \varepsilon_k, \quad x_{k-1} \leq x < x_k$$

and so by suitable choice of $\{\varepsilon_k\}$, $\alpha \leq 0$, we see that $(M - F)_{(k)}(a) = 0$ and so that $M_{(k)}(a) = 0$, $1 \leq k \leq n - 1$. Similarly if $\alpha \geq 0$ and large enough

$$0 \leq (M(b) - F(b)) - (M(x) - F(x)) \leq (b - x)^{n-1} \sum_{\nu=k}^{\infty} \varepsilon_k,$$

 $x_{k-1} \leq x < x_k$; from which it is easy to deduce that $M_{(k)}(b)$ exists, $1 \leq k \leq n-1$, if $\{\varepsilon_k\}$, $\alpha \geq 0$ are chosen suitably.

Finally we can still choose ε_k , $k \in N$ so that $0 \leq M - F \leq \varepsilon$, for any $\varepsilon > 0$. This, together with a similar construction for a minor function completes the proof.

The conditions of Theorem 18 cannot be relaxed as is seen by the following example, [4]. Let

$$F(x) = x^{n+\alpha} \sin x^{-p}, \quad 0 < x \le 1,$$

= 0, x = 0,

 $n \ge 2$, an integer, $0 < \alpha < 1$, $p \ge n + \alpha - 1$. Then $F_{(j)}(x)$ exists for all j $0 < x \le 1$, $F_{(j)}(0)$ exists $1 \le j \le n$. Thus if $f(x) = F_{(n+2)}(x)$, $0 < x \le 1$ Thus if

$$f(x) = F_{(n+2)}(x), \quad 0 < x \le 1$$

= 0, $x = 0$.

Then f is $P^{(n+2)}$ -integrable on $[\varepsilon, 1]$ for all ε but is not $P^{(n+2)}$ -integrable on [0,1], since $F_{(n+1)}(0)$ does not exist.

LEMMA 19. If E is a closed bounded set with end points a and b and contiguous intervals $[a_k, b_k]$ in [a, b], $k = 1, 2, \cdots$ and if (a) f is Lebesgue integrable on E,

(b) f is P^{n} -integrable on each $[a_{k}, b_{k}]$, $k = 1, 2, \cdots$, (c) $\sum_{k=1} \omega_{n}(F^{k}; a_{k}, b_{k}) < \infty$ then f is P^{n} -integrable on [a, b], and

$$P^{n} - \int_{a}^{b} f = \frac{1}{(n-1)!} L - \int_{a}^{b} 1_{Q}(t)(b-t)^{n-1} f(t) dt + \sum_{k} \tau_{n-1,-}(F^{k};b;b_{k}),$$

(where $1\mu(t) = 1$, $t \in Q$, = 0, $t \notin Q$). where F^k is the Pⁿ-integral of f on $[a_k, b_k]$, $k = 1, 2, \cdots$.

PROOF. An adaption of a similar result of Sargent, [10].

THEOREM 20. If f is P^n -integrable on [a,b] and F is its P^n -integral then $F_{(n)}$ exists and equals f a.e.

PROOF. Let $\varepsilon > 0$ and M a major function chosen so that $0 \leq R_{(k)} = (M - F)_{(k)} \leq \varepsilon, 0 \leq k \leq n - 1$, (12).

Then R is *n*-convex and so by Theorem $6\tilde{R}_{(n)} < \infty$ a.e. and hence $\underline{F}_{(n)} > -\infty$ a.e.

Now let $E = \{x; \overline{R}_{(n)}(x) \ge \lambda\} \cap [\alpha, \beta], a < \alpha < \beta < b$; then by Theorem 6,

$$_{m}^{*}E_{\lambda} \leq \frac{2n\varepsilon}{\lambda}$$
, hence $m^{*}E\lambda = 0$.

If $E_0 = E \cup C$, E, C being the sets associated with M by virtue of it being a major function and if $x \in [a, b] \sim (E_0 \cup E_k)$ then $\underline{F}_{(n)}(x) \ge f(x) - k$, which implies that this last inequality holds almost everywhere. From this we easily deduce that $\underline{F}_{(n)}(x) \ge f(x)$ almost everywhere.

Since -f is also P^n -integrable we immediately see that $\overline{F}_{(n)}(x) \leq f(x)$ and is finite, almost everywhere.

This completes the proof.

Before we state and prove the main result the concept of AC_n^* has to be extended as follows.

A function F is said to be AC_n^* -below over (or on) a bounded set E iff (a) $F_{(n-1)}$ exists in some interval containing E and (b) for every $\varepsilon > 0$ there is a $\delta > 0$ such that

(14)
$$\sum_{k=1}^{m} \min\left\{ \inf_{a_k < x < b_k} \left[(x - a_k) \gamma_n(F; a_k; x - a_k) \right], \\ \inf_{a_k < x < b_k} \left[(b_k - x) \gamma_n(F, b_k, b_k - x) \right] \right\} > -\varepsilon$$

for all finite sets of non-overlapping intervals $[a_k, b_k]$, $1 \le k \le m$, with end points in E and such that

$$\sum_{k=1}^{m} (b_k - a_k) < \delta.$$

In a similar way if (14) is replaced by

$$\sum_{k=1}^{m} \max \sup_{a_k < x < b_k} \left[(x - a_k) \gamma_n(F; a_k; x - a_k) \right], \sup_{a_k < x < b_k} \left[b_k - x \right] \gamma_n(F; b_k; b_k - x) \right] < \varepsilon$$

we say F is AC_n^* -above over, (or on), E.

The concepts of ACG_n^* -above and ACG_n^* -below are defined in the obvious way.

Clearly F is AC_n^* iff F is AC_n^* -above and AC_n^* -below. If n = 1 these concepts reduce to the classical ones of AC^* -above and AC^* -below, due to Ridder, [7].

LEMMA 21. If $F_{(k)}$, $1 \leq k \leq n-1$, exists in some interval containing the bounded set E and if $F_{(n)}(x) > -\infty$, $x \in E$ then F is ACG_n^* -below on E.

PROOF. Let m and j be integers, m positive

$$E_m(F) = E_m = \left\{ x; x \in E \text{ and } \gamma_n(F; x; h) > -m, \text{ for all } h \text{ such that,} \\ 0 < |h| < \frac{1}{m} \right\},$$
$$E_m^j = E_m \cap \left[\frac{j}{m}, \frac{j+1}{m} \right];$$

then it is sufficient to show F to be AC_n^* -below over each E_m^j .

Let $[a_i, b_i]$, $i = 1, \dots p$ be non-overlapping intervals with end points in E_m^j , (this set being assumed ,without loss of generality to have more than one point). Then

$$\gamma_n(F; a_i; x - a_i) > -m, \qquad a_i < x < b_i,$$

and so

$$\inf_{a_i < x < b_i} \left[(x - a_i) \gamma_n(F; a_i; x - a_i) \right] \geq -m(b_i - a_i).$$

Thus if $\varepsilon > 0$,

$$\sum_{i=1}^{p} \inf_{a_i < x < b_i} \left[(x - a_i) \gamma_n(F; a_i; x - a_i) \right] \ge -m \sum_{i=1}^{p} (b_i - a_i) > -\varepsilon,$$

[15]

provided $\sum_{i=1}^{m} (b_i - a_i) < \varepsilon/m$. In a similar way

$$\sum_{i=1}^{p} \inf_{a_i < x < b_i} \left[(bi - x) \gamma_n(F; bi; bi - x) \right] > -\varepsilon,$$

which completes the proof.

THEOREM 22. If f is P^n -integrable on [a,b] it is D^n -integrable on [a,b] to the same value, and conversely.

PROOF. (a) Let f be P^n -integrable, $\varepsilon > 0$ and M a major function such that

$$0 \leq R_{(n-1)} = (M-F)_{(n-1)} \leq \frac{\varepsilon}{2n}$$

By Lemma 21, $[a, b] = \bigcup_{k \in \mathbb{N}} E_k$, with $M AC^*_n$ -below on each E_k , $k \in \mathbb{N}$. Then there is a $\delta > 0$ such that if $[a_i, b_i]$, $i = 1, \dots, p$ is any finite set of non-overlapping intervals with end points in E_k and

$$\sum_{i=1}^{p} (b_i - a_i) < \delta, \text{ then}$$

$$(x - a_i)\gamma_n(F; a_i; (x - a_i) = (x - a_i)\gamma_n(M; a_i; x - a_i)$$

$$- (x - a_i)\gamma_n(R; a_i; x - a_i)$$

$$\geq (x - a_i)\gamma_n(M; a_i; x - a_i)$$

$$- n\{R_{(n-1)}(b_i) - R_{(n-1)}(a_i)\} \quad \text{by (11).}$$

Hence since $R_{(n-1)}$ is monotonic increasing

$$\sum_{i=1}^{p} \inf_{a_i < x < b_i} \left[(x - a_i) \gamma_n(F; a_i; x - a_i) \right] \ge -\frac{\varepsilon}{2} - n \{ R_{(n-1)}(b) - R_{(n-1)}(a) \}$$
$$\ge -\varepsilon.$$

In a similar way we see that

$$\sum_{i=1}^{p} \inf_{a_i < x < b_i} \left[(b_i - x) \gamma_n(F; b_i; b_i - x) \right] \ge -\varepsilon$$

and so we have proved that F is ACG_n^* -below on [a, b].

However since -f is also P^n -integrable, F is also ACG^*_n -above on [a, b] and hence ACG^*_n over [a, b].

This and Theorem 20 shows that f is D^n -integrable and that

$$D^n - \int_a^x f = P^n - \int_a^x f, \qquad a \leq x \leq b.$$

(b) Suppose now f is D^n -integrable on [a, b] and let $E = \{x; f \text{ is not } P^n$ -integrable in any neighborhood of $x\}$. Clearly E is closed and let $[a_k, b_k]$ denote its contiguous intervals in [a, b].

The pⁿ-integral

If $a_k < \alpha < \beta < b_k$ then f is P^n -integrable on $[\alpha, \beta]$ and if F is the D^n -integral of f on [a, b] then since from the definition of the D^n -integral it is clear that $F - \tau_{n-1}(F; x)$ is the D^n -integral of f on $[\alpha, \beta]$ we have from (a) that

$$P^{n} - \int_{\alpha}^{\beta} f = F(\beta) - \tau_{n-1}(F;\beta;\alpha).$$

Since the right hand side of this equation satisfies the conditions of Theorem 18 on $[a_k, b_k]$ we have that f is Pⁿ-integrable on $[a_k, b_k]$ and, of course,

$$P^{n} - \int_{a_{k}}^{b_{k}} f = F(b_{k}) - \tau_{n-1}(F; b_{k}; a_{k}).$$

Hence, by Corollary 13(b), E is a perfect set.

Suppose now that $E \neq \emptyset$. Since F is ACG^*_n over [a, b] it follows from Lemma 17 that E contains a portion Q such that if c, d are the end points of \overline{Q} and if $[c_k, d_k]$ are the contiguous intervals of \overline{Q} in [c, d] then (i) $F_{(n-1)}$ is AC on \overline{Q} and (ii) $\sum_{k \in N} \omega_n(c_k, d_k) < \infty$. Thus by Theorem 20, and Lemmas 17 and 19 f is P^n -integrable on [c, d].

This contradiction shows that $E \neq \emptyset$ and completes the proof of the theorem.

7. The P^n -Integral and the *n*th-Total of Denjoy

In [5] James suggested that the P^n -integral may be equivalent to the *n*th-order totalization of Denjoy, [4]. Since in the case n = 1 the P^n -integral is the classical Denjoy-Perron integral whereas the *n*th-order totalization is the Denjoy-Khint-chine integral, [4, 8], this is not the case. Thus in this case the *n*th-order totalization is more general than the P^n -integral; this remains true for all n.

Suppose f is P^n -integrable with F its P^n -integral then

- (a) $F_{(k)}$ exists in [a, b], $1 \le k \le n 1$, (Theorem 10 and Corollary 11);
- (b) $F_{(n)} = AD F_{(n-1)} = f$ a.e. (Theorem 22 and Lemma 32);

(c) $F_{(n-1)}$ is ACG on [a, b], (Theorem 22 and Lemma 17).

This implies that f is *n*th-order totalizable and that F is an *n*th-order total of f.

Denjoy's process is clearly strictly more general for all *n*. Take *F* to be a Denjoy-Khintchine integral that is not a $C_{n-1}P$ -integral, [11], and let \tilde{F} be the integral of order (n-1) of *F*. Then \tilde{F} is an *n*th-order total of f = ADF but *f* is not P^n -integrable, by Theorem 10.

A Perron type integral that is equivalent to the *n*th-order totalization and its related generalization of the Cesàro-Perron integral scale will be considered in a later paper.

P. S. Bullen

References

- [1] L. S. Bosanquet, 'A property of Cesàro-Perron integrals', Proc. Edinburgh Math. Soc. (2) 6(1940), 160-165.
- [2] P. S. Bullen, 'A criterion for n-convexity', Pacific Journal of Mathematics, (to appear).
- [3] J. C. Burkill, 'The Cesàro-Perron scale of integration', Proc. London Math. Soc. (2) 39(1935), 541-552.
- [4] A. Denjoy, 'Sur l'intégration des coefficients differentiels d'ordre superieur', Fund. Math. 25(1935), 273-326.
- [5] R. D. James, 'Generalized nth primitives', Trans. Amer. Math. Soc. 76 (1954), 149-176.
- [6] J. L. McGregor, An integral of Perron type (M.A. Thesis, University of British Columbia, (1951)).
- [7] J. Ridder, 'Ueber den Perronschen Integralbegriff und seine Beziehung zu den R, L und D Integralen', Math. Zeit. 34 (1932), 234-239.
- [8] S. Saks, Theory of the integral (Warsaw, 1937).
- [9] W. L. C. Sargent, 'A descriptive definition of Cesàro-Perron integrals,' Proc. London Math. Soc. (2) 47 (1941), 212-247.
- [10] W. L. C. Sargent, 'On generalized derivatives and Cesàro-Denjoy integrals', Proc. London Math. Soc. (2) 52(1951), 365-376.
- [11] V. A. Skvorcov, 'Nekotorye svoîstva CP-integrala', Matem. Sb. 60 (102) (1963), 305-324.
- [12] Z. Zahorski, 'Ueber die Menge der Punkte in welchen die Ableitung unendlich ist', Tohoku Math. J. 48(1941), 321–330.

Department of Mathematics The University of British Columbia Vancouver, 8 Canada