THE P^{n}-INTEGRAL

P. S. BULLEN

(Received 3 July 1970; revised 20 April 1971)
(Communicated by B. Mond)

1. Introduction

In [5] James defined an nth order Perron integral, the P^{n} - ntegral, and developed its properties. His proofs are often indirect, using properties of the $C_{k} P$-integrals of Burkill, [3]. In this paper a simpler definition of the P^{n}-integral is given - the original and not completely equivalent definition, was probably chosen as James considered this integral as a special case of one defined in terms of certain symmetric derivatives, [5], when end points of the interval of definition had naturally to be avoided. We then give direct proofs of the basic results, give a characterization of P^{n}-primitives, and connect the integral with certain work of Denjoy, [4].

2. Peano Derivatives

Suppose F is a real-valued function defined on the bounded closed interval $[a, b]$ then if it is true that for $\left.x_{0} \in\right] a, b[$

$$
\begin{equation*}
F\left(x_{0}+h\right)-F\left(x_{0}\right)=\sum_{k=1}^{r} \alpha_{k} \frac{h^{k}}{k!}+0\left(h^{r}\right), \quad \text { as } h \rightarrow 0 \tag{1}
\end{equation*}
$$

where $\alpha_{1}, \cdots, \alpha_{r}$ depend on x_{0} only, but not on h, or r then $\alpha_{k}, 1 \leqq k \leqq r$, is called the Peano derivative of order k of F at x_{0}, and we write $\alpha_{k}=F_{(k)}\left(x_{0}\right)$. If F possesses derivatives $F_{(k)}\left(x_{0}\right), 1 \leqq k \leqq r-1$, write

$$
\begin{equation*}
\frac{h^{r}}{r!} \gamma_{r}\left(F ; x_{0}, h\right)=F\left(x_{0}+h\right)-F\left(x_{0}\right)-\sum_{k=1}^{r-1} \frac{h^{k}}{k!} F_{(k)}\left(x_{0}\right), \tag{2}
\end{equation*}
$$

and define

$$
F_{(r)}\left(x_{0}\right)=\limsup _{h \rightarrow 0} \gamma_{r}\left(F ; x_{0}, h\right)
$$

(3)

$$
\underline{F}_{(r)}\left(x_{0}\right)=\liminf _{h \rightarrow 0} \gamma_{r}\left(F ; x_{0}, h\right)
$$

Further, by restricting h to be positive, or negative, in (1), or (3) we can define
one-sided Peano derivatives, written $F_{(k),+}\left(x_{0}\right), F_{(k),-}\left(x_{0}\right), F_{(k),+}\left(x_{0}\right)$ etc. If we say $F_{(k)}, 1 \leqq k \leqq r$, exists in (a, b) we will mean that $F_{(k)}$ exists in] $a, b[$ and that the appropriate one sided derivates exist at those of the points a and b that are in (a, b).

3. Riemann Derivatives

Let x_{0}, \cdots, x_{r} be $(r+1)$ distinct points from $[a, b]$ then the r th divided difference of F at these $(r+1)$ points is defined by

$$
\begin{align*}
V_{r}(F) & =V_{r}\left(F ; x_{r}\right)=V_{r}\left(F ;\left\{x_{k}\right\}\right)=V_{r}\left(F ; x_{0}, \cdots, x_{r}\right) \tag{4}\\
& =\sum_{k=0}^{r} \frac{F\left(x_{k}\right)}{w^{\prime}\left(x_{k}\right)},
\end{align*}
$$

where

$$
\begin{align*}
w(x) & =w_{r}(x)=w_{r}\left(x ; x_{k}\right) ; \text { etc. } \tag{5}\\
& =\prod_{k=0}^{r}\left(x-x_{k}\right) .
\end{align*}
$$

Given the $(r+1)$ points $P_{k}, 0 \leqq k \leqq r$, with coordinates $\left(x_{k}, F\left(x_{k}\right)\right)$, $0 \leqq k \leqq r$, respectively, there is a unique polynomial of degree at most r passing through these points given by

$$
\begin{align*}
\pi_{r}\left(F ; x ; P_{k}\right) & =\pi_{r}\left(x ; P_{k}\right)=\pi_{r}\left(x ; x_{0}, \cdots, x_{r}\right) \text { etc. } \tag{6}\\
& =\sum_{k=0}^{r} F\left(x_{k}\right) \prod_{\substack{j=0 \\
j<k}}^{r} \frac{(x-x)_{j}}{\left(x_{k}-x_{j}\right)} .
\end{align*}
$$

Using the divided difference we now define another derivative. Suppose all of x, x_{1}, \cdots, x_{r} are in $[a, b]$ and

$$
\begin{align*}
& x_{k}=x+h_{k}, 0 \leqq k \leqq r, \text { with } \\
& 0 \leqq\left|h_{0}\right|<\cdots<\left|h_{r}\right|, \tag{7}
\end{align*}
$$

then the rth Riemann derivative of F at x is defined by

$$
\begin{equation*}
D^{r} F(x)=\lim _{h_{r} \rightarrow 0} \cdots \lim _{h_{0} \rightarrow 0} r!V_{r}\left(F ; x_{k}\right) \tag{8}
\end{equation*}
$$

if this iterated limit exists independently of the manner in which the h_{k} tend to zero, subject only to (7). In a similar manner we define the upper (lower) or onesided derivatives by replacing all $r+1$ limits by upper (lower) or one-sided limits; these will be written $\bar{D}^{r} F(x), \bar{D}_{+}^{r} F(x)$ etc. If we say $D^{r} F$ exists in (a, b) we make the same gloss as for $F_{(r)}$. The following result can be found in [2].

Theorem 1. (a) If $x \in\left[a, b\left[\right.\right.$ then $D_{+}^{r} F(x)=F_{(r),+}(x)$, provided one side exists.
(b) If $F_{(r)}$ exists at all points of $[a, b]$ then $F_{(r)}$ possesses both the Darboux property and the mean-value property.

The usual r th order derivative of F at $x, x \in(a, b)$, will be written $F^{(r)}(x)$.

4. n-Convexity

A real-valued function F defined on the closed bounded interval $[a, b]$ is said to be n-convex on $[a, b]$ iff for all choices of $n+1$ distinct points, x_{0}, \cdots, x_{n}, in $[a, b], V_{n}\left(F ; x_{k}\right) \geqq 0,[2,5]$. If $-F$ is n-convex then F is said to be n-concave. The only functions that are both n-convex and n-concave are polynomials of degree at most $n-1$, [2, Lemma 1].

If $n=1$ this is just the class of monotonic increasing functions and for $n=2$ it is the class of convex functions; (the class $n=0$ is just the class of nonnegative functions, but we will usually only be interested in $n \geqq 1$).

Various properties of n-convex functions were obtained in [2]. We state them here for convenience.

Theorem 2. Let $P_{k}=\left(x_{k}, y_{k}\right), 1 \leqq k \leqq n, n \geqq 2, a \leqq x_{1}<\cdots<x_{n} \leqq b$, be any n distinct points on the graph of the function F. Then F is n-convex iff for every such set of n points the graph lies alternately above and below the graph of the polynomial $\pi_{n-1} F ; x ; P_{12}$), lying below if $x_{n-1} \leqq x \leqq x_{n}$. If so then $\pi_{n-1}\left(x ; P_{k}\right) \leqq F(x), x_{n} \leqq x \leqq b ;$ and $\pi_{n-1}\left(x ; P_{k}\right) \leqq F(x)(\geqq F(x))$ if $a \leqq x<x_{1}, n$ being even (odd).

The definition, (6), of $\pi_{r}\left(x ; P_{k}\right)$ can be extended to cover the case when not all of the P_{k} are distinct. Thus if only s of these points are distinct then besides giving the values at the s points, a total of $r+1-s$ derivatives must also be given - either $r+1-s$ derivatives all at one point, or $r+1-s$ first derivatives at $r+1-s$ distinct points, (when $r+1-s \leqq s$), etc. Of the many possible extensions to Theorem 2 we state

Theorem 3. Let $P_{k}=\left(x_{k}, y_{k}\right), 1 \leqq k \leqq r, a_{1} \leqq x_{1}<\cdots<x_{r} \leqq b$, be r distinct points on the graph of the function F. Suppose that $F_{(s),+}\left(x_{1}\right)$ exists, $1 \leqq s \leqq n-r$. Then Theorem 2 holds if $\pi_{n-1}\left(x ; P_{k}\right)$ is taken to have

$$
\pi_{n-1}\left(x_{s} ; P_{k}\right)=F\left(x_{s}\right), 1 \leqq s \leqq r, \pi_{n-1}^{(s)}\left(x_{1} ; P_{k}\right)=F_{(s)+}\left(x_{1}\right), 1 \leqq s \leqq n-r
$$

and if P_{1} is considered as $n-r+1$ points at and to the right of P_{1} but to the left of P_{2}.

Theorem 4. (a) If F is n-convex on $[a, b]$ and $P_{k}=\left(x_{k}, y_{k}\right), 1 \leqq k \leqq n$ are n distinct points on the graph of $F, a \leqq x_{1}<b$, let $x_{k}=x_{1}+\varepsilon_{k} h, 0<\varepsilon_{2}<$
$\cdots<\varepsilon_{n}$. Then as $h \rightarrow 0+, \pi_{n-1}\left(x ; P_{k}\right)$ converges uniformly to the right tangent polynomial at x_{1},

$$
\begin{aligned}
& \tau_{n-1}+\left(F ; x ; x_{1}\right)=\tau_{+}(x)=F\left(x_{1}\right)+\sum_{k=1}^{n-2} \frac{\left(x-x_{1}\right)^{k}}{k!} F^{(k)}\left(x_{1}\right) \\
&+\frac{\left(x-x_{1}\right)^{n-1}}{(n-1)!} F_{(n-1)}+\left(x_{1}\right), \quad x_{1} \leqq x \leqq b
\end{aligned}
$$

Further on the right of $x_{1}, \tau_{+} \leqq F$.
(b) A similar result holds for the left tangent polynomial at $x_{1}, \tau_{-}\left(x ; x_{1}\right)$, $a \leqq x \leqq x_{1}, a<x_{1} \leqq b$. However in this case if n is even (odd) then on the left of $x_{1} \tau_{-} \leqq F(\geqq F)$.
(c) At all but a countable set of points x_{1}, a similar result holds for the tangent polynomial at $x_{1}, \tau\left(x_{1} ; x\right), a<x<b, a<x_{1}<b$. However if n is even the graph of τ lies below that of F, whereas if n is odd the graphs cross, τ being above on the left of x_{1}, and below on the right of x_{1}.

Theorem 5(a). If F is an n-convex function on $[a, b]$ and

$$
a \leqq x_{1}<\cdots<x_{n} \leqq b, a \leqq y_{1}<\cdots<y_{n} \leqq b, x_{k} \leqq y_{k}, 1 \leqq k \leqq n,
$$

then $V_{n-1}\left(F ; x_{k}\right) \leqq V_{n-1}\left(F ; y_{k}\right)$.
(b). If F is n-convex in $[a, b],|F| \leqq K$, then

$$
\left|F_{(k)}(x)\right| \leqq A K \sup \left\{\frac{1}{(b-x)^{k}}, \frac{1}{(x-a)^{k}}\right\}, \quad 0 \leqq k \leqq n-1
$$

where A is a constant independent of k, F and x, and where if $k=n-1$ the derivative is to be interpreted as $\sup \left(\left|F_{(n-1),+}(x)\right|,\left|F_{(n-1),-}(x)\right|\right)$.
(c). If F is n-convex on $[a, b], a \leqq x \leqq y \leqq b, a \leqq x+h \leqq y$, and $x \leqq y+k \leqq b$ then

$$
\gamma_{n-1}(F ; x ; h) \leqq F_{(n-1)}-(y) \text { and } F_{(n-1)++}(x) \leqq \gamma_{n-1}(F ; y ; k) \text {, }
$$

where γ_{n-1} is as defined in (2).
Theorem 6. If F is n-convex on $[a, b], a<\alpha<\beta<b, E_{\lambda}=\{x: \alpha \leqq x \leqq \beta$ and $\left.\bar{F}_{(n)}(x) \geqq \lambda\right\}$ then

$$
\begin{equation*}
k m^{*}\left(E_{\lambda}\right) \leqq 2 n\left\{F_{(n-1) .-}(\beta)-F_{(n-1),+}(\alpha)\right\} . \tag{9}
\end{equation*}
$$

Theorem 7. If F is n-convex then $(a) F^{(r)}$ is $(n-r)$-convex, $1 \leqq r \leqq n-2$,
(b) $F^{(n-1)}$ exists at all except a countable set of points,
(c) $F^{(n)}$ exist a.e.

Theorem 8. If $n \geqq 2$, and
(i) $F_{(1)}, \cdots, F_{(n-1)}$ exist in $[a, b]$,
(ii) $\bar{F}_{(n),+}(x) \geqq 0, x \in[a, b] \sim E,|E|=0$,
(iii) $F_{(n),+}(x)>\infty, x \in[a, b] \sim C, C$ countable then F is n-convex.

If F is defined on $[a, b]$ as well as $F_{(k)}, 1 \leqq k \leqq n-1$, let us write

$$
\begin{align*}
\omega_{n}(F ; a, b)= & \omega_{n}(a, b) \\
= & \max \left\{\sup _{a<x<b}\left|(x-a) \gamma_{n}(F ; a ; x-a)\right|,\right. \tag{10}\\
& \left.\sup _{a<x<b}\left|(b-x) \gamma_{n}(F ; b ; b-x)\right|\right\}
\end{align*}
$$

this quantity was introduced by Sargent, [10].
In [2] it was shown that F is the difference of two n-convex functions iff $\sum_{k=1}^{m} \omega_{n}\left(F ; a_{k}, b_{k}\right)<K$ for all finite sets of non-overlapping intervals, $\left[a_{k}, b_{k}\right]$, $1 \leqq k \leqq m$. It was also shown in [2] that if F is n-convex then

$$
\begin{equation*}
\omega_{n}(F ; a, b) \leqq n\left\{F_{(n-1)}(b)-F_{(n-1)}(a)\right\} . \tag{11}
\end{equation*}
$$

5. The P^{n}-integral

Let f be a real-valued function on $[a, b]$ then a function M continuous on $[a, b]$ is called a P^{n}-major function of f on $[a, b]$, or just a major function, if there is no ambiguity, iff
(a) $M_{(k)}$ exists and is finite on $[a, b], 1 \leqq k \leqq n-1$,
(b) $\underline{M}_{(n)}(x) \geqq f(x), x \in[a, b] \sim E,|E|=0$,
(c) $M_{(n)}(x)>-\infty, x \in[a, b] \sim \mathrm{C}, C$ countable,
(d) $M_{(k)}(a)=0,0 \leqq k \leqq n-1$.

If $-m$ is a major function of $-f$ then m is called a minor function, or more precisely, a P^{n}-minor function of f on $[a, b]$. It is clear from these definitions that f need only be finite a.e.

This definition differs from that in [5], in the use of the end-points in (a), in the existence of the sets E and C, and also in condition (d). In [5] the major function is normalized instead by requiring it to be zero on a given set of n distinct points a_{1}, \cdots, a_{n}; let us call these functions, J-major functions over $\left(a_{k}\right)_{1 \leqq k \leqq n}$.

Standard arguments, using Theorems 3 and 8 , show that if M is any major function, m any minor function; then $M-m$ is a non-negative n-convex function, [compare with 5, Lemmas 5.1, 5.2].

For $a<c \leqq b$ define
$\tilde{F}(b)=\tilde{P}^{n}-\int_{a}^{c} f=\inf \{t: t=M(c), M$ is a major function of $f\}$, the upper P^{n}-integral of f on $[a, b]$; in a similar way we define the lower P^{n}-integral, ${\underset{\sim}{P}}^{n}-\int_{a}^{c} f$: if there is no ambiguity we will just write, $\int^{c} f$ or, $\int_{a}^{c} f$. If $\tilde{F}(c)=\underset{\sim}{F}(c)$, we write the common value, $F(c)^{c}=P^{n}-\int_{a}^{c} f$ (or just $\int_{a}^{c} f$), and if further this value is finite we say f is P^{n}-integrable on $[a, c]$.

If f is P^{n}-integrable in the sense of [5], let us say f is $J-P^{n}$-integrable over $\left(a_{k} ; b\right)$.

Theorem 9. (a) f is P^{n}-integrable on $[a, b]$ iff for each $\varepsilon>0$ there exists a major function M and a minor function m, such that $0 \leqq M(b)-m(b) \leqq \varepsilon$.
(b) f is P^{n}-integrable on $[a, b]$ iff given $\varepsilon>0$ there exist continuous functions M, m on $[a, b]$ such that $(i) M_{(k)}, m_{(k)}$ exist and are finite in $[a, b]$, $1 \leqq k \leqq n-1$ (ii) $-\infty \neq M_{(n)}(x) \geqq f(x) \geqq m_{(n)} \neq \infty$ (iii) $M_{(k)}(a)=m_{(k)}(a)=0$, $0 \leqq k \leqq n-1$ (iv) $0 \leqq M(b)-m(b)<\varepsilon$.
(c) If f is P^{n}-intergrable on $[a, b], f=g$ a.e. then g is P^{n}-integrable on $[a, b]$ and $\int_{a}^{b} f=\int_{a}^{b} g$.

Proof. (a) Immediate.
(b) The case $n=1$ is due to McGregor, [6].

Obviously we have to show that if f is P-integrable then there exist functions M, m satisfying the conditions (i)-(iv) of (b) with $n=1$. Since f is P-integrable there exists functions M, m as in (a), with $n=1$: if $F=P-\int_{a}^{x} f$ then F^{\prime} exists and is finite almost everywhere (Theorem 20 below or [8, p. 202]), further $F-m$ and $M-F$ are monotonic increasing (Theorem 10 (a) below) and so $m=F-(F-m), \quad M=F+(M-F)$ have finite derivatives almost everywhere. Let $E=\left\{x\right.$: either $M^{\prime}(x)= \pm \infty, m(x)= \pm \infty, M(x)=-\infty$ or $\left.\bar{m}^{\prime}(x)=\infty\right\}$ then E is of measure zero and can be covered by a set \tilde{E} that is a G_{δ} is also of measure zero and hence by a result due to Zahorski, [12], there is a function w on $[a, b]$ such that (i) w is absolutely continuous, (ii) w^{\prime} exists everywhere. (iii) if $x \in \widetilde{E}, w^{\prime}(x)=\infty$, (iv) if $x \notin \widetilde{E}, 0 \leqq w^{\prime}(x)<\infty$, (v) $w(a)=0$, $w(b)<\varepsilon$. Now define $\tilde{m}=m-w \quad \tilde{M}=M+w$ then we see that they are the required functions since (i) \tilde{M}, \tilde{m} are continuous on $[a, b]$, (ii) if $x \in \tilde{E}, \tilde{M}^{\prime}(x) \geqq \underline{M}^{\prime}$ $(x)+w^{\prime}(x)=\infty$ and so $M^{\prime}(x)$ exists with value ∞; if $x \notin \tilde{E} \tilde{M}^{\prime}(x)$ exists and is finite, (iii) similarly \tilde{m}^{\prime} exists everywhere in $[a, b]$, (iv) $\tilde{M}^{\prime} \geqq f \geqq \tilde{m}^{\prime}$,(v) $\tilde{m}(a)$ $=\tilde{M}(a)=0$, (vi) $0 \leqq M(b)-m(b) \leqq \varepsilon$. The general case follows simiarly using the extension of Zahorski's function introduced in [2, Theorem 16]
(c) Immediate.

Theorem 10. (a) For all major functions M, minor functions m, of f, $M-\tilde{F}$ and $F-m$ are non-negative n-convex functions.
(b) $\left.\tilde{F}_{(k)} \tilde{\text { éxists in }}\right] a, b\left[1 \leqq k \leqq n-2 ; \widetilde{F}_{(n-1)}\right.$ exists except on a countable set.
(c) If f is P^{n}-integrable then $F_{(n-1)}$ exists on $] a, b[$.
(d) If f is P^{n}-integrable $F(a)=F_{(k)}(a)=0,1 \leqq k \leqq n-1$.

Proof. (a) Immediate.
(b) Immediate using (a), the definition of M and Theorem 7.
(c) By Theorem 1 and Theorem 5(a) and (b) if g is n-convex in $[a, b],|g|<K$ then if $a<\alpha<x_{1}, \cdots, x_{n} \leqq \beta<b,\left|V_{n-1}\left(g ; x_{k}\right)\right|<K A, A$ de-
pending on α, β but not on x_{1}, \cdots, x_{n}. So taking $g=F-M, M$ a suitable major function of f we have

$$
\left|V_{n-1}\left(F ; x_{k}\right)-V_{n-1}\left(M ; x_{k}\right)\right|<K \varepsilon .
$$

Letting $x_{k} \rightarrow x, 1 \leqq k \leqq n$, the existence of $F_{(n-1)}(x)$ follows from that of $M_{(n-1)}(x)$, and Theorem 1. Thus $F_{(n-1)}$ exists in $] a, b[$.
(d) Immediate since F lies between two functions M, and m, both of which are $0(x-a)^{n-1}$ near a.

Corollary 11. If f is P^{n}-integrable then (a) for every major function M, and every minor function $m, M-F$ and $F-m$ are r-convex on $[a, b]$, $0 \leqq r \leqq n$, (b) $F_{(r)}(b)$ exists, $1 \leqq r \leqq n-1$.

Proof. (a) The cases $r=0, n$ are just Theorem 10(a). By Theorem 5, and using the notation introduced there, since $M-F$ is n-convex, we have that $V_{n-1}\left(M-F ; x_{k}\right) \geqq V_{n-1}\left(M-F ; z_{k}\right)$. Letting $z_{k} \rightarrow a, 1 \leqq k \leqq n$ we have by Theorem $10(\mathrm{~d})$, that $V_{n-1}\left(M-F, x_{k}\right) \geqq 0$; that is, $M-F$ is $(n-1)$-convex. In a similar way we can show that $M-F$ is k-convex, $1 \leqq k \leqq n-2$, and that $F-m$ is k-convex, $1 \leqq k \leqq n-1$.
(b) Since, from (a), $M-F$ is $(k+1)$-convex, $1 \leqq k \leqq n-1$, and $V_{k}\left(M ; x_{j}\right)$ $=V_{k}\left(F ; x_{j}\right)+V_{k}\left(M-F ; x_{j}\right)$ it follows, by Theorem 5 , that $\lim _{\substack{x_{j} \rightarrow b \\ 0 \leq j \leq k}} V_{k}\left(F ; x_{j}\right)$ exists.
Further $M-F$ is k-convex, so $V_{k}\left(M-F ; x_{j}\right) \geqq 0$ and so $V_{k}\left(M: x_{j}\right) \geqq V_{k}\left(F ; x_{j}\right)$; similarly $V_{k}\left(F ; x_{j}\right) \geqq V_{k}\left(m ; x_{j}\right)$ and so since both $M_{(k)}(b)$ and $m_{(k)}(b)$ exist the above limit is finite.

Theorem 12. (a) If f is P^{n}-integrable on $[a, b]$ it is P^{n}-integrable on any sub-interval $[\alpha, \beta]$. Further, if F is the P^{n}-integral of f on $[a, b]$, then

$$
\int_{\alpha}^{x} f=\int_{a}^{x} f-\tau_{n-1}(F ; x ; \alpha), \quad \alpha \leqq x \leqq \beta
$$

(b) If f is P^{n}-integrable on $[a, b]$ then it is $J-P^{n}$-integrable over $\left(a_{k}: b\right)$ and

$$
J-P^{n}-\int_{\left(a_{k}\right)}^{b} f=P^{n}-\int_{a}^{b} f-\pi_{n-1}\left(F ; b ; a_{k}\right),
$$

F being the P^{n}-integral of f.
Proof. (a) If $\varepsilon>0$ and M a major function of f such that $0 \leqq M(b)-F(b) \leqq \varepsilon$, then since $M-F$ is k-convex we have by Theorem $5(\mathrm{~b})$ that $0 \leqq(M-F)_{(k)}(\alpha)(b-a)^{k} \leqq A \varepsilon$.

If we write M^{*} for $M-\tau^{n}(M ; \alpha)$ and define F^{*} similarly then

$$
0 \leqq M^{*}(\beta)-F^{*}(\beta) \leqq \underline{E} \varepsilon .
$$

Since B does not depend on M this is sufficient to prove (a).
(b) Let M be a major function of the type occurring in Theorem 9 (b), then it is immediate that $M^{*}=M-\pi_{n-1}\left(M ; a_{k}\right)$ is a J-major function. Defining m^{*} in a similar way, we have that

$$
\left|M^{*}(b)-m^{*}(b)\right| \leqq M(b)-m(b)+\left|\pi_{(n-1)}\left(M-m ; b ; a_{k}\right)\right|
$$

which by Theorem 9 (b), and Definition 5.3 of [5] is sufficient to complete the proof.

If $n>1$ the converse of Theorem 12(b) is not true in general. Consider

$$
\begin{aligned}
f(x) & =(1-x)^{-3 / 2},-1<x<1 \\
& =0, x= \pm 1
\end{aligned}
$$

Then $F(x)=(\sqrt{3}-2) x+1-\left(1-x^{2}\right)^{1 / 2}$ is the $J-P^{2}$-integral of f over $(0,1 / 2 ; x)$. However f is not P^{2}-integrable on $[-1,1]$ since $F^{\prime}(-1)=-\infty$.

Corollary 13. If f is P^{n}-integrable on $[a, b]$, and F is its P^{n}-integral, $\varepsilon>0$, then a major function M and a minor function m can be chosen so that if $R=M-F, r=F-m$ then

$$
\begin{equation*}
0 \leqq \max \left\{R_{(k)}(x), r_{(k)}(x)\right\} \leqq \varepsilon, \quad a \leqq x \leqq b, 0 \leqq k \leqq n-1 \tag{12}
\end{equation*}
$$

(b) If f is P^{n}-integrable on $[a, b]$ and on $[b, c]$ then f is P^{n}-integrable on $[a, c]$. Further if F^{1} is the P^{n}-integral of f on $[a, b], F^{2}$ the P^{n}-integral of f on $[b, c]$ then

$$
\begin{aligned}
F(x) & =F^{1}(x), \quad a \leqq x \leqq b \\
& =F^{2}(x)+\tau_{n-1},-\left(F^{1} ; x ; b\right), \quad b \leqq x \leqq c
\end{aligned}
$$

is the P^{n}-integral of f on $[a, c]$.
Proof. (a) Since $R_{(k)}(x), 0 \leqq k \leqq n-1$, exists for $a \leqq x \leqq b$, it follows from Theorem 1 (b) that it suffices to prove (12) for $a \leqq x<b$. If $[\alpha, \beta]$ is any subinterval of $[a, b], a<\alpha<\beta<b$, then the first inequality obtained in the proof of Theorem 12(a) implies (12) holds in $[\alpha, \beta]$.

Let $\beta_{0}=a<\beta<\beta_{2} \cdots<b$, with $\lim _{j \rightarrow \infty} \beta_{j}=b$; and let $\varepsilon_{j}, j \geqq 0$ be a sequence 0° positive numbers to be specified later.

Let R^{j} be chosen to satisfy (12) in [β_{j}, β_{j+1}], with $\varepsilon=\varepsilon_{j}$; since in fact R^{j} is defined on $\left[\beta_{j}, b\right]$ we can also require that $0 \leqq R^{j} \leqq \varepsilon_{0}$ on that interval.

Define the functions P^{j} and Q^{j} on $\left[\beta_{j}, \beta_{i+1}\right], j \geqq 0$, inductively as follows.

$$
\begin{aligned}
& P^{0}=0, \quad Q^{0}=P^{0}+R^{0} \\
& P^{j}(x)=\tau\left(Q^{j-1} ; x ; \beta_{j}\right), \quad Q^{j}=P^{j}+R^{j}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \left|Q_{(k)}^{0}\right| \leqq \varepsilon_{0}, \quad 1 \leqq k \leqq n-1 \\
& \left|Q_{(k)}^{j}\right| \leqq \varepsilon_{j}+\sum_{i=k}^{n-1} Q_{(i)}^{j-1}\left(\beta_{j}\right) \frac{\left(\beta_{j \pm 1}-\beta_{j}\right)^{i-k}}{(i-k)!}
\end{aligned}
$$

Choose $\beta_{j}, \varepsilon_{j}, j \geqq 0$ so that

$$
\left|Q_{(k)}^{j}\right| \leqq \varepsilon, \quad 0 \leqq k \leqq n-1, \quad j \geqq 0 .
$$

Now define

$$
\begin{aligned}
R(x) & =Q^{j}(x), \quad \beta_{j} \leqq x<\beta_{j+1} \\
& =\lim _{y \rightarrow b} R(y), \quad x=b .
\end{aligned}
$$

It can then be checked that $M=R+F$ is a major function of f with (12) satisfied.

A similar construction can be used to obtain a suitable minor function.
(b) Let M^{1} be a major function of f on $[a, b]$ chosen so that (12) holds with $\varepsilon=\varepsilon_{1} e^{c-b}$ and let M^{2} be any major function of f on $[b, c]$. If then

$$
\begin{aligned}
M(x) & =M^{1}(x), \quad a \leqq x \leqq b \\
& =M^{2}(x)+\tau_{n-1,}\left(M^{1} ; x ; b\right), \quad b \leqq x \leqq c
\end{aligned}
$$

M is a major function of f on $[a, c]$ and

$$
0 \leqq F(c)-M(c) \leqq F^{2}(c)-M^{2}(c)+\varepsilon_{1} ;
$$

this is sufficient to prove (b).
Theorem 14. If F is a real-valued function on $[a, b]$ such that (a) $F_{(k)}$ exists in $[a, b], 1 \leqq k \leqq n-1$, (b) $F_{(n)}(x)$ exists, $x \in[a, b] \sim E,|E|=0$, (c) $F_{(n)}, \underline{F}_{(n)}$ are finite everywhere on a countable set then if $f(x)=F_{(n)}(x)$, $x \in[a, b] \sim E$, and is zero elsewhere then f is P^{n}-integrable and

$$
\int_{a}^{x} f=F(x)-\tau_{n-1,+}(F ; x ; a)
$$

Proof. Immediate.
The converse of this is less immediate and is proved later, Theorem 20 below.

Theorem 15. If f is P^{n}-integrable on $[a, b]$ then f is P^{n+1}-integrable on $[a, b]$ and

$$
P^{n+1}-\int_{a}^{b} f=\int_{a}^{b}\left(P^{n}-\int_{a}^{x} f\right) d x
$$

Proof. This is given in [5, Theorem 7.2], although in the present case of unsymmetric derivatives the details are much simpler.

6. The P^{n} - and C_{n-1}-Integrals

As a result of the above modifications in the definition of the P^{n}-integral the relationship between this scale of integrals and the Cesàro-Perron scale of Burkill, [3], is much neater.

The $C_{0} P$-integral is the classical Perron integral. The $C_{n} P$-integral is defined by induction as follows.
(i) A function f is C_{n}-continuous on $[a, b]$ if it is $C_{n-1} P$-integrable and

$$
\lim _{h \rightarrow 0} \frac{n}{h^{n}} C_{n-1} P-\int_{x}^{x+h}(x+h-t)^{n-1} f(t) d t=f(x)
$$

for every x in $[a, b]$.
(ii) If f is $C_{n-1} P$-integrable on $[a, b]$ then the upper C_{n}-derivative of f at x is

$$
C_{n} \bar{D} f(x)=\underset{h \rightarrow 0}{\limsup } \frac{n+1}{h}\left\{\frac{n}{h^{n}} C_{n-1} P-\int_{x}^{x+h}(x+h-t)^{n-1} f(t) d t-f(x)\right\}
$$

The lower C_{n}-derivative of f at x is similarly defined.
(iii) If f is defined on $[a, b]$ then M is called a $C_{n} P$-major function of f on $[a, b]$, iff
(a) M is C_{n}-continuous on $[a, b]$,
(b) $C_{n} \underline{D} M(x) \geqq f(x), \quad x \in[a, b] \sim E, \quad|E|=0$,
(c) $C_{n} \underline{D} M(x)>-\infty, \quad x \in[a, b] \sim C, \cdots \quad C$ countable,
(d) $M(a)=0$.

A $C_{n} P$-minor function is defined in a similar manner.
(iv) If for every $\varepsilon>0$ there is a $C_{n} P$-major function M and a $C_{n} P$-minor function m such that $|M(b)-m(b)|<\varepsilon$ then f is said to be $C_{n} P$-integrable in $[a, b]$.

This definition is more general than that in [3] because of the existence of the exceptional sets E and C. However just as Theorem 9 (b) shows that the existence of these sets does not widen the scope of the P^{n}-integral it can also be shown that the above definition is equivalent to the usual one; see for instance the foot note on page 162 of [1].

Theorem 16. f is P^{n}-integrable on $[a, b]$ iff it is $C_{n-1} P$-integrable in $[a, b]$. If F is the P^{n}-integral of f then

$$
\begin{align*}
& F_{(n-1)}(x)=C_{n-1} P-\int_{a}^{x} f \tag{13}\\
& F(x)=P-\int_{a}^{x} C_{1} P-\int_{a}^{x} C_{2} P-\int_{a}^{x} \cdots C_{n-1} P-\int_{a}^{x} f
\end{align*}
$$

Proof. (a) If f is $C_{n-1} P$-integrable then the proof of Theorem 9.1 in [5] shows f is P^{n}-integrable. The proof now has fewer awkward details and can include the end points of $[a, b]$ in its argument.
(b) If f is P^{n}-integrable then as in [5, Theorem 11.1], if M is a P^{n}-major function then $M_{(n-1)}$ is a $C_{n-1} P$-major function. Further, by (12), we can choose M so that $0 \leqq F_{(n-1)}(x)-M_{(n-1)}(x) \leqq \varepsilon$ for all of $x, a \leqq x \leqq b$, which completes the proof.

It is seen from (13) that if F is a P^{n}-integral then $F_{(k)}$ is C_{k}-continuous, $0 \leqq k \leqq n-1$, [5, Lemma 11.1]. This is one place where C_{k}-concepts give information not obtainable directly; there seems to be no other continuity concept that describes the bounds set on the lack of ordinary continuity of Peano derivatives.

It follows from Theorem 16 and [9] that the P^{n}-integral can be given a descriptive definition. Following the spirit of this paper we will do this directly in the following section.

7. The D^{n}-Integral

Most of the concepts introduced in this section are based on ideas due to Sargent, $[9,10]$; the notation has been changed slightly to agree better with the present work.

A function F is said to be $A C^{*}{ }_{n}$ over (or on) a bounded set E iff (a) $F_{(n-1)}$ exists in some interval containing E, and (b) for every $\varepsilon>0$ there is an $\delta>0$ such that, using notation of (10),

$$
\sum_{k=1}^{m} \omega_{n}\left(a_{k}, b_{k}\right)<\varepsilon
$$

for all finite sets of non-overlapping intervals, $\left[a_{k}, b_{k}\right], 1 \leqq k \leqq m$, with end points in E, and such that

$$
\sum_{k=1}^{m}\left(b_{k}-a_{k}\right)<\delta
$$

A function F is $A C G^{*}{ }_{n}$ over (or on) a bounded set E iff (a) $F_{(n-1)}$ exists in some interval containing E and (b) $E=\cup_{k+N} E_{k}$ with f being $A C^{*}{ }_{n}$ on each E_{k}, $k \in N$; where N is the set of natural numbers.

If $n=1$ these concepts reduce to the classical ones of $A C^{*}$ and $A C G^{*}$ respectively, [8]. The main properties of these classes of functions are collected in

Lemma 17. (a) If F is $A C^{*}{ }_{n}$ over a set E then (i) F is $A C^{*}{ }_{n}$ over \bar{E}, (ii) $F_{(n-1)}$ is $A C$ over E, (iii) $F_{(n-1)}$ is approximately derivable a.e. on $E, F_{(n)}=A D F_{(n-1)}$ a.e., and $F_{(n)}$ is Lebesgue integrable on E, (iv) if E is a bounded closed set with contiguous intervals $\left[a_{k}, b_{k}\right], k \in N$ then $\Sigma_{k \in N} \omega_{n}\left(a_{k}, b_{k}\right)<\infty$.
(b) If F is such that $F_{(n-1)}$ exists in some interval containing a bounded closed set E and (ii) and (iv) of (a) hold then F is $A C^{*}{ }_{n}$ on E.
(c) F is $A C G^{*}{ }_{n}$ on $[a, b]$ iff (i) $F_{(n-1)}$ exists in $[a, b]$ and (ii) $[a, b]=\cup_{k+N} Q_{k}$, Q_{k} being closed and F being $A C^{*}{ }_{n}$ on $Q_{k}, k \in N$.
(d) If F, G are $A C G^{*}{ }_{n}$ over $[a, b]$ and $F_{(n)}=G_{(n)}$ a.e. then (i) $F-G$ is a polynomial of degree at most $(n-1)$, (ii) $\gamma_{n}(F ; x ; h)=\gamma_{n}(G ; x ; h), a \leqq x \leqq b$, $a \leqq x+h \leqq b$.

Proofs. The proofs of (a), (c), (d) are either immediate or are in [10]; the proof of (b) is an adaption of the proof of the similar result in [9].

A function f is said to be D^{n}-integrable on $[a, b]$ iff there is a function F such that (a) F is $A C G^{*}{ }_{n}$ on $[a, b]$, (b) $F_{(k)}(a)=0,1 \leqq k \leqq n-1$, (c) $F_{(n)}(x)=f(x)$ a.e. Further we call F the D^{n}-integral of f, and write $F(x)=D^{n}-\int_{a}^{x} f$. It follows from Lemma 17 that if such an F exists it is unique and from Theorem 10 and $[9,10]$ that the P^{n} - and D^{n}-integrals are completely equivalent. This we now prove directly.

Theorem 18. Suppose f is P^{n}-integrable on every $[\alpha, \beta], a<\alpha<\beta<b$ and put $I(\alpha, \beta)=\int_{\alpha}^{\beta} f$. Suppose further that
(a)

$$
\lim _{\alpha \rightarrow a} \frac{I(\alpha, \beta)}{(\alpha-a)^{n}-1}=0
$$

and (b) there is a polynomial p of degree at most $n-1$ such that

$$
\lim _{\beta \rightarrow b} \frac{I(\alpha, \beta)-p(\beta)}{(b-\beta)^{n-1}}=0
$$

then f is P^{n}-integrable on $[a, b]$ and

$$
\int_{a}^{b} f=\lim _{\substack{\alpha \rightarrow a \\ \beta \rightarrow b}} I(\alpha, \beta)
$$

Proof. Let us put

$$
\begin{aligned}
F(x) & =0, \quad x=a, \\
& =\lim _{\alpha \rightarrow a} I(\alpha, x), \quad a<x<b, \\
& =\lim _{y \rightarrow b} F(y), \quad x=b,
\end{aligned}
$$

Then $F_{(k)}(x)$ exists, $1 \leqq k \leqq n-1$, and $a \leqq x \leqq b$; further $F_{(k)}(a)=0$, $1 \leqq k \leqq n-1$. We show that F is the P^{n}-integral of f on $[a, b]$.

Let $a<\cdots<x_{-1}<x_{0}<x_{1}<\cdots b$ with $a=\lim _{k \rightarrow-\infty} x_{k} b=\lim _{k \rightarrow \infty} x_{k}$;
write $I_{k}(x)$ for $I\left(x_{k-1}, x\right), x_{k-1} \leqq x<x_{k}$; suppose $\varepsilon_{k}>0, k \in Z$, (where Z is the set of integers), is a sequence of positive numbers to be specified later.

Let M_{k} be a major function of f on $\left[x_{k-1}, x_{k}\right]$ such that

$$
0 \leqq M_{k}(x)-I_{k}(x)<\varepsilon_{k} \inf \left\{(x-a)^{n-1}, \quad(b-x)^{n-1}\right\}
$$

and put $R_{k}=M_{k}-I_{k}$.
Now define

$$
\begin{aligned}
M(x) & =F(x)+\sum_{v=-\infty}^{k-1} R_{v}\left(x_{v}\right)+R_{k}(x), \quad x_{k-1} \leqq x<x_{k} \\
& =0, \quad x=a \\
& =F(b)+\sum_{v=-\infty}^{\infty} R_{v}\left(x_{v}\right), \quad x=b .
\end{aligned}
$$

Then for $\alpha \leqq 0$ and $-\alpha$ large enough

$$
0 \leqq M(x)-F(x) \leqq(x-a)^{n-1} \sum_{v=-\infty}^{k-1} \varepsilon_{k}, \quad x_{k-1} \leqq x<x_{k}
$$

and so by suitable choice of $\left\{\varepsilon_{k}\right\}, \alpha \leqq 0$, we see that $(M-F)_{(k)}(a)=0$ and so that $M_{(k)}(a)=0,1 \leqq k \leqq n-1$. Similarly if $\alpha \geqq 0$ and large enough

$$
0 \leqq(M(b)-F(b))-(M(x)-F(x)) \leqq(b-x)^{n-1} \sum_{v=k}^{\infty} \varepsilon_{k},
$$

$x_{k-1} \leqq x<x_{k}$; from which it is easy to deduce that $M_{(k)}(b)$ exists, $1 \leqq k \leqq n-1$, if $\left\{\varepsilon_{k}\right\}, \alpha \geqq 0$ are chosen suitably.

Finally we can still choose $\varepsilon_{k}, k \in N$ so that $0 \leqq M-F \leqq \varepsilon$, for any $\varepsilon>0$.
This, together with a similar construction for a minor function completes the proof.

The conditions of Theorem 18 cannot be relaxed as is seen by the following example, [4]. Let

$$
\begin{aligned}
F(x) & =x^{n+\alpha} \sin x^{-p}, \quad 0<x \leqq 1 \\
& =0, \quad x=0
\end{aligned}
$$

$n \geqq 2$, an integer, $0<\alpha<1, p \geqq n+\alpha-1$. Then $F_{(j)}(x)$ exists for all j $0<x \leqq 1, F_{(j)}(0)$ exists $1 \leqq j \leqq n$. Thus if $f(x)=F_{(n+2)}(x), \quad 0<x \leqq 1$ Thus if

$$
\begin{aligned}
f(x) & =F_{(n+2)}(x), \quad 0<x \leqq 1 \\
& =0, \quad x=0
\end{aligned}
$$

Then f is $P^{(n+2)}$-integrable on $[\varepsilon, 1]$ for all ε but is not $P^{(n+2)}$-integrable on $[0,1]$, since $F_{(n+1)}(0)$ does not exist.

Lemma 19. If E is a closed bounded set with end points a and b and contiguous intervals $\left[a_{k}, b_{k}\right]$ in $[a, b], k=1,2, \cdots$ and if $(\mathrm{a}) f$ is Lebesgue integrable on E,
(b) f is P^{n}-integrable on each $\left[a_{k}, b_{k}\right], k=1,2, \cdots$,
(c) $\Sigma_{k=1} \omega_{n}\left(F^{k} ; a_{k}, b_{k}\right)<\infty$ then f is P^{n}-integrable on $[a, b]$, and

$$
\begin{gathered}
P^{n}-\int_{a}^{b} f=\frac{1}{(n-1)!} L-\int_{a}^{b} 1_{\varrho}(t)(b-t)^{n-1} f(t) d t \\
\\
+\sum_{k} \tau_{n-1,-}\left(F^{k} ; b ; b_{k}\right)
\end{gathered}
$$

(where $1 \mu(t)=1, t \in Q,=0, t \notin Q$).
where F^{k} is the P^{n}-integral of f on $\left[a_{k}, b_{k}\right], k=1,2, \cdots$.
Proof. An adaption of a similar result of Sargent, [10].
Theorem 20. If f is P^{n}-integrable on $[a, b]$ and F is its P^{n}-integral then $F_{(n)}$ exists and equals f a.e.

Proof. Let $\varepsilon>0$ and M a major function chosen so that $0 \leqq R_{(k)}$ $=(M-F)_{(k)} \leqq \varepsilon, 0 \leqq k \leqq n-1,(12)$.

Then R is n-convex and so by Theorem $6 \bar{R}_{(n)}<\infty$ a.e. and hence $\underline{F}_{(n)}>-\infty$ a.e.

Now let $E=\left\{x ; \bar{R}_{(n)}(x) \geqq \lambda\right\} \cap[\alpha, \beta], a<\alpha<\beta<b$; then by Theorem 6,

$$
{ }_{m}^{*} E_{\lambda} \leqq \frac{2 n \varepsilon}{\lambda}, \text { hence } m^{*} E \lambda=0
$$

If $E_{0}=E \cup C, E, C$ being the sets associated with M by virtue of it being a major function and if $x \in[a, b] \sim\left(E_{0} \cup E_{k}\right)$ then $E_{(n)}(x) \geqq f(x)-k$, which implies that this last inequality holds almost everywhere. From this we easily deduce that $\underline{F}_{(n)}(x) \geqq f(x)$ almost everywhere.

Since $-f$ is also P^{n}-integrable we immediately see that $\bar{F}_{(n)}(x) \leqq f(x)$ and is finite, almost everywhere.

This completes the proof.
Before we state and prove the main result the concept of $A C^{*}{ }_{n}$ has to be extended as follows.

A function F is said to be $A C^{*}{ }_{n}$-below over (or on) a bounded set E iff (a) $F_{(n-1)}$ exists in some interval containing E and (b) for every $\varepsilon>0$ there is a $\delta>0$ such that

$$
\begin{align*}
\sum_{k=1}^{m} \min \{ & \inf _{a_{k}<x<b_{k}}\left[\left(x-a_{k}\right) \gamma_{n}\left(F ; a_{k} ; x-a_{k}\right)\right], \tag{14}\\
& \left.\inf _{a_{k}<x<b_{k}}\left[\left(b_{k}-x\right) \gamma_{n}\left(F, b_{k}, b_{k}-x\right)\right]\right\}>-\varepsilon
\end{align*}
$$

for all finite sets of non-overlapping intervals $\left[a_{k}, b_{k}\right], 1 \leqq k \leqq m$, with end points in E and such that

$$
\sum_{k=1}^{m}\left(b_{k}-a_{k}\right)<\delta
$$

In a similar way if (14) is replaced by
$\left.\sum_{k=1}^{m} \max \sup _{a_{k}<x<b_{k}}\left[\left(x-a_{k}\right) \gamma_{n}\left(F ; a_{k} ; x-a_{k}\right)\right], \sup _{a_{k}<x<b_{k}}\left[b_{k}-x\right] \gamma_{n}\left(F ; b_{k} ; b_{k}-x\right)\right]<\varepsilon$ we say F is $A C^{*}{ }_{n}$-above over, (or on), E.

The concepts of $A C G_{n}{ }_{n}$-above and $A C G^{*}$-below are defined in the obvious way.

Clearly F is $A C^{*}{ }_{n}$ iff F is $A C^{*}{ }_{n}$-above and $A C^{*}{ }_{n}$-below. If $n=1$ these concepts reduce to the classical ones of $A C^{*}$-above and $A C^{*}$-below, due to Ridder, [7].

Lemma 21. If $F_{(k)}, 1 \leqq k \leqq n-1$, exists in some interval containing the bounded set E and if $F_{(n)}(x)>-\infty, x \in E$ then F is $A C G_{n}^{*}$-below on E.

Proof. Let m and j be integers, m positive
$E_{m}(F)=E_{m}=\left\{x ; x \in E\right.$ and $\gamma_{n}(F ; x ; h)>-m$, for all h such that,

$$
\left.0<|h|<\frac{1}{m}\right\}
$$

$$
E_{m}^{j}=E_{m} \cap\left[\frac{j}{m}, \frac{j+1}{m}\right]
$$

then it is sufficient to show F to be $A C^{*}{ }_{n}$-below over each E_{m}^{j}.
Let $\left[a_{i}, b_{i}\right], i=1, \cdots p$ be non-overlapping intervals with end points in E_{m}^{j}, (this set being assumed, without loss of generality to have more than one point). Then

$$
\gamma_{n}\left(F ; a_{i} ; x-a_{i}\right)>-m, \quad a_{i}<x<b_{i}
$$

and so

$$
\inf _{a_{i}<x<b_{i}}\left[\left(x-a_{i}\right) \gamma_{n}\left(F ; a_{i} ; x-a_{i}\right)\right] \geqq-m\left(b_{i}-a_{i}\right)
$$

Thus if $\varepsilon>0$,

$$
\sum_{i=1}^{p} \inf _{a_{i}<x<b_{i}}\left[\left(x-a_{i}\right) \gamma_{n}\left(F ; a_{i} ; x-a_{i}\right)\right] \geqq-m \sum_{i=1}^{p}\left(b_{i}-a_{i}\right)>-\varepsilon
$$

provided $\sum_{i=1}^{m}\left(b_{i}-a_{i}\right)<\varepsilon / m$. In a similar way

$$
\sum_{i=1}^{p} \inf _{a_{i}<\varepsilon<b_{i}}\left[(b i-x) \gamma_{n}(F ; b i ; b i-x)\right]>-\varepsilon
$$

which completes the proof.
Theorem 22. If f is P^{n}-integrable on $[a, b]$ it is D^{n}-integrable on $[a, b]$ to the same value, and conversely.

Proof. (a) Let f be P^{n}-integrable, $\varepsilon>0$ and M a major function such that

$$
0 \leqq R_{(n-1)}=(M-F)_{(n-1)} \leqq \frac{\varepsilon}{2 n}
$$

By Lemma 21, $[a, b]=\cup_{k \in N} E_{k}$, with $M A C^{*}{ }_{n}$-below on each $E_{k}, k \in N$. Then there is a $\delta>0$ such that if $\left[a_{i}, b_{i}\right], i=1, \cdots, p$ is any finite set of non-overlapping intervals with end points in E_{k} and

$$
\begin{aligned}
& \sum_{i=1}^{p}\left(b_{i}-a_{i}\right)<\delta, \text { then } \\
&\left(x-a_{i}\right) \gamma_{n}\left(F ; a_{i} ;\left(x-a_{i}\right)=\right.\left(x-a_{i}\right) \gamma_{n}\left(M ; a_{i} ; x-a_{i}\right) \\
&-\left(x-a_{i}\right) \gamma_{n}\left(R ; a_{i} ; x-a_{i}\right) \\
& \geqq\left(x-a_{i}\right) \gamma_{n}\left(M ; a_{i} ; x-a_{i}\right) \\
&-n\left\{R_{(n-1)}\left(b_{i}\right)-R_{(n-1)}\left(a_{i}\right)\right\} \quad \text { by }(11) .
\end{aligned}
$$

Hence since $R_{(n-1)}$ is monotonic increasing

$$
\begin{aligned}
\sum_{i=1}^{p} \inf _{a_{i}<x<b_{i}}\left[\left(x-a_{i}\right) \gamma_{n}\left(F ; a_{i} ; x-a_{i}\right)\right] & \geqq-\frac{\varepsilon}{2}-n\left\{R_{(n-1)}(b)-R_{(n-1)}(a)\right\} \\
& \geqq-\varepsilon .
\end{aligned}
$$

In a similar way we see that

$$
\sum_{i=1}^{p} \inf _{a_{i}<x<b_{i}}\left[\left(b_{i}-x\right) \gamma_{n}\left(F ; b_{i} ; b_{i}-x\right)\right] \geqq-\varepsilon
$$

and so we have proved that F is $A C G^{*}{ }_{n}$-below on $[a, b]$.
However since $-f$ is also P^{n}-integrable, F is also $A C G^{*}{ }_{n}$-above on $[a, b]$ and hence $A C G^{*}{ }_{n}$ over $[a, b]$.

This and Theorem 20 shows that f is D^{n}-integrable and that

$$
D^{n}-\int_{a}^{x} f=P^{n}-\int_{a}^{x} f, \quad a \leqq x \leqq b
$$

(b) Suppose now f is D^{n}-integrable on $[a, b]$ and let $E=\left\{x ; f\right.$ is not P^{n} integrable in any neighborhood of $x\}$. Clearly E is closed and let $\left[a_{k}, b_{k}\right]$ denote its contiguous intervals in $[a, b]$.

If $a_{k}<\alpha<\beta<b_{k}$ then f is P^{n}-integrable on $[\alpha, \beta]$ and if F is the D^{n}-integral of f on $[a, b]$ then since from the definition of the D^{n}-integral it is clear that $F-\tau_{n-1}(F ; x)$ is the D^{n}-integral of f on $[\alpha, \beta]$ we have from (a) that

$$
P^{n}-\int_{\alpha}^{\beta} f=F(\beta)-\tau_{n-1}(F ; \beta ; \alpha)
$$

Since the right hand side of this equation satisfies the conditions of Theorem 18 on $\left[a_{k}, b_{k}\right.$] we have that f is P^{n}-integrable on $\left[a_{k}, b_{k}\right]$ and, of course,

$$
P^{n}-\int_{a_{k}}^{b_{k}} f=F\left(b_{k}\right)-\tau_{n-1}\left(F ; b_{k} ; a_{k}\right) .
$$

Hence, by Corollary $13(\mathrm{~b}), E$ is a perfect set.
Suppose now that $E \neq \varnothing$. Since F is $A C G^{*}{ }_{n}$ over $[a, b]$ it follows from Lemma 17 that E contains a portion Q such that if c, d are the end points of \bar{Q} and if $\left[c_{k}, d_{k}\right]$ are the contiguous intervals of \bar{Q} in [c,d] then (i) $F_{(n-1)}$ is $A C$ on \bar{Q} and (ii) $\Sigma_{k \in N} \omega_{n}\left(c_{k}, d_{k}\right)<\infty$. Thus by Theorem 20, and Lemmas 17 and 19 f is P^{n}-integrable on $[c, d]$.

This contradiction shows that $E \neq \varnothing$ and completes the proof of the theorem.

7. The P^{n}-Integral and the n th-Total of Denjoy

In [5] James suggested that the P^{n}-integral may be equivalent to the n th-order totalization of Denjoy, [4]. Since in the case $n=1$ the P^{n}-integral is the classical Denjoy-Perron integral whereas the n th-order totalization is the Denjoy-Khintchine integral, $[4,8]$, this is not the case. Thus in this case the n th-order totalization is more general than the P^{n}-integral; this remains true for all n.

Suppose f is P^{n}-integrable with F its P^{n}-integral then
(a) $F_{(k)}$ exists in $[a, b], 1 \leqq k \leqq n-1$, (Theorem 10 and Corollary 11);
(b) $F_{(n)}=A D F_{(n-1)}=f$ a.e. (Theorem 22 and Lemma 32);
(c) $F_{(n-1)}$ is $A C G$ on $[a, b]$, (Theorem 22 and Lemma 17).

This implies that f is n th-order totalizable and that F is an n th-order total of f.

Denjoy's process is clearly strictly more general for all n. Take F to be a Denjoy-Khintchine integral that is not a $C_{n-1} P$-integral, [11], and let \tilde{F} be the integral of order $(n-1)$ of F. Then \widetilde{F} is an n th-order total of $f=A D F$ but f is not P^{n}-integrable, by Theorem 10.

A Perron type integral that is equivalent to the n th-order totalization and its related generalization of the Cesàro-Perron integral scale will be considered in a later paper.

References

[1] L. S. Bosanquet, 'A property of Cesàro-Perron integrals', Proc. Edinburgh Math. Soc. (2) 6(1940), 160-165.
[2] P. S. Bullen, 'A criterion for n-convexity', Pacific Journal of Mathematics, (to appear).
[3] J. C. Burkill, 'The Cesàro-Perron scale of integration', Proc. London Math. Soc. (2) 39(1935), 541-552.
[4] A. Denjoy, 'Sur l'intégration des coefficients differentiels d'ordre superieur', Fund. Math. 25(1935), 273-326.
[5] R. D. James, 'Generalized nth primitives', Trans. Amer. Math. Soc. 76 (1954), 149-176.
[6] J. L. McGregor, An integral of Perron type (M.A. Thesis, University of British Columbia, (1951)).
[7] J. Ridder, 'Ueber den Perronschen Integralbegriff und seine Beziehung zu den R, L und D Integralen', Math. Zeit. 34 (1932), 234-239.
[8] S. Saks, Theory of the integral (Warsaw, 1937).
[9] W. L. C. Sargent, 'A descriptive definition of Cesàro-Perron integrals,' Proc, London Math. Soc. (2) 47 (1941), 212-247.
[10] W. L. C. Sargent, 'On generalized derivatives and Cesàro-Denjoy integrals', Proc. London Math. Soc. (2) 52(1951), 365-376.
[11] V. A. Skvorcov, 'Nekotorye svoîstva CP-integrala', Matem. Sb. 60 (102) (1963), 305-324.
[12] Z. Zahorski, 'Ueber die Menge der Punkte in welchen die Ableitung unendlich ist', Tohoku Math. J. 48(1941), 321-330.

Department of Mathematics
The University of British Columbia
Vancouver, 8
Canada

