
THE P"-INTEGRAL

P. S. BULLEN

(Received 3 July 1970; revised 20 April 1971)

(Communicated by B. Mond)

1. Introduction

In [5] James defined an nth order Perron integral, the Pn- ntegral, and
developed its properties. His proofs are often indirect, using properties of the
QP-integrals of Burkill, [3]. In this paper a simpler definition of the P"-integral
is given — the original and not completely equivalent definition, was probably
chosen as James considered this integral as a special case of one defined in terms
of certain symmetric derivatives, [5], when end points of the interval of definition
had naturally to be avoided. We then give direct proofs of the basic results, give
a characterization of ^"-primitives, and connect the integral with certain work
of Denjoy, [4].

2. Peano Derivatives

Suppose F is a real-valued function defined on the bounded closed interval
[a, b] then if it is true that for x0 e ]a, b[

(1) F(x0 + h)- F(x0) = i ak %-. + 0(h'), as h -+ 0

where a.1,---,<xr depend on x0 only, but not on h, or r then cck, 1 ^ k ^ r, is
called the Peano derivative of order k of F at x0, and we write ock = F(k)(x0).
If F possesses derivatives F(k)(x0), 1 ^ k ^ r — 1, write

(2) ^yr(F;x0, h) = F(x0 + h) - F(x0) - S ^F

and define

(3)
f(r)(*o) = liminfy/i7 ;xo,h)

Further, by restricting h to be positive, or negative, in (1), or (3) we can define
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220 P. S. Bullen [2]

one-sided Peano derivatives, written F(kh+(x0), F(kh.(x0), F(k),+(x0) etc. If
we say F(k), 1 ^ k ^ r, exists in (a, b) we will mean that F(k) exists in ]a, fe[ and
that the appropriate one sided derivates exist at those of the points a and b that
are in (a, b).

3. Riemann Derivatives

Let xo,---,xr be (r + 1) distinct points from [a ,b\ then the rth divided
difference of F at these (r + 1) points is defined by

(4) Vr(F) = Vr(F: xr) = Vr{F; {*»}) = Vr(F; x0, • • •, xr)

where

(5) w(x) = wr(x) = wr(x;xt); etc.

r

k = O

Given the (r + 1) points P t , 0 ^ /c g r, with coordinates (xt, F(xt)),
0 ^ k ^ r, respectively, there is a unique polynomial of degree at most r passing
through these points given by

(6) nr(F;x;Pk) = nr(x;Pk) = 7r,(x;xo,---,xr) etc.

k=0

Using the divided difference we now define another derivative. Suppose all
of xxx, •••,xr are in [a, fo] and

xk = x + hk, 0 ^ k ^ r, with

then the rth Riemann derivative of F at x is defined by

(8) DrF(x) = lim ••• lim r\Vr(F;xk)
hr->0 /io-»0

if this iterated limit exists independently of the manner in which the hk tend to
zero, subject only to (7). In a similar manner we define the upper (lower) or one-
sided derivatives by replacing all r + 1 limits by upper (lower) or one-sided
limits; these will be written DrF(x), Dr+F{x) etc. If we say DrF exists in (a,b) we
make the same gloss as for F{r). The following result can be found in [2].
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THEOREM 1. (a) / / xe[a,b[ then D'+F(x) = F(r), + (x), provided one side
exists.

(b) IfF(r) exists at all points of[a,b~\ then F(r) possesses both the Darboux
property and the mean-value property.

The usual rth order derivative of F at x, x e (a, b), will be written F(r)(x).

4. n-Convexity

A real-valued function F denned on the closed bounded interval [a,b] is
said to be n-convex on [a, b] iff for all choices of n + 1 distinct points, x0, ••,xn,
in [a, 6], Vn(F;xk) ^ 0, [2,5]. If - F is n-convex then F is said to be n-concave.
The only functions that are both n-convex and n-concave are polynomials of
degree at most n — 1, [2, Lemma 1].

If n = 1 this is just the class of monotonic increasing functions and for
n = 2 it is the class of convex functions; (the class n = 0 is just the class of non-
negative functions, but we will usually only be interested in n ^ 1).

Various properties of n-convex functions were obtained in [2]. We state
them here for convenience.

THEOREM 2. Let Pk = (xk>yk), 1 ^ k ^ n, n ^ 2, a ^ xt < ••• < xn g b,

be any n distinct points on the graph of the function F. Then F is n-convex iff
for every such set of n points the graph lies alternately above and below the
graph of the polynomial nn_1 F;x;P12), lying below if xn_ t ^ x £j xn. If
so then TT.-^XJP*) S F(x), xn g x ^ b; and TCM_1(X; Pk) ^ F(x) ( ̂  F(x)) if
a ^ x < xt, n being even (odd).

The definition, (6), of nr(x;Pk) can be extended to cover the case when not
all of the Pk are distinct. Thus if only 5 of these points are distinct then besides
giving the values at the s points, a total of r + 1 - s derivatives must also be
given — either r + 1 — s derivatives all at one point, or r + 1 — s first derivatives
at r + 1 - s distinct points, (when r + 1 - s ^ s), etc. Of the many possible
extensions to Theorem 2 we state

THEOREM 3. Let Pk = (xk,yk), 1 ^ k ^ r, ax ^ x t < ••• < xr ^ b, be r

distinct points on the graph of the function F. Suppose that F(s), + (x1) exists,
1 ^ s ^ n — r. Then Theorem 2 holds ifnn_l(x;Pk) is taken to have

*„_!(*,; Pt) = F(xs), 1 ^ s ^ r, ̂ ( x ^ P , ) = F(s) +(xx), H s S » - r ,

and if P1 is considered as n — r + 1 points at and to the right of P1 but to the
left ofP2.

THEOREM 4. (a) If F is n-convex on [_a,b~\ and Pk = (xk, yk), 1 ^ k ^ n are
n distinct points on the graph of F, a :g x t < b, let xk = xx + skh, 0 < e2 <

https://doi.org/10.1017/S1446788700010065 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010065


222 P. S. Bullen [4]

••• < £„. Then as h -> 0 + , 7tn^1(x;Pk) converges uniformly to the right tangent
polynomial at xlt

in_t +(F;x;x1) = x+(x) = F(xt) + V (X ~,Xl)*

X

Further on the right ofxlt T + i£ F.
(b) A similar result holds for the left tangent polynomial at xu t-(x;x1),

a 5̂  x 5= xx, a < x± S b. However in this case if n is even (odd) then on the left
ofxt T_ ^ F( ^ F).

(c) ^f a// but a countable set of points xx, a similar result holds for the
tangent polynomial at xlt z(x1;x), a < x < b, a < Xj < b. However if n is
even the graph of % lies below that of F, whereas if n is odd the graphs cross,
x being above on the left ofxu and below on the right ofxt.

THEOREM 5(a). IfF is an n-convex function on [a, U] and

a ^ xt < ••• < xn ̂  b, a ̂  yY < ••• < yn ̂  b, xk ̂  yk, 1 ^ k ̂  n,

(b). IfF is n-convex in [a, b], \F\ rg K, then

\Fm(x)\ S AKsup I J J - ^ , j - ^ - J , O ^ k ^ n - l

where A is a constant independent of k, F and x, and where if k = n — 1 the
derivative is to be interpreted as sup( | i7

(n_1)j + (x ) | , j F(n_1),_(x)J).
(c). / / F is n-convex on [ a ,£ ] , a ̂  x S y ^ b, a ̂  x + h ^ y, and

x ^ y + k £ b then

yn^(F;x;h) ^ F ( n _ 1 } _(y) and F(H-1)t+(x) ^ yn-x(F;y;k),

where yn-i is as defined in (2).

THEOREM 6. IfF is n-convex on [a, b] , a < a < P < b, Ex = {x: a ^ x ^ p

and F(n)(x) ^ 2} then

(9)

THEOREM 7. If F is n-convex then (a)F(r) is (n — r)-convex, 1 ^ r ̂  n — 2,
(b) F r " - 1 ) exists af a// except a countable set of points,
(c) F(n) exist a.e.

THEOREM 8. Ifn^. 2, and

0) ffi),-,^-!) exist in [a,b],
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(iii) F(n), + (x) > oo, xe[o,fc] ~ C, C countable then F is n-convex.
If F is defined on [a, b~\ as well as Flk), 1 ^ k ^ n — 1, let us write

a>n{F;a,b) = a)n(a,b)

= max sup \(x-a)yn(F;a;x-a)\,
(10) l a<x<b

sup |(b -x)yn(.F;b;& - x
a< x<b

this quantity was introduced by Sargent, [10].
In [2] it was shown that F is the difference of two n-convex functions iff

Z/T=iu>n{F;ak,bk) < K for all finite sets of non-overlapping intervals, \_ak,bk~\,
1 ^ k ^ m. It was also shown in [2] that if F is n-convex then

(11) con(F;a,b) ^ n{F(n_ 1}(b) - F(n_i}(a)}.

5. The P"-integral

Let / be a real-valued function on [a, b] then a function M continuous on
[a, ft] is called a P"-major function of f on \a,b~\, or just a major function, if
there is no ambiguity, iff

(a) M(k) exists and is finite on [a, b], 1 ^ k ^ n — 1,
(b) M („)(*) ^ /(X>, x e [a, fc] ~ £, | £ | = 0,
(c) M(n)(x) > - oo, x e [ a , f r ] ~ C , C countable,
(d) M(k)(a) = 0, O g f c g n - 1 .

If — m is a major function of —/ then m is called a minor function, or more
precisely, a P"-minor function of f on [a, £>]. It is clear from these definitions
that / need only be finite a.e.

This definition differs from that in [5], in the use of the end-points in (a),
in the existence of the sets £ and C, and also in condition (d). In [5] the major
function is normalized instead by requiring it to be zero on a given set of n distinct
points au---,an ; let us call these functions, J-majorfunctions over (at)igitgn.

Standard arguments, using Theorems 3 and 8, show that if M is any major
function, m any minor function; then M — mis a non-negative n-convex function,
[compare with 5, Lemmas 5.1, 5.2].

For a < c ^ b define
F(b) = P" - l°a / = inf{t: ( = M(c), M is a major function of / } , the upper
P"-integral of f on [a, 6 ] ; in a similar way we define the lower P"-integral,
P" ~ Ja / : if there is no ambiguity we will just write, J c / or, j% f. If
F(c) = F(c), we write the common value, F(c)c = P" — jc

af (or just J£ / ) , and
if further this value is finite we say / is P"-integrable on [a, c].
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If / is P"-integrable in the sense of [5], let us say / is J — P"-integrable
over (ak; b).

THEOREM 9. (a) / is P"-integrable on [a, b] iff for each s > 0 there exists
a major function M and a minor function m, such that 0 ^ M(b) — m(b) ^ e.

(b) / is P"-integrable on [a, b] iff given £ > 0 there exist continuous func-
tions M, m on [a, fo] such that (i) M(k), m(k) exist and are finite in [a, b~\,
l^k^ n - 1 (ii) - co ^ M(n)(x) ^ f(x) ^ m(n) / oo (iii) M(k)(a) = m(k)(a) = 0,
0 ^ k g n - l(iv) 0 ^ M(b) - m(b) < s.

(c) / / / is P"-inter gr able on [a, b\ f = g a.e. then g is P"-integrable
on [a, b] and J* / = \b

ag.

PROOF, (a) Immediate.
(b) The case n = 1 is due to McGregor, [6].

Obviously we have to show that if / is P-integrable then there exist functions M,
m satisfying the conditions (i)-(iv) of (b) with n = 1. Since / is P-integrable
there exists functions M, m as in (a), with n = l : if F = P — J * / then F'
exists and is finite almost everywhere (Theorem 20 below or [8, p. 202]), further
F — m and M — F are monotonic increasing (Theorem 10(a) below) and so
m = F — (F — m), M = F + (M — F) have finite derivatives almost every-
where. Let E = {x: either M' (x) = + oo, m (x) = + oo, M(x)= — oo or
m' (x) = oo} then E is of measure zero and can be covered by a set E that is a Gd

is also of measure zero and hence by a result due to Zahorski, [12], there is a
function w on [a,fr] such that (i) w is absolutely continuous, (ii) w' exists every-
where, (iii) if xeE, w'(x) = oo, (iv) if x$E, 0 ^ w'(x) < oo, (v) w(a) = 0,
w(b) < s. Now define m = m — w M = M + w then we see that they are the
required functions since (i) M, m are continuous on [a, b~\, (ii) if x e E, M'{x) ^ M '
(x) + w'(x) = oo and so M'(x) exists with value oo; if x$E M'(x) exists and is
finite, (iii) similarly m' exists everywhere in [a ,b] , (iv) M' ^ / ^ m' ,(v) m{a)
= M(a) = 0, (vi) 0 ^ M(b) — m(b) ^ s. The general case follows simiarly using
the extension of Zahorski's function introduced in [2, Theorem 16]

(c) Immediate.

THEOREM 10. (a) For all major functions M, minor functions m, of f
M — F and F — m are non-negative n-convex functions.

(b) F(k)~exists in ~]a,b\_ 1 ^ k S n - 2; F(n^x) exists except on a countable
set.

(c) / / / is P"-integrable then F(n-i, exists on ]a,fc[.
(d) / / / is P"-integrable F(a) = F(k)(a) = 0, 1 g fc g n - 1.

PROOF, (a) Immediate.
(b) Immediate using (a), the definition of M and Theorem 7.
(c) By Theorem 1 and Theorem 5(a) and (b) if g is n-convex in

[a,b~\,\g\ <K then if a < a. < xu-,xn ^ j8 < b, j Vn.-Sg;x^\ < KA, A de-
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pending on a, /? but not on xl,---,xn. So taking g — F — M , M a suitable major
function of / we have

Letting xk -* x, 1 ^ k ^ n, the existence of F(n_1J(x) follows from t h a t o f M ^ ^ x ) ,
and Theorem 1. Thus F(n-1) exists in ]a ,b[ .

(d) Immediate since F lies between two functions M, and m, both of which
are 0(x — a)"'1 near a.

COROLLARY 11. / / / is P"-integrable then (a) for every major function M,
and every minor function m, M — F and F — m are r-convex on [a, b~\,
0 ^ r S n, (b) F(r)(b) exists, 1 ^ r ^ n - 1.

PROOF, (a) The cases r = 0, n are just Theorem 10(a). By Theorem 5, and
using the notation introduced there, since M — F is n-convex, we have that
Vn-i(M -F;xk) ^ Vn-l{M -F ;zk). Letting zk-+a, U H n we have by
Theorem 10(d), that Fn_x(M - F,xt) ^ 0; that is, M-F is (n - l)-convex.
In a similar way we can show that M — F is /c-convex, 1 ^ k ^ n — 2, and that
f — m is k-convex, 1 ^ k ^ n — 1.

(b) Since, from (a), M — F is (fc + l)-convex, 1 ^ fc ^ n — 1, and Ft(M;xy)
= Kk(F;x_,-) + Vk(M - F;xj) it follows, by Theorem 5, that lim Vk{F;xj) exists.

b

Further M - F is fc-convex, so Vk(M - F;xj) ^ 0 and so Vk(M:xj) ^ Ft(F;Xj);
similarly Vk(F;xj) ^ ^(mjXj) and so since both Mm(b) and m(k)(b) exist the
above limit is finite.

THEOREM 12. (a) / / / is P"-integrable on [a ,b] if is Pn-integrable on any
sub-interval [a,/?]. Further, if F is the P"-integral of f on [a ,b] , then

\ f=[ f - * n - i ( F ; x ; o 0 , a^x^p.
J a Ja

(b) / / / is P"-integrable on [_a,b~\ then it is J — P"-integrable over (ak:b)
and

J-Pn-\ / = P B -f f-nn_,{F;b;ak),
J(ak) Ja

F being the P"-integral of f.

PROOF, (a) If s>0 and M a major function of/such that 0:g M(b)—F(b) S £.
then since M — F is fe-convex we have by Theorem 5(b) that
0 ^ (M-F)(k) (a) {b-af ^ A s.

If we write M* for M — x"{M; a) and define F* similarly then

0 ^ M*0?) - F*(J3) ^ F£.

Since B does not depend on M this is sufficient to prove (a).
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(b) Let M be a major function of the type occurring in Theorem 9 (b), then
it is immediate that M* = M — nn_1(M;ak) is a J-major function. Defining m*
in a similar way, we have that

| M*(b) - m*(b)\ ^ M(b) - m(b) + 17r(n_1}(M - m;b;ak)\

which by Theorem 9 (b), and Definition 5.3 of [5] is sufficient to complete the
proof.

If n > 1 the converse of Theorem 12(b) is not true in general. Consider

/ ( x ) = (1-x)" 3 ' 2 , - K x < l ;

= 0, x = + 1.

Then F(x) = G / T - 2)X + 1 - (1 - x2)1/2 is the J - P2-integral of / over
(0,1/2 ;x). However / is not P2-integrable on [ - 1,1] since F'( - 1) = - oo.

Corollary 13. / / / is P"-integrable on [a, 6], and F is its P"-integral,
e > 0, then a major function M and a minor function m can be chosen so that
ifR = M-F,r = F-m then

(12) 0 ^ max {Rm(x), rm(x)} S s , a^x^b, 0 ^ k ^ n - l .

(b) / / / is P"-integrable on [a,b] and on \b, c] then f is P"-integrable
on [a,c]. Further if F1 is the P"-integral of f on [a.fe], F2 the P"-integral off
on \b,c\ then

F(x) = F^x), a-^x^b

is the P"-integral off on [a,c].

PROOF, (a) Since R(k)(x), 0 :g k :£ n — 1, exists for a ^ x ^ b, it follows
from Theorem l(b) that it suffices to prove (12) for a ^ x < b. If [a,/?] is any
subinterval of [a,b], a < a < /? < b, then the first inequality obtained in the
proof of Theorem 12(a) implies (12) holds in [a, /?].

Let po = a < p < p2 ••• < b, with lim,-.^ fij = b; and let £,-, j ^ 0 be a
sequence o" positive numbers to be specified later.

Let RJ be chosen to satisfy (12) in [_Pj,Pj + i\, with e = ey; since in fact Rj is
denned on [/?,-, b~\ we can also require that 0 ^ RJ' ^ e0 on that interval.

Define the functions PJ and Qj on [/?y,j8j+i], 7 ^ 0, inductively as follows.

p° = 0 , Q° = P° + R°

Pi(x) = T(QJ-1;X; ft), QJ = P^ + R*.

Then,
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I | s= £y + i

Choose Pj, Sj, j ^ 0 so that

Now define

pJJ+1

= lim K(.y), x = b.
y->b

It can then be checked that M = R + F is a major function of / with (12)
satisfied.

A similar construction can be used to obtain a suitable minor function.
(b) Let M1 be a major function o f / on [a,b~\ chosen so that (12) holds

with e = s:e
c~* and let M2 be any major function of/ on \b,c\. If then

M(x) = Ml(x), a ^ x g b

= M2(X) + T, ,_ 1 I _(M 1 ;X;6) , 6 ^ x g c,

M is a major function of/ on [fl,c] and

0 ^ f (c) - M(c) S F2(c) - M\c) + et;

this is sufficient to prove (b).

THEOREM 14. If F is a real-valued function on [a, 6] such that (a) F(k)

exists in [ a , ft], l ^ H n - 1, (b) F ( n ) ( x ) exists , xe\_a, ti]~ E,\E\ = 0,
(c) F(n)> E(n) ore finite everywhere on a countable set then if f(x) = F(n)(x),
x e [a, fe] ~ E, and is zero elsewhere then f is P"-integrable and

J>
PROOF. Immediate.
The converse of this is less immediate and is proved later, Theorem 20

below.

THEOREM 15. / / / is P"-integrable on [a, i ] then f is Pn+1-integrable
on [a, b~\ and

P" + 1- ! / = f (Pn- \Xf)dx.
Ja Ja Ja

https://doi.org/10.1017/S1446788700010065 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010065


228 P. S. Bullen [10]

PROOF. This is given in [5, Theorem 7.2], although in the present case of
unsymmetric derivatives the details are much simpler.

6. The P n - and CB_1 -Integrals

As a result of the above modifications in the definition of the P"-integral
the relationship between this scale of integrals and the Cesaro-Perron scale of
Burkill, [3], is much neater.

The C0P-integral is the classical Perron integral. The CnP-integral is defined
by induction as follows.

(i) A function / is Cn-continuous on [a,b] if it is C^P-integrable and

n rx+h

lim — Cn_ ,P - (x + h- t)- lf{t)dt = f{x),
h-0 n Jx

for every x in [a, b~\.
(ii) \ff isCn_iP-integTableonla^'jthentheupperCn-derivative off at x is

cnDf(x) = l i m s u p Z L + i j J L c ^ p - j \ x + h - t y - l / ( t ) d t - / (

The lower Cn-derivative of f at x is similarly defined.
(iii) If / is defined on [a, 6] then M is called a CnP-major function of f on

(a) M is Cn-continuous on [a, b],
(b) CnDM{x) ^ fix), x e [a, ft] ~ E, | E\ = 0,
(c) CnDMix) > - oo, xe[a,b~\~ C, C countable,
(d) Mia) = 0.

A CnP-minor function is defined in a similar manner.
(iv) If for every e > 0 there is a CnP-major function M and a CnP-minor

function m such that M(b) — m(b)| < e then / is said to be CnP-integrable
in \_a, b~\.

This definition is more general than that in [3] because of the existence of
the exceptional sets E and C. However just as Theorem 9 (b) shows that the
existence of these sets does not widen the scope of the PMntegral it can also be
shown that the above definition is equivalent to the usual one; see for instance
the foot note on page 162 of [1].

THEOREM 16. / is P"-integrable on [a,b] iff it is Cn_iP-integrable in
[a, b~\. IfF is the P"-integral off then

(13)

Fix) = P-

J a

-c p- r r
"~X Ja J'
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PROOF, (a) If / is C^jP-integrable then the proof of Theorem 9.1 in [5]
shows / is PMntegrable. The proof now has fewer awkward details and can
include the end points of [a, ft] in its argument.

(b) If / is P"-integrable then as in [5, Theorem 11.1], if M is a P"-major
function then M(n_1( is a Cn_tP-major function. Further, by (12), we can choose
M so that 0 g F(n_1}(x) -M ( n _D(x) ^ eforallof x, a sS x^b,which completes
the proof.

It is seen from (13) that if F is a P"-integral then F(k) is Ck-continuous,
0 g Ic g n - 1, [5, Lemma 11.1]. This is one place where Q-concepts give
information not obtainable directly; there seems to be no other continuity concept
that describes the bounds set on the lack of ordinary continuity of Peano de-
rivatives.

It follows from Theorem 16 and [9] that the P"-integral can be given a de-
scriptive definition. Following the spirit of this paper we will do this directly in
the following section.

7. The //-Integral

Most of the concepts introduced in this section are based on ideas due to
Sargent, [9, 10]; the notation has been changed slightly to agree better with the
present work.

A function F is said to be AC*n over (or on) a bounded set E iff (a) F(n^y>

exists in some interval containing E, and (b) for every e > 0 there is an 6 > 0
such that, using notation of (10),

m

S con(qk, bk) < B
fc = I

for all finite sets of non-overlapping intervals, \_ak, bk~\, 1 ^ k ^ m, with end
points in E, and such that

£ (bk - ak) < d.
k = l

A function F is ACG*n over (or on) a bounded set E iff'(a) F(n-l} exists in
some interval containing E and (b) E = u k + w Ek with / being AC*n on each Ek,
keN; where N is the set of natural numbers.

If n = 1 these concepts reduce to the classical ones of AC* and ACG*
respectively, [8]. The main properties of these classes of functions are collected in

LEMMA 17. (a) If F is AC*„ over a set E then(i) F is AC*noverE,(ii) F(n_u

is AC over E, (iii) F(n_X) is approximately derivable a.e. on E, F(n) = AD F(B_i)
a.e., and F(B) is Lebesgue integrable on E, (iv) if E is a bounded closed set with
contiguous intervals [ak,ftj, keN then E^Na>n(ak,bk) < oo.
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(b) If F is such that F(n^D exists in some interval containing a bounded
closed set E and (ii) and (iv) of (a) hold then F is AC*n on E.

(c) FisACG*non[a,b-\iff(i)F(n-l)existsin{a,b']and(n)[a,b~] = \jk+NQk,
Qk being closed and F being AC*n on Qk, keN.

(d) IfF, G are ACG*n over [a, ft] and F(n) = G(n) a.e. then (i) F - G is a
polynomial of degree at most (n - 1), (ii) yn{F;x;h) = yn(G;x;h), a S x ^ b,
a ^x + h ^b.

PROOFS. The proofs of (a), (c), (d) are either immediate or are in [10]; the
proof of (b) is an adaption of the proof of the similar result in [9].

A function / is said to be Dn-integrable on [a, b~\ iff there is a function F such
that (a) F is ACG*n on [a,f], (b) Fm(a) = 0, 1 ^ k £ n - 1, (c) F(K)(x) = / (*)
a.e. Further we call F the D"-integral of / , and write F(x) = D" — \£f. It follows
from Lemma 17 that if such an F exists it is unique and from Theorem 10 and
[9, 10] that the P"- and ^"-integrals are completely equivalent. This we now
prove directly.

THEOREM 18. Suppose f is P"-integrable on every [a, /?], a < a < /? < b and
put I(a,P) = Jf/. Suppose further that

and (b) there is a polynomial p of degree at most n — 1 such that

then f is P"-integrable on [a, b~\ and

C"
/ = lit

Ja cc-

PROOF. Let us put

F (x) = 0 , x = a,

= lim /(a, x), a < x < b,
a~*a

= lim F(y), x = b,

Then F(k)(x) exists, 1 ^ H n - 1, and a <; x ^ ft; further Fm(a) = 0,
1 ^ k ^ n — 1. We show that F is the P"-integral o f / on [a, ft].

Let a < ••• < x_ t < x0 < x t < ••• fc with a = limfc^._0Oxt b = lim^^a, xk;
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write Ik(x) for /(xk_1,x), xt_! ^ x < xk; suppose sk > 0, keZ, (where Z is the
set of integers), is a sequence of positive numbers to be specified later.

Let Mk be a major function of/ on [xt_!,xt] such that

0 ^ Mt(x) - Ik(x) < skinf {(x - a)"'1, (b - x)n~1}

and put Rk = Mk- Ik.
Now define

k - l

M(x) = F(x) + E i?v(xv) + Rk(x), jct_, ^ x < xk
V = — OC

= 0, x = a,

= F(b) + I Ry(xy), x = b.
v = — a>

Then for a ^ 0 and — a large enough

I c - l

0 S M(x) - F(x) g (x - a)""1 S fit, xt_, ^ x < xk
v = — oo

and so by suitable choice of {ek}, a ^ 0, we see that (M — F)(k)(a) = 0 and so
that M{k)(a) = 0, 1 ^ / c ^ n — 1. Similarly if a S: 0 and large enough

0 ^ (M(b) - F(b)) - (M(x) - F(x)) g (6 - x ) - 1 I ek)

Xfc-i ^ x < xk; from which it is easy to deduce that M(k)(b) exists, 1 ^ /c ^ n — 1,
if {E,J, a ^ 0 are chosen suitably.

Finally we can still choose ek, keN so that 0 S M — F ^ e, for any e > 0.
This, together with a similar construction for a minor function completes

the proof.
The conditions of Theorem 18 cannot be relaxed as is seen by the following

example, [4]. Let

F(x) = x"+ asinx~p, 0 < x g 1,

= 0, x = 0,

n ^ 2, an integer, 0 < a < 1, p 7i n + a — 1. Then F(j)(x) exists for all j
0 < x ^ 1, ^0,(0) exists l g j ^ n . Thus if / (x) = F(n+2)(x), 0 < x ^ 1
Thus if

f(x) = F(ll + 2)(x), 0 < x g 1

= 0, x = 0.
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Then / is P(n+2)-integrable on [e, l]for all e but is not P ( n + 2)-integrable on
[0,1], since F(n + 1)(0) does not exist.

LEMMA 19. If E is a closed bounded set with end points a and b and con-

tiguous intervals [ak, bk~\ in [a, b~\,k = 1,2, ••• and if (a) f is Lebesgue integrable

on E,

(b) / is P''-integrable on each \ak, bk], k = 1 ,2 , •••,

(c) T,k = 1O3n(F
k;ak,bk) < oo then f is P"-integrable on [a, b], and

{where \u(i) = 1, t eQ, = 0, t £ Q).

where Fk is the P"-integral off on \ak, bk~\, k = 1,2, •••.

PROOF. An adaption of a similar result of Sargent, [10].

THEOREM 20. / / / is P"-integrable on [a,fc] and F is its P"-integral then
F(n) exists and equals f a.e.

PROOF. Let e > 0 and M a major function chosen so that 0 ^ R(k)

= (M - F)m £ e , 0 £ k £ n - l , (12).

Then R is n-convex and so by Theorem 6/?( n ) < oo a.e. and hence F(n) > — oo
a.e.

Now let E = {x; R(n)(x) ^ l } n [a,jS], a<a< f} <b; then by Theorem 6,

m*£A ^ - ^ , hence m*EX = 0.
A.

If Eo = E \jC, E, C being the sets associated with M by virtue of it being
a major function and if xe[a, b~\ ~ (Eo (jEk) then ffB)(x) ^ f{x) — k, which
implies that this last inequality holds almost everywhere. From this we easily
deduce that f(n)(x) ^ f(x) almost everywhere.

Since — / i s also P"-integrable we immediately see that F(n)(x) ^ / ( x ) and
is finite, almost everywhere.

This completes the proof.
Before we state and prove the main result the concept of AC*n has to be

extended as follows.
A function F is said to be AC*n-below over (or on) a bounded set E iff

(a) F(„_!) exists in some interval containing E and (b) for every e > 0 there is
a 8 > 0 such that
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(14) £ min inf [(x - ak)yn(F; ak;x - a*)],

inf [(bk - x)yn(F, bk, bk - x)] 1 > - e
Hk<X<bk I

for all finite sets of non-overlapping intervals [ak, bk~], 1 ^ k g m, with end
points in E and such that

m

In a similar way if (14) is replaced by

m

£ max sup \_(x — a t ) ) ' n (F ; a t ; x — ak)~], sup [frt — x]y n (F ;b k ;b k — x)] < e

we say F is AC*n-above over, (or on), E.
The concepts of ACG*n-abo\e and ACG*n-below are defined in the obvious

way.
Clearly F is AC*n iff F is 4C*n-above and ^4C*n-below. If n = 1 these con-

cepts reduce to the classical ones of y4C*-above and y4C*-below, due to Ridder,
[7]-

LEMMA 21. If F(k), 1 g k ^ n — 1, ex/sto in some interval containing the
bounded set E and if F(n)(x) > — oo, xeE then F is ACG*n-below on E.

PROOF. Let m and ; be integers, m positive

Em(F) - Em = | x ;x e E and yn(F;x; h) > - m, for all h such that,

0<\h\ <— ,

m' m

then it is sufficient to show F to be AC*n-beiovf over each E^.
Let [ a ; , ^ ] , i = l,---p be non-overlapping intervals with end points in

E'm, (this set being assumed .without loss of generality to have more than one point).
Then

yn(F;ai;x-ai)> - m, ai<x<bi,

and so
inf [(x - a^F-^i; x - a,)] ^ - m(b, - a,).

ai<x<bi

Thus if e > 0,

p p

I inf [(x - ai)yB(F;a,; x - a,.)] ^ - m S (fc,- - a,-) > - e,
i = 1 at<x<bt i = l
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provided X;t t (fo,- — a,-) < z\m. In a similar way

p

2 inf [(fci - x)yn(F; W; bi - * ) ] > - e,
i = 1 ai < x < 6j

which completes the proof.

THEOREM 22. / / / is Pn-integrable on [a, 6] it is D"-integrable on [a,b]
to the same value, and conversely.

PROOF, (a) Let / be P"-integrable, e > 0 and M a major function such that

0 g/?(„_„ = ( A f - F ) f , - i ) ^ 2^".

By Lemma 21, [a,b] = (jkeN Ek, with M ^4C*n-below on each Ek, keN. Then
there is ad > 0 such that if [a^fc,-]. ' = l,---,p is any finite set of non-overlapping
intervals with end points in Ek and

p

£ (ft,- — a,) < S, then

- adyn(F; a«; (x - a,-) = (x - fl;)yn(M; a;; x - a,)

D D by (11).

Hence since R(n_i) is monotonic increasing

X inf [(x - atyyH(F;a,;x - a,)] ^ - 4 - »{«r.-i)(6) - «(»-!>(«)}
i = l ai<x<if ^

^ - e .
In a similar way we see that

£ inf l(b, - x)ytt(F; bt; bt - x)] S - e
i = l at < x < bt

and so we have proved that F is ^4CG*n-below on [a, fe].
However since —/is also P"-integrable, F is also /lCG*n-above on [a,b~\

and hence ACG*n over [a,&J.
This and Theorem 20 shows that / is £)"-integrable and that

£>»_ r / = p»-r/, a g ^ i ) .

(b) Suppose now / is £>"-integrable on [a, fr] and let £ = {x; / is not P"-
integrable in any neighborhood of x}. Clearly E is closed and let [ak, bk~\ denote
its contiguous intervals in [a, b].
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If ak < a < ft < bk then / is P"-integrable on [a, fi~] and if F is the D"-integral
of / on [a,b] then since from the definition of the D"-integral it is clear that
F — tn_t(F;x) is the ©"-integral of/ on [a, j8] we have from (a) that

pn _

Since the right hand side of this equation satisfies the conditions of Theorem 18
on [at, bk~\ we have that / is PMntegrable on [ak, bk~\ and, of course,

pn _

Hence, by Corollary 13(b), £ is a perfect set.
Suppose now that E # 0 . Since F is ACG*n over [a, 6] it follows from

Lemma 17 that E contains a portion Q such that if c, d are the end points of
Q and if [ct, rft] are the contiguous intervals of Q in [c, d] then (i) F(n_,) is AC
on 3 and (ii) ~Zk sNcon(ck,dk) < oo. Thus by Theorem 20, and Lemmas 17 and 19
/ is P"-integrable on [c,d].

This contradiction shows that E ^ 0 and completes the proof of the theorem.

7. The P"-Integral and the nth-Total of Denjoy

In [5] James suggested that the /""-integral may be equivalent to the nth-order
totalization of Denjoy, [4]. Since in the case n = 1 the P"-integral is the classical
Denjoy-Perron integral whereas the nth-order totalization is the Denjoy-Khint-
chine integral, [4, 8], this is not the case. Thus in this case the nth-order totaliza-
tion is more general than the P"-integral; this remains true for all n.

Suppose / is P"-integrable with F its P"-integral then
(a) F(k) exists in [a . t ] , 1 ^ feg n - 1, (Theorem 10 and Corollary 11);
(b) F(n) = AD F ( n _ u = / a.e. (Theorem 22 and Lemma 32);
(c) F(n_i} is ACG on [a,b], (Theorem 22 and Lemma 17).
This implies that / is nth-order totalizable and that F is an nth-order total

of/.
Denjoy's process is clearly strictly more general for all n. Take F to be a

Denjoy-Khintchine integral that is not a Cn_,P-integral, [11], and let F be the
integral of order (n — 1) of F. Then F is an nth-order total of / = ADF but / is
not PMntegrable, by Theorem 10.

A Perron type integral that is equivalent to the nth-order totalization and its
related generalization of the Cesaro-Perron integral scale will be considered in
a later paper.
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