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1. Introduction

In [5] James defined an nth order Perron integral, the P" ntegral, and
developed its properties. His proofs are often indirect, using properties of the
C,P-integrals of Burkill, [3]. In this paper a simpler definition of the P"-integral
is given — the original and not completely equivalent definition, was probably
chosen as James considered this integral as a special case of one defined in terms
of certain symmetric derivatives, [5], when end points of the interval of definition
had naturally to be avoided. We then give direct proofs of the basic results, give
a characterization of P"-primitives, and connect the integral with certain work
of Denjoy, [4].

2. Peano Derivatives

Suppose F is a real-valued function defined on the bounded closed interval
La,b] then if it is true that for xq € ]a, b[

r k
(1) F(xO + h) - F(xO) = Z Oy %" + O(hr)’ as h-0
k=1 ’

where a,,---,a, depend on x, only, but not on h, or r then o, 1 £ k < r, is
called the Peano derivative of order k of F at x,, and we write o, = F,(xo).
If F possesses derivatives F,y(xo), 1 < k < r — 1, write

hr r—1 hk
#) r—!yr(F;-an h) = F(xo + h) — F(x) — El EF(k)(xo)a
and define
F(r)(xO) = limsupy F;xo, h)
h~0
(3)

F (r)(xO) = liminfy(F;xo, h)
h—0

Further, by restricting h to be positive, or negative, in (1), or (3) we can define
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one-sided Peano derivatives, written F,),+(xo), Fuy.-(X0), Fuy,+(xo) ete. If
we say F,, 1 £ k < r, exists in (a, b) we will mean that F;, exists in ]a, b[ and
that the appropriate one sided derivates exist at those of the points a and b that
are in (a, b).

3. Riemann Derivatives

Let xo,---,x, be (r+ 1) distinct points from [a,b] then the rth divided
difference of F at these (r + 1) points is defined by

4 VAF) = VAF:x,) = V(F:{x;}) = V,(F; Xo,"",,)
- .. F (xk)
k=0 W (xk)
where
®) w(x) = wi(x) = w,(x;x,); etc.

kljo (x — x).

Given the (r+ 1) points P,, 0 £ k < r, with coordinates (x, F(x,)),
0 < k £ r, respectively, there is a unique polynomial of degree at most r passing
through these points given by

(6) ﬂ,.(F;X;Pk) = nr(X;Pk) = T[r(x;xO""fxr) etc.

9

- E eIl Gy

J<k
Using the divided difference we now define another derivative. Suppose all
of x,xy,--+, %, are in [a, b] and
X, =x+h, 05k =Zr, with
M 0= |ho|<-<]h],

then the rth Riemann derivative of F at x is defined by

®) D'F(x) = lim .- lim r!V(F;x,)

he—>0 ho—0
if this iterated limit exists independently of the manner in which the A, tend to
zero, subject only to (7). In a similar manner we define the upper (lower) or one-
sided derivatives by replacing all r + 1 limits by upper (lower) or one-sided
limits; these will be written D'F(x), D', F(x) etc. If we say D'F exists in (a, b) we
make the same gloss as for F,,. The following result can be found in [2].
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TueoreM L. (a) If xe[a,b[ then D\ F(x) = F, ,(x), provided one side
exists.

(b) If F, exists at all points of [a,b] then F,, possesses both the Darboux
property and the mean-value property.

The usual rth order derivative of F at x, x €(a, b), will be written F{"(x).

4. n-Convexity

A real-valued function F defined on the closed bounded interval [a,b] is
said to be n-convex on [a, b] iff for all choices of n + 1 distinct points, xg, -, X,,,
in [a, b], V,(F;x,) = 0, [2,5]. If — F is n-convex then F is said to be n-concave.
The only functions that are both n-convex and n-concave are polynomials of
degree at most n — 1, [2, Lemma 1].

If n =1 this is just the class of monotonic increasing functions and for
n = 2 it is the class of convex functions; (the class n = 0 is just the class of non-
negative functions, but we will usually only be interested in n = 1).

Various properties of n-convex functions were obtained in [2]. We state
them here for convenience.

THEOREM 2. Let Py = (%, y), 1 SkEn,nz2, asx < <x,<b,
be any n distinct points on the graph of the function F. Then F is n-convex iff
Jor every such set of n points the graph lies alternately above and below the
graph of the polynomial w,_, F;x;P,,), lying below if x,_, < x < x,. If
so then m,_(x;P) £ F(x), x, £ x £ b; and =n,_,(x; P) < F(x) (= F(x)) if
a £ x < x;, h being even (0dd).

The definition, (6), of =,(x; P,) can be extended to cover the case when not
all of the P, are distinct. Thus if only s of these points are distinct then besides
giving the values at the s points, a total of r + 1 — s derivatives must also be
given — either r + 1 — s derivatives all at one point, or » + 1 — s first derivatives

at r+ 1 — s distinct points, (when r+ 1 —s < ), etc. Of the many possible
extensions to Theorem 2 we state

THEOREM 3. Let P, = (x, ), 1Sk =Zr, a, < x;, <+ <x, b, be r
distinct points on the graph of the function F. Suppose that Fig,+(x) exists,
1 £ s £ n—r. Then Theorem 2 holds if n,_,(x; P,) is taken to have

7rn—l(x.s;Pk) = F(xs), 1 é s é r, 7‘::lsll(xl;Pk) = F(s) +(x1), 1 é N § n—r,

and if P, is considered as n —r + 1 points at and to the right of P, but to the
left of P,.

THEOREM 4. (a) If F is n-convex on [a,b] and P, = (x;,y,), 1 £ k < n are
n distinct points on the graph of F,a < x; <b, let x, = x; +gh, 0 <¢, <
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- < g, Then as h— 0+, n,_,(x; P,) converges uniformly to the right tangent
polynomial at x,,

n—-2 X — X k
Tomy +(F3x3%0) = 1,(X) = F(xy) + ’E)I (__k!_Q_F(k)(xl)
X — X n—1
+( (n _1]?)! F(”—l) +(x1)9 xl é X é b.

Further on the right of x,, 7, < F.

(b) A similar result holds for the left tangent polynomial at x,, 1_(x;x,),
a £ x £ xy,a<xy = b. However in this case if n is even (odd) then on the left
of x,7_ £ F(= F).

(c) At all but a countable set of points x{, a similar result holds for the
tangent polynomial at x,, 1(x,;x), a < x < b, a < x; < b. However if n is
even the graph of © lies below that of F, whereas if n is odd the graphs cross,
T being above on the left of x{, and below on the right of x,.

THEOREM 5(a). If F is an n-convex function on [a,b] and

a§x1<“'<xn§b’a§y1<'“<yn§b,xk§yk’lékén

b

then V,_1(F;x) < V,—1(F; y0)-
(b). If F is n-convex in [a, b], ,F‘ =< K, then

1
(b—x* (x —a)l

|Fay(x)| < AK sup { } 0sksn-1

where A is a constant independent of k, F and x, and where if k = n — 1 the
derivative is to be interpreted as sup (| F,_ 1), +(¥)|, | Fiaz1y,-(*) ).

(c). If F is n-convex on [a,b], a£x<y=<b, a<x+h<y, and
x=Zy+ k=D then

Ya-1(F5%5h) S Fumqy - (3) and Fu_y),4 (%) = 9,-1(F; y; k),
where y,_, is as defined in (2).

THEOREM 6. If F is n-convex on[a,bl,a <a < B < b,E,={x:a £ x<f
and F_(,,)(x) ; ;»} then

e km*(E;) = 2"{F(n—1),—(.3) = Fuo1y,+ (@)}

THEOREM 7. If F is n-convex then (a)F" is (n — r)-convex, 1 £ r £ n -2,
(b) F*~Y exists at all except a countable set of points,
(c) F™ exist a.e.

THEOREM 8. Ifn = 2, and
(l) F(l)’ ".’F(n—'l) exist in [a, b],
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(i) Fiy+(x) 20, xe[a,b]~E,|E|=0,
(iii) Fipy +(x) > 00, x€[a,b] ~ C, C countable then F is n-convex.
If F is defined on [a,b] as well as F,), 1 < k < n — 1, let us write

w,(F;a,b) = w,(a,b)

It

max{ sup ] (x —a)y,(F;a;x — a)l,
(10) a<x<b
sup |(b = (F3bib— ) ;
a<x<b
this quantity was introduced by Sargent, [10].
In [2] it was shown that F is the difference of two n-convex functions iff
i w,(F;a,b) < K for all finite sets of non-overlapping intervals, [a,, b;],
1 £ k £ m. Tt was also shown in [2] that if F is n-convex then

(11) @,(F;a,b) = n{F,_1)(b) = Fn-1)(@)}.

5. The P™integral

Let f be a real-valued function on [a, b] then a function M continuous on
[a,b] is called a P™major function of f on [a,b], or just a major function, if
there is no ambiguity, iff

(@) Mg, exists and is finite on [a,b}, 1 Sk < n -1,

(b) M ,y(x) = f(x), xela,b] ~ E, ‘E l =0,

(©) My(x) > — o0, xe[a,b] ~C, C countable,

(d) M@ =0,0=k=n-—1.

If —m is a major function of — f then m is called a minor function, or more
precisely, a P"-minor function of f on [a,b]. It is clear from these definitions
that f need only be finite a.e.

This definition differs from that in [5], in the use of the end-points in (a),
in the existence of the sets E and C, and also in condition (d). In [5] the major
function is normalized instead by requiring it to be zero on a given set of n distinct
points ay, -, a, ; let us call these functions, J-major functions over (a,); <<,

Standard arguments, using Theorems 3 and 8, show that if M is any major
function, m any minor function; then M — m is a non-negative n-convex function,
[compare with 5, Lemmas 5.1, 5.2].

For a < ¢ £ b define
Fb) = P~ [; f=inf{t:t = M(c), M is a major function of f}, the upper
P-integral of f on [a,b]; in a similar way we define the lower P'-integral,
Pt — (o f: if there is no ambiguity we will just write, [°f or, [¢ f If
F(c) = F(c), we write the common value, F(c)* = P" — [; f (or just [§ f), and
if further this value is finite we say f is P"-integrable on [a,c].
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If f is P™integrable in the sense of [5], let us say f is J — P"-integrable
over (a; ; b).

THEOREM 9. (a) f is P™-integrable on [a,b] iff for each & > O there exists
a major function M and a minor function m, such that 0 £ M(b) — m(b) £ &.

(b) f is P"-integrable on [a,b] iff given ¢ > O there exist continuous func-
tions M, m on [a,b] such that (i) M,, mq, exist and are finite in [a,b],
Isk = n—101) — 00 # M,y(x) 2 f(x) 2 m, # o (i) Mg(a) = mgya) = 0,
0=k=n—-11v) 0 = M(b) —m(b) <.

(¢) If f is P™intergrable on [a,b], f=g a.e. then g is P'-integrable
on [a,b] and fﬁf= ffg

ProoF. (a) Immediate.

(b) The case n =1 is due to McGregor, [6].

Obviously we have to show that if f is P-integrable then there exist functions M,
m satisfying the conditions (i)-(iv) of (b) with n = 1. Since f is P-integrable
there exists functions M, m as in (a), with n =1:if F =P — [} f then F'
exists and is finite almost everywhere (Theorem 20 below or [8, p. 202]), further
F—m and M — F are monotonic increasing (Theorem 10(a) below) and so
m=F—F-—-m), M=F+ (M —F) have finite derivatives almost every-
where. Let E = {x: either M’ (x) = + w0, m (x) = + o0, M(x)= -~ or
M’ (x) = oo} then E is of measure zero and can be covered by a set E thatisa G,
is also of measure zero and hence by a result due to Zahorski, [12], there is a
function w on [a, b] such that (i) w is absolutely continuous, (ii) w’ exists every-
where. (iii) if x€E, w'(x) = o0, (iv) if x¢ E, 0 £ w'(x) < 00, (v) w(a) = 0,
w(b) < &. Now define m# = m —w M = M + w then we see that they are the
required functions since (i) M, 71 are continuous on [a, b], (i) if x e E, M'(x) = M’
(x) + w'(x) = oo and so M'(x) exists with value oo; if x ¢ £ M'(x) exists and is
finite, (iii) similarly 7’ exists everywhere in [a,b], (iv) M’ = f = ' ,(v) fi(a)
= M(a) = 0, (vi) 0 £ M(b) — m(b) < &. The general case follows simiarly using
the extension of Zahorski’s function introduced in [2, Theorem 16]

(¢) Immediate.

TueorREM 10. (a) For all major functions M, minor functions m, of f,
M — Fand F — m are non-negative n-convex functions.
b F~(k)~€xists inJa,pf1 =2 k=n-2; F(,,_l) exists except on a countable
set.
(c) If f is P™-integrable then F,_,, exists on ]a,b[.
(d) If f is Printegrable F(a) = Fyya) =0, 1l Sk <n—-1.
Proor. (a) Immediate.
(b) Immediate using (a), the definition of M and Theorem 7.
(c) By Theorem 1 and Theorem 5(a) and (b) if g is n-convex in
[a,b],’ g’ <K then if a<a<x,,x, =< f<b, [ V,,_l(g;xk)l < KA, A de-
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pending on «, # but not on x,,-:-,x,. So taking g = F — M, M a suitable major
function of f we have

| Vaer(F3x) = V(M3 x)| < Ke.

Letting x, — x, 1 £ k < n, the existence of F(, _,(x) follows from that of M, _,(x),
and Theorem 1. Thus F,_,, exists in ]a, b[.
(d) Immediate since F lies between two functions M, and m, both of which

are 0(x — a)" ! near a.

CoroLLARY 11. If f is P"-integrable then (a) for every major function M,
and every minor function m, M —F and F —m are r-convex on [a,b],
0= r=<n,(b) Fyb)exists,1 = r=n-—1.

Proor. (a) The cases r = 0, n are just Theorem 10(a). By Theorem 5, and
using the notation introduced there, since M — F is n-convex, we have that
VoM —F;x) = V,_y(M—F;z). Letting z,—>a, 1 £k <n we have by
Theorem 10(d), that V,_,(M — F,x,) = 0; that is, M — F is (n — 1)-convex.
In a similar way we can show that M — F is k-convex, 1 < k < n — 2, and that
F—misk-convex,1 £k <n—-1.

(b) Since, from (a), M —~ F is (k + 1)-convex, 1 < k < n—1, and V(M;x;)
= Vi(F;x;) + V(M — F;x;) it follows, by Theorem 5, that lim V,(F;x,) exists.

xj=b
0sj=k

Further M — F is k-convex, so V(M — F;x;) = 0 and so Vi(M:x;) = Vi(F;x;);
similarly Vi(F;x;) 2 Vi(m;x;) and so since both M, (b) and m,(b) exist the
above limit is finite.

THEOREM 12. (a) If f is P™integrable on [a,b] it is P*integrable on any
sub-interval [o, B]. Further, if F is the P™integral of f on [a,b], then

[r=[r-uEmn,  asssp

(b) If f is P"integrable on [a,b] then it is J — P™integrable over (a:b)
and

b b
Jopr - f=P"—f =y y(F;b3ay),
(ax) a

F being the P"-integral of f.

Proor. (a) If e>0 and M a major function of £ such that 0< M(b)— F(b) < ¢,
then since M — F is k-convex we have by Theorem 5(b) that
0S(M—-F)yy @ (b—a) =Ae.

If we write M* for M — 1"(M; ) and define F* similarly then

0 = M*() — F*(B) = Fe.

Since B does not depend on M this is sufficient to prove (a).
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(b) Let M be a major function of the type occurring in Theorem 9 (b), then
it is immediate that M* = M — x,_,(M;a,) is a J-major function. Defining m*
in a similar way, we have that

| M*(b) — m*(b)| £ M(b) — m(b) + | mu— (M — m;b;a)]|

which by Theorem 9 (b), and Definition 5.3 of [5] is sufficient to complete the

proof.
If n > 1 the converse of Theorem 12(b) is not true in general. Consider

fO) = (1-%"3% ~1<x<1;
=0,x=+1.

Then F(x) = (ﬁ— 2x +1—(1—x*»"% is the J— P’-integral of f over
(0,1/2;x). However f is not P*-integrable on [ —1,1] since F'(—1) = — oo.

Corollary 13. If f is P"integrable on [a,b], and F is its P-integral,
e > 0, then a major function M and a minor function m can be chosen so that
ifR=M~—F,r=F —mthen

(12) 0 < max {Ry,(x), 7(X)} = &, a<x=<bh0Lk<n—-1.

(b) If f is Pintegrable on [a,b] and on [b,c] then f is P"integrable
on [a,c]. Further if F! is the P"-integral of f on [a,b], F* the P"-integral of f
on [b,c] then

F(x) = F!{(x)y a=<x=<b
= FX(x)+1,_,,-(F';x;b), b<x

IA
o

is the P™integral of f on [a,c].

PrOOF. (a) Since Ryy(x), 0 = k < n— 1, exists for a < x < b, it follows
from Theorem 1(b) that it suffices to prove (12) for a < x < b. If [«, 8] is any
subinterval of [a,b], a <a < f < b, then the first inequality obtained in the
proof of Theorem 12(a) implies (12) holds in [«, £].

Let fo =a<f<pf,--<b, with lim;, B; = b; and let g, j =0 be a
sequence 0" positive numbers to be specified later.

Let R/ be chosen to satisfy (12) in [B;, 8;+ 1], With ¢ = ¢;; since in fact R/ is
defined on [B;,b] we can also require that 0 < R’ < ¢, on that interval.

Define the functions P/ and @/ on [8;,8;+1], j 2 0, inductively as follows.

P°=0, Q°=P°+R°
Pi(x) = «(Q’"Y;x;B), Q' =P/ +RL
Then,
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[0 | <6 1Sk=n-—1

Bisr —B)F
G=R)!

n—1
| Qtol = &+ X 0476
Choose f;, ¢;, j = 0 so that
,Q(jk)lée, 0zk=n-1, jzo.
Now define

R(x) = Q/(x), Bi = x <B4
= lim R(y), x =b.

y—=b

It can then be checked that M = R + F is a major function of f with (12)
satisfied.

A similar construction can be used to obtain a suitable minor function.

(b) Let M* be a major function of f on [a,b] chosen so that (12) holds
with ¢ = ¢,e°® and let M? be any major function of f on [b,c]. If then

M(x) = M(x), a<x<b
= M2(x) + T~y -(M*;x;b), b<xZe,
M is a major function of f on [a,c] and
0 < F(c) — M(c) £ F*(c) — M*(c) + ¢, ;
this is sufficient to prove (b).

THEOREM 14. If F is a real-valued function on [a, b] such that (a) F,
exists in [a, b], 1Sk Sn—1, (b) F(x) exists, xe[a, b]~E, |E| =0,
(¢) Finy, F(ny are finite everywhere on a countable set then if f(x) = F,(x),
x €[a,b] ~ E, and is zero elsewhere then f is P"-integrable and

[£=Fo) = tses i)
ProoF. Immediate.

The converse of this is less immediate and is proved later, Theorem 20
below.

TueorReM 15. If f is P"-integrable on [a,b] then f is P"*'-integrable

on [a,b] and
P"*‘—J;bf=£b(P”—£xf)dx.
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Proor. This is given in [5, Theorem 7.2], although in the present case of
unsymmetric derivatives the details are much simpler.

6. The P" - and C,, __; -Integrals

As a result of the above modifications in the definition of the P"-integral
the relationship between this scale of integrals and the Cesaro-Perron scale of
Burkill, [3], is much neater.

The C,P-integral is the classical Perron integral. The C,P-integral is defined
by induction as follows.

(i) A function f is C,~continuous on [a,b] if it is C,_ P-integrable and

x+h .
lim =C,_,P — f (x +h =t~ f(Ddt = f(x),

no N
for every x in [a, b].
(ii) If fis C,_P-integrable on [a, b] then the upper C,-derivative of f at x is

x+h
C,Df(x) = limsup "_:l'—lh'l CoiP — f (c+ b — =L f(Ddt = f(x)}.

The lower C,-derivative of f at x is similarly defined.
(iii) If f is defined on [a,b] then M is called a C,P-major function of f on
[a,b], iff '

(a) M is C,-continuous on [a, b],

(b) C,DM(x) 2 f(x), xe[a,b]~E, |E| =0,

© C,DM(x)> —w, x€[a,b]~C, C countable,

(d) M(a) =0.

A C,P-minor function is defined in a similar manner.

(iv) If for every ¢ > O there is a C,P-major function' M and a C,P-minor
function m such that ] M(b) — m(b)' < ¢ then f is said to be C,P-integrable
in [a, b].

This definition is more general than that in [3] because of the existence of
the exceptional sets E and C. However just as Theorem 9 (b) shows that the
existence of these sets does not widen the scope of the P"-integral it can also be
shown that the above definition is equivalent to the usual one; see for instance
the foot note on page 162 of [1].

Tueorem 16. f is P"integrable on [a,b] iff it is C,_ P-integrable in
la,b]. If F is the P-integral of f then A

Foon(x) = CoyP — f s

F(x) = P—fxclp—-fxczp_fx...cn_lla_ f"f
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ProoF. (2) If f is C,_,P-integrable then the proof of Theorem 9.1 in [5]
shows f is P"-integrable. The proof now has fewer awkward details and can
include the end points of [a, b] in its argument.

(b) If f is P"-integrable then as in [5, Theorem 11.1], if M is a P"-major
function then M,_,, is a C,_;P-major function. Further, by (12), we can choose
M so that 0 £ F(,_)(x) — M(,—1)(x) £ eforallof x, a £ x<b,which completes
the proof.

It is seen from (13) that if F is a P-integral then F, is C,-continuous,
0=k=n-1, [5 Lemma 11.1]. This is one place where C,-concepts give
information not obtainable directly; there seems to be no other continuity concept
that describes the bounds set on the lack of ordinary continuity of Peano de-
rivatives.

It follows from Theorem 16 and [9] that the P"-integral can be given a de-
scriptive definition. Following the spirit of this paper we will do this directly in
the following section.

7. The D"-Integral

Most of the concepts introduced in this section are based on ideas due to
Sargent, [9, 10]; the notation has been changed slightly to agree better with the
present work.

A function F is said to be AC*, over (or on) a bounded set E iff (a) F,_,,
exists in some interval containing E, and (b) for every ¢ > 0 there is an 6 > 0
such that, using notation of (10),

2 w,(a,b) <e¢
k=1

for all finite sets of non-overlapping intervals, [a;, b}, 1 < k £ m, with end
points in E, and such that

(by — a) < 0.

1

M3

k

A function F is ACG*, over (or on) a bounded set E iff (a) F(,_,, exists in
some interval containing E and (b) E = U,y E; with f being AC*  on each E,,
k € N; where N is the set of natural numbers.

If n =1 these concepts reduce to the classical ones of AC*¥ and ACG*
respectively, [8]. The main properties of these classes of functions are collected in

LemMA 17. (@) If F is AC*, over a set E then (i) F is AC*, over E, (ii) F(,_1,
is AC over E, (iii) F(,_,, is approximately derivable a.e. on E, F(,,= AD F(,_)
a.e., and F,, is Lebesgue integrable on E, (iv) if E is a bounded closed set with
contiguous intervals [a,, b}, k € N then X, yo,(a,, b)) < 0,
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(b) If F is such that F(,_,, exists in some interval containing a bounded
closed set E and (ii) and (iv) of (a) hold then F is AC*, on E.

(c) Fis ACG*,on[a,b]iff (i) F(,-;,existsin[a,b] and (ii) [a,b] = Ui+nQs
Q. being closed and F being AC*, on Q,, ke N.

(d) If F, G are ACG*, over [a,b] and F,y = G, a.e. then (i) F—G isa
polynomial of degree at most (n — 1), (ii) y,(F;x;h) = 7,(G;x;h), a £ x £ b,
a<x+h=hbh.

Proors. The proofs of (a), (c), (d) are either immediate or are in [10]; the
proof of (b) is an adaption of the proof of the similar result in [9].

A function f is said to be D™-integrable on [a, b] iff there is a function F such
that (a) F is ACG*, on [a,b], (b) Fy(a@) = 0,1 < k = n—1, (c) F,,(x) = f(%)
a.e. Further we call F the D™-integral of f, and write F(x) = D" — (7. It follows
from Lemma 17 that if such an F exists it is unique and from Theorem 10 and

[9, 10] that the P"- and D™-integrals are completely equivalent. This we now
prove directly.

THEOREM 18. Suppose f is P"-integrable on every [o,f],a <ax < f < b and
put I(a, B) = [2f. Suppose further that

(2) lim . 158

S R A, 0’
a—a (a - a)n—l

and (b) there is a polynomial p of degree at most n — 1 such that

_ I(%,B) — p(B)
lim —% P — PAP)
sos (B — BT

then f is P"-integrable on [a,b] and

=0,

f ’ f = lim I(s, B).

a=a

B-b

PrOOF. Let us put

F(x)

0, x = a,

= lim I(o, x), a<x<b,

a—a

= lim F(y), x = b,

v—b

Then Fgy(x) exists, 1S k<n-1, and a < x < b; further Fy)a) =0,
1 £ k < n— 1. We show that F is the P"-mtegral of f on [a,b].
Let a<  <X_y<Xo<Xx;<--b with a=lim,,_ x; b =1limg., X
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write I,(x) for I(x,_1,%), Xx—1 £ X < X;; suppose & >0, ke Z, (where Z is the
set of integers), is a sequence of positive numbers to be specified later.
Let M, be a major function of f on [x,_y, x;] such that

0 £ M(x) — I(x) < ginf{(x —a)"~!, (b—x)"'}

and put R, = M, — I,.

Now define
k-1
M) = F(x) + X R,(x,)+Ri(x), X1 S x <X
= 0, x = a,

F(b) + E R/(x,), x=0b.

y=-—w

Then for « £ 0 and — « large enough

k-1
OSMX)—Fx)Sx—a ' X g X 1Sx<Xx
and so by suitable choice of {¢}, « < 0, we see that (M — F),(a) = 0 and so
that My(a) = 0, 1 < k < n — 1. Similarly if « = 0 and large enough

0 = (M(b) — F(b)) - (M(x) — F(x)) = (b —x)"~* > &k
v=k

Xp-1 < x < X, ; from which it is easy to deduce that M,,(b) exists, 1 < k < n—1,
if {&}, « = O are chosen suitably.
Finally we can still choose ¢, ke N sothat 0 < M — F £ ¢, for any ¢ > 0.
This, together with a similar construction for a minor function completes
the proof.

The conditions of Theorem 18 cannot be relaxed as is seen by the following
example, [4]. Let

F(x) = x"**sinx™”, O0<x£g1,
= 0, x =0,

n =2, an integer, 0 <a <1, p =2 n+a—1. Then F(x) exists for all j
0<x =1, F;(0) exists 1 £ j < n. Thus if f(x) = Fg,45(x), 0<x=1
Thus if

S = Faup®, 0<x=1

0, x =0,
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Then f is P"*?.integrable on [e, 1]for all ¢ but is not P"**.integrable on
[0,1], since Fi, 4 1,(0) does not exist.

LemMAa 19. If E is a closed bounded set with end points a and b and con-
tiguous intervals [ay, b, ] in [a,b], k = 1,2,--- and if (a) f is Lebesgue integrable
on E,

(b) f is P™integrable on each [a,, b.], k = 1,2,---,

(€) Zy=10,(F*; ay,b) < o then f is P"-integrable on [a,b], and

rb

P —fbf=———, L) —J 1,(0)(b — =L f()dt
a (n—D! a
+ Xty (F b5 by,
k

(where 1lu(t) = 1,teQ, = 0, t¢ Q).
where F* is the P™-integral of f on [ay, b, k = 1,2,+--.

PrOOF. An adaption of a similar result of Sargent, [10].

THEOREM 20. If f is P"-integrable on [a,b] and F is its P"integral then
F,y exists and equals f a.e.

ProoF. Let ¢ > 0 and M a major function chosen so that 0 = Ry,
Then R is n-convex and so by Theorem 6 R, < oo a.e. and hence F,,> — o

a.e.
Now let E = {x; R,,(x) = A}N[a,f], a <a < f < b; then by Theorem 6,

m E; S %, hence m*EA = 0.

IfE, = E UC, E, C being the sets associated with M by virtue of it being
a major function and if xe[a,b] ~ (E; UE}) then F(,\(x) = f(x) — k, which
implies that this last inequality holds almost everywhere. From this we easily
deduce that F,)(x) = f(x) almost everywhere.

Since — f is also Pr-integrable we immediately see that F,(x) < f(x) and
is finite, almost everywhere,

This completes the proof.

Before we state and prove the main result the concept of AC*, has to be
extended as follows.

A function F is said to be AC*,-below over (or on) a bounded set E iff
(a) F,_ exists in some interval containing E and (b) for every & > 0 there is
a d > 0 such that
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(14) % min{ inf [(x —a)y,(F;a;x — ay)],

k=1 ax<x<by

inf [(by — x)7a(F, by by ~ x)]} >—¢
ay <x<by

for all finite sets of non-overlapping intervals [a,, b,], 1 £ k < m, with end
points in E and such that

Z (b, —ay) <é.
k=1
In a similar way if (14) is replaced by

Zmax sup [(x —a)yu(Fia;x —a))], sup [b —x}y(Fib;b —x)] <e
=1 ap<x<by ar<x<bx
we say F is AC*,-above over, (or on), E.

The concepts of ACG*,-above and ACG*,-below are defined in the obvious
way.

Clearly F is AC*, iff F is AC*,-above and AC* -below. If n = 1 these con-
cepts reduce to the classical ones of AC*-above and AC*-below, due to Ridder,

[7].
Lemma 21, If Fy, 1 £ k £ n— 1, exists in some interval containing the
bounded set E and if F(,\(x) > — o0, x€E then F is ACG*,-below on E.

ProoF. Let m and j be integers, m positive

EF)=E, = {x;xe E and y,(F;x;h) > — m, for all h such that,
0<|h| < 1
. m
E} = E,,,r\[i,’—-Jr ! ];

m  m

then it is sufficient to show F to be AC*,-below over each Ej.
Let [a;,b;], i =1,---p be non-overlapping intervals with end points in
EJ, (this set being assumed ,without loss of generality to have more than one point).
Then
y(F;a;x—a)> —m, a;<x<b,

and so
inf [(x —a)y(Fia;;x — a,-)] z —mb; — a)).

a;<x<b;

Thus if ¢ > 0,
P p
2 inf [(x—a),(Fia;x—a)]=—mXZ(b;—a)> —¢
i=1

i=1 a;<x<l;
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provided X, (b; — a;) < &¢/m. In a similar way

p

Y inf [(bi — x)p,(F; bi; bi — x)] > — ¢,

i=1 a;<x<b;
which completes the proof.

TueOREM 22. If f is P™integrable on [a,b] it is D"integrable on [a,b]
to the same value, and conversely.

Proor. (a) Let f be P"-integrable, ¢ > 0 and M a major function such that

g

0= Ru-1y=WM—F)y-1) = PR
By Lemma 21, [a,b] = Uy.n Ei, With M AC* -below on each E,, ke N. Then
there is a 6 > O such that if [a;,b;], i = 1,---, p is any finite set of non-overlapping
intervals with end points in E, and

(b; — a;) < 6, then
1

M

i

(x — a)y.(F;a;;(x — ay)

(x —a)y,(M;a;;x — a;)
—(x —a)r(R;a;x — a;)

v

(x —a)y.(M;a;;x — a;)

= n{R(u-1)(b) — Riz-1p(a)} by (11).
Hence since R,_,, is monotonic increasing
P

% inf [(x —a)y.(Fsa;x — a))]

i=1 a;<x<b;

v

_ _; — n{Rep1(b) = Ren1)(@)}

-~ &.

(1%

In a similar way we see that

1
X inf [(b;— X)yu(F;bi3b, = x)] = —¢
i=1 a;<x<b;
and so we have proved that F is ACG*,-below on [a, b].

However since — f is also P"-integrable, F is also ACG*,-above on [a,b]
and hence ACG*, over [a,b].

This and Theorem 20 shows that f is D"-integrable and that

A

Dn-ff:P"—ff, a<x£b.

(b) Suppose now f is D"-integrable on [a,b] and let E = {x;f is not P"-

integrable in any neighborhood of x}. Clearly E is closed and let [a;, b,] denote
its contiguous intervals in [a, b].

https://doi.org/10.1017/51446788700010065 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010065

nn The pT-integral 235

If a, < @ < B < by then f is P"-integrable on [o, 8] and if F is the D"-integral
of f on [a,b] then since from the definition of the D"-integral it is clear that
F —7,_(F;x) is the D™integral of f on [«, ] we have from (a) that

B
P - f £ = FB) = 10-1(F3 B; ).

Since the right hand side of this equation satisfies the conditions of Theorem 18
on [ay, b,] we have that f is P"-integrable on [a,, b,] and, of course,

by
P — S = F(b) — 1, 1(F; by; ap)-

Hence, by Corollary 13(b), E is a perfect set.

Suppose now that E # F. Since F is ACG*, over [a,b] it follows from
Lemma 17 that E contains a portion Q such that if ¢, d are the end points of
Q and if [¢,,d,] are the contiguous intervals of @ in [¢,d] then (i) F,-,, is AC
on @ and (ii) X, , yw,(c, d,) < 0. Thus by Theorem 20, and Lemmas 17 and 19
S is P™integrable on [c,d].

This contradiction shows that E 5 (f and completes the proof of the theorem.

7. The P"-Integral and the nth-Total of Denjoy

In {5] James suggested that the P"-integral may be equivalent to the nth-order
totalization of Denjoy, [4]. Since in the case n = 1 the P™integral is the classical
Denjoy-Perron integral whereas the nth-order totalization is the Denjoy-Khint-
chine integral, [4, 8], this is not the case. Thus in this case the nth-order totaliza-
tion is more general than the P™-integral; this remains true for all n,

Suppose f is P"-integrable with F its P"-integral then

(@) F, exists in [a,b], 1 £ k < n— 1, (Theorem 10 and Corollary 11);

(b) F(,y = AD F(,_y = f a.e. (Theorem 22 and Lemma 32);

(¢) F(,-1,is ACG on [a,b], (Theorem 22 and Lemma 17).

This implies that f is nth-order totalizable and that F is an nth-order total
of f.

Denjoy’s process is clearly strictly more general for all n. Take F to be a
Denjoy-Khintchine integral that is not a C,_,P-integral, [11], and let F be the
integral of order (n — 1) of F. Then F is an nth-order total of f = ADF but f is
not P"-integrable, by Theorem 10.

A Perron type integral that is equivalent to the nth-order totalization and its
related generalization of the Cesaro-Perron integral scale will be considered in
a later paper.
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