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Abstract

Process-based crop models are a robust approach to assess climate impacts on crop product-
ivity and long-term viability of cropping systems. However, these models require high-quality
climate data that cannot always be met. To overcome this issue, the current research tested a
simple method for scaling daily data and extrapolating long-term risk profiles of modelled
crop yields. An extreme situation was tested, in which high-quality weather data was only
available at one single location (reference site: Snowtown, South Australia, 33.78°S, 138.21°E),
and limited weather data was available for 49 study sites within the Australian grain belt
(spanning from 26.67 to 38.02°S of latitude, and 115.44 to 151.85°E of longitude). Daily
weather data were perturbed with a delta factor calculated as the difference between averaged
climate data from the reference site and the study sites. Risk profiles were built using a step-
wise combination of adjustments from the most simple (adjusted series of precipitation only)
to the most detailed (adjusted series of precipitation, temperatures and solar radiation), and a
variable record length (from 10 to 100 years). The simplest adjustment and shortest record
length produced bias of modelled yield grain risk profiles between −10 and 10% in 41% of
the sites, which increased to 86% of the study sites with the most detailed adjustment and
longest record (100 years). Results indicate that the quality of the extrapolation of risk profiles
was more sensitive to the number of adjustments applied rather than the record length per se.

Introduction

As climate change intensifies, agricultural decision-makers are increasingly interested in the
potential impacts such changes will make on crop productivity, and in the level of probability
associated with the different impacts. Arguably, the most robust approach for simulating cli-
mate impacts on cropping productivity is the use of process-based models. These models
account for complex interactions between the climate, soil, genotype and management affect-
ing crop yield (Keating et al., 2003; Stöckle et al., 2003; van Bussel et al., 2011; Grassini et al.,
2015; Van Wart et al., 2015). However, meaningful crop model outputs (e.g. crop yield) can
only be achieved when the parameters of the model have been appropriately calibrated,
crop management options are realistically represented in the simulation, and the input weather
data are accurate and reliable (Lamboni et al., 2009; Liddicoat et al., 2012; Grassini et al., 2015).
From this list of requirements, the lack of accurate and reliable weather data remains a com-
mon problem, particularly in developing countries.

Considerable effort has been devoted to developing protocols for enhancing observed wea-
ther data coverage for crop yield-gap analysis, crop yield projections and climate impact assess-
ments (van Ittersum et al., 2013; van Wart et al., 2013; Watson and Challinor, 2013; Grassini
et al., 2015; Zhao et al., 2015). There is also an important number of global gridded data sets
available, that have been produced using sophisticated methods and validated with a vast num-
ber of observations and data derived from remote sensing around the globe (Ruane et al., 2015;
Hersbach et al., 2020). However, these data sets cover a limited time period (between 20 and 40
years), and their validity relies on the density of weather stations, on the climate variables mea-
sured and record length of the available data, which is spatially highly variable and often low in
the tropics, and in remote and rural areas. There is therefore the need to develop methods for
reducing the dependency on a dense network of weather stations with high-quality and long-
term observations, especially in data-sparse environments.

Regional land-use planning and on-farm management require a solid understanding of the
long-term viability of production systems in a variable future climate. In fact, one of the core
components of current agricultural decision-support systems is the risk profile – or cumulative
probability – of crop yield under different management options (Hunt et al., 2006; Hochman
et al., 2009; Hayman et al., 2010b; Hochman and Horan, 2018). The risk profile is particularly
useful for reducing climate uncertainty and making better management decisions (Meinke
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et al., 1996; Folland and Anderson, 2002; Domsch et al., 2003;
Yao et al., 2007; Hayman et al., 2008). Bracho-Mujica et al.
(2019a) evaluated the dependency of the risk profile on climate
record length and found that reliable risk profiles can be gener-
ated from short time periods of high-quality data. Furthermore,
high-quality long-term rainfall and temperature records can be
combined with high-quality temporal data from different loca-
tions to produce reliable risk profiles (Bracho-Mujica et al.,
2019b). However, in all these studies the averaged climate data
used for calculating the adjustment factors covered a long-term
period (i.e. >100 years), which opens the question as to the
extent to which this method can be used in common situations,
where high-quality long-term data are spatially sparse and reliable
long-term records to support interpolation or extrapolation are
limited.

The goal of this study was to examine the applicability of a
simple method of weather data adjustment for climate risk assess-
ment, by testing the effects of short record lengths of averaged cli-
mate data on (i) the adjustment factors for precipitation,
temperature, and global solar radiation and (ii) on the long-term
risk profile of simulated wheat grain yield in the Australian grain
belt.

Materials and methods

Study area

The current research focuses on wheat crops in the Australian
grain belt. This is due to its importance to the Australian econ-
omy (Trewin, 2006; Australian Bureau of Statistics, 2020), its vul-
nerability to climate variability and change (Hammer et al., 1996;

Potgieter et al., 2002) and the availability of one of the best wea-
ther data sets suitable for crop modelling (Jones et al., 2009;
Trewin, 2013). Previous studies on the assessment and improve-
ment of the method of daily weather data adjustment for model-
ling risk profiles of simulated wheat yields have been conducted in
the same area (Hayman et al., 2010b; Liddicoat et al., 2012;
Bracho-Mujica et al., 2019a, 2019b).

A total of 49 wheat-growing test sites within the grain belt were
selected (Fig. 1 and Table 1), located in contrasting agro-
ecological zones and with high-quality weather data. In addition,
one spatial reference site was selected for the current study:
Snowtown, in South Australia. The selection was made due to
(a) its agricultural importance, (b) its position, located in the mid-
dle of the South Australian grain belt, (c) the high-quality long-
term weather data required for crop yield simulations are available
and (d) it allows for a comparison with previous studies.

Daily precipitation, maximum and minimum temperatures
and solar radiation data from these sites were obtained from the
SILO patch point database (Scientific Information for Land
Owners) (Jeffrey et al., 2001). The period used was 1901–2000,
avoiding the bias of the extreme Millennium drought (van Dijk
et al., 2013; Verdon-Kidd et al., 2014), which alters the shape of
the risk profile.

Adjustment of daily weather data

Risk profiles were derived from the simulated wheat grain yield in
two ways: using actual weather data from each study site, and
using adjusted weather data from the reference location.
‘Adjusted weather data’ refers to daily weather series (for precipi-
tation, maximum and minimum temperatures and global

Fig. 1. The Australian grain belt, reference location and test
sites considered in this study. Data source: ABARES – BRS
(2010).
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solar radiation) recorded at the reference location (Snowtown)
and later systematically perturbed using adjustment factors (or
delta factors). Adjustment factors are variable and site-specific
and represent the difference between the reference and a given
test site.

To account for the intra-annual variability of the climate vari-
ables, adjustment factors were calculated at the seasonal and
monthly levels. For the calculation of seasonal adjustment factors,
daily climate data – for all climate variables – were averaged from
April to October (growing season). Monthly adjustment factors
were only calculated for the maximum and minimum tempera-
tures, by averaging daily data for each month within the growing
season. The record length used for calculating those averages var-
ied. For the reference site, the full period of weather records was
used (i.e. 100 years from 1901 to 2000). For each test site, the
record length was 10, 20, …, 100 years in 10-year steps – in
order to account for the effect of short climate series on the esti-
mation of adjustment factors and the long-term risk profiles.

Adjustment factors calculated with the full record were referred
to as the ‘100-year adjustment factor’. Adjustment factors are
listed in Supplementary Tables S1–S5.

Once the average climate data were calculated for the different
record lengths and aggregation levels, daily weather data for
the reference location were perturbed using adjustment factors
summarized in Table 2. The precipitation series were first
adjusted with a single factor PrecipsAF , which represents the
difference in average growing-season precipitation between the
test site and the reference location, expressed as a percentage.
The adjustment factor for global solar radiation (SolarsAF ) was
calculated similarly. In the case of maximum and minimum tem-
peratures, two adjustment factors were calculated. Firstly, a sea-
sonal factor (TempsAF ), calculated as the difference in average
growing-season temperature between a given test site and the
reference location, is expressed in °C. Secondly, a monthly factor
(TempmAF

), calculated as the monthly difference in temperature
between the reference and a given test site. Weather data were

Table 1. Location of the reference site (italic bold) and 49 test sites ordered clockwise, and agro-ecological zone, mean growing season precipitation (GSPrecip),
seasonality, event-size index (τ), growing season maximum and minimum temperatures (GSMaxTemp and GSMinTemp), and global solar radiation (GSSolar)

Agro-ecological zonea Site Latitude Longitude
Altitude
(m a.s.l.)

GSPrecip
(mm) Seasonalityb τc

GSMaxTemp
(°C)

GSMinTemp
(°C)

GSSolar
(MJ/m2)

Wet subtropical coast Kingaroy 26.55 °S 151.85 °E 442 300 0.39 2.7 22.0 7.4 16.7

Semiarid tropical and
subtropical plains

St George 28.04 °S 148.58 °E 201 223 0.43 2.7 23.6 9.3 17.0

Sub-Humid
subtropical slopes
and plains

Roma 26.67 °S 148.79 °E 299 241 0.40 2.6 24.0 8.3 17.5

Dalby 27.18 °S 151.26 °E 344 270 0.40 2.7 22.8 8.0 16.8

Goondiwindi 28.55 °S 150.31 °E 217 272 0.45 2.8 22.7 8.8 16.8

Walgett 30.02 °S 148.12 °E 133 235 0.50 2.8 22.4 8.1 16.2

Gunnedah 30.98 °S 150.25 °E 285 296 0.48 2.9 21.1 6.9 15.4

Wet temperate
highlands

Seymour 37.03 °S 145.15 °E 145 402 0.68 3.5 15.8 5.5 11.7

Temperate seasonally
dry slopes and planes

Gilgandra 31.70 °S 148.66 °E 282 293 0.52 2.9 20.0 6.0 15.2

Nyngan 31.55 °S 147.20 °E 173 222 0.50 2.9 21.2 7.4 15.5

Wellington 32.56 °S 148.95 °E 305 341 0.55 3.1 19.5 5.6 14.5

Condobolin 33.08 °S 147.15 °E 220 249 0.56 3.0 19.4 6.7 14.6

Forbes 33.39 °S 148.01 °E 240 300 0.57 3.1 18.8 6.0 14.1

Cowra 33.80 °S 148.70 °E 360 354 0.58 3.3 17.9 5.6 13.9

Moombooldool 34.28 °S 146.57 °E 158 261 0.60 3.1 18.7 6.2 13.7

Hay 34.49 °S 145.25 °E 104 228 0.63 3.0 19.0 6.5 13.8

Wagga-Wagga 35.05 °S 147.35 °E 219 334 0.63 3.3 17.1 5.9 13.1

Oaklands 35.56 °S 146.17 °E 145 285 0.62 3.2 17.8 5.9 13.1

Deniliquin 35.53 °S 144.97 °E 96 255 0.64 3.2 18.2 6.5 13.3

Elmore 36.50 °S 144.61 °E 130 309 0.66 3.4 16.8 5.7 12.3

Teesdale 38.02 °S 144.16 °E 106 321 0.62 3.4 15.6 6.8 10.8

Lake Bolac 37.71 °S 142.84 °E 220 352 0.66 3.5 14.9 5.9 10.8

Birchip 35.92 °S 142.85 °E 100 240 0.68 3.2 17.8 6.2 12.6

Ouyen 35.07 °S 142.31 °E 65 217 0.66 3.5 19.0 6.7 13.3

Mildura 34.18 °S 142.20 °E 54 176 0.63 3.4 19.6 7.2 13.9

(Continued )
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then adjusted by multiplying (precipitation and global solar radi-
ation) or adding (temperature) the corresponding factor of every
daily record (Table 2).

Adjustment factors calculated with a variable record length
(<100 years) were compared with the 100-year adjustment factor.
This comparison was established at a test site level using the dif-
ference of any given adjustment factor and climate variable from
the 100-year adjustment factor.

Step-wise addition of weather data adjustments

Five types of adjustments were applied, resulting from the com-
bination of variables included and level of aggregation
(Table 3). For example, the Precips consisted of adjusting the
daily weather data for precipitation, using a seasonal aggregation,
whereas temperatures and solar radiation were unadjusted.
PrecipsTempmSolars, was the most complete adjustment, in
which all the climate variables from the reference site were
adjusted using two different aggregations for the calculation of

the average climate data (i.e. seasonal for precipitation and solar
radiation, and monthly for temperature).

Crop yield simulations

Wheat grain yield was simulated with APSIM (Agricultural
Production Systems Simulator Model) Version 7.8 (Keating
et al., 2003; Holzworth et al., 2014). APSIM has been locally cali-
brated, widely tested and extensively used for climate risk in the
study area (Asseng et al., 2002, 2015; Luo et al., 2005, 2009;
Robertson et al., 2015).

Observed and adjusted daily weather data calculated for vari-
able periods were used as model inputs. To capture the effects
of climate and alternative weather inputs in the current study,
the soil type and management practices were kept constant, and
assumed no limitation by nitrogen, pests or diseases. To exclude
the interaction between the sowing time and climate (Luo et al.,
2009; Hayman et al., 2010a), one fixed sowing date was simulated
(14 May); sowing density was set to 180 plants/m2, with a 30 mm

Table 1. (Continued.)

Agro-ecological zonea Site Latitude Longitude
Altitude
(m a.s.l.) GSPrecip Seasonalityb τc

GSMaxTemp
(°C)

GSMinTemp
(°C)

GSSolar
(MJ/m2)

Temperate seasonally
dry slopes and plains

Horsham 36.70 °S 142.20 °E 140 297 0.70 3.6 16.8 5.6 11.9

Nhill 36.33 °S 141.64 °E 133 289 0.71 3.5 17.2 5.5 12.1

Naracoorte 36.96 °S 140.74 °E 58 440 0.77 3.8 17.0 6.4 11.3

Keith 36.10 °S 140.36 °E 29 350 0.75 3.5 18.1 7.1 11.9

Lameroo 35.33 °S 140.52 °E 99 277 0.72 3.4 18.6 6.4 12.6

Wanbi 34.78 °S 140.27 °E 77 212 0.68 3.7 19.0 6.1 12.9

Palmer 34.85 °S 139.16 °E 192 302 0.73 3.4 17.7 6.7 12.4

Roseworthy 34.54 °S 138.75 °E 103 332 0.75 3.7 18.5 7.8 12.8

Mintaro 33.91 °S 138.72 °E 418 466 0.78 3.5 16.9 5.7 13.0

Snowtown 33.78 °S 138.21 °E 103 305 0.73 3.5 19.0 7.0 13.2

Orroroo 32.73 °S 138.61 °E 428 230 0.68 3.3 17.9 5.4 13.9

Kimba 33.14 °S 136.41 °E 280 250 0.74 3.7 19.1 7.3 13.5

Cummins 34.26 °S 135.73 °E 65 346 0.81 3.8 18.7 8.5 12.7

Kyancutta 33.13 °S 135.55 °E 59 234 0.75 3.8 20.9 6.6 13.7

Minnipa 32.84 °S 135.15 °E 168 243 0.75 3.7 19.9 8.3 13.8

Jerramungup 33.92 °S 118.95 °E 300 284 0.74 3.5 18.6 7.4 13.0

Newdegate 33.09 °S 119.02 °E 300 271 0.77 3.6 19.0 6.8 13.5

Kojonup 33.83 °S 117.16 °E 305 449 0.85 3.5 17.3 6.9 12.4

Narrogin 32.93 °S 117.18 °E 338 424 0.86 3.6 17.7 6.8 13.2

Beverley 32.11 °S 116.92 °E 199 362 0.85 3.4 19.7 6.7 13.9

Merredin 31.50 °S 118.22 °E 318 234 0.77 3.5 19.9 7.4 14.6

Wongan Hills 30.89 °S 116.72 °E 283 319 0.84 3.4 20.4 8.5 14.8

Bencubbin 30.81 °S 117.86 °E 359 238 0.76 3.5 20.4 8.0 15.1

Mingenew 29.19 °S 115.44 °E 153 354 0.88 3.1 22.4 9.9 15.8

Yuna 28.33 °S 114.96 °E 270 300 0.85 3.2 22.0 10.0 16.3

Note: Period 1901–2000.
aAgro-ecological zones as defined in (Williams et al., 2002).
bSeasonality (Walsh and Lawler, 1981).
cτ (Sadras, 2003).
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sowing depth and 250 mm row spacing. Crop parameters used
were those from locally adapted varieties, Mace (an early matur-
ing variety) for the winter-rainfall regions of Western Australia,
South Australia, Victoria and southern New South Wales; and
Gregory (a medium maturing variety) for the summer-rainfall
locations of northern New South Wales and Queensland. Crop
parameters are summarized in Table 4.

The soil used has a sandy texture, organic carbon content of
0.7% (0–10 cm), rooting depth of 100 cm and 80 mm of plant
available water content (PAWC). Key soil characteristics are pre-
sented in Table 5. Initial water and nitrogen contents were reset
every year on the 1st of April to exclude the effects of previous
seasons, as suggested in the literature (Sadras and Rodriguez,
2010; Luo et al., 2013). The initial soil water content was set to
full profile, filled from the top layer to ensure crop establishment
(Bell et al., 2015), and the initial nitrogen level was set to 100 kg
N/ha as urea at sowing.

Risk profiles of modelled wheat grain yields (MWGYs)

Risk profiles were defined as the cumulative probability curve of
the annual MWGY for each site, type of weather adjustment
(Table 3), and record length. Yields were ranked and correspond-
ing percentiles were calculated. Risk profiles of the MWGYs

across the types of adjustments and record lengths were compared
using Q:Q plots. Statistics for the comparisons included the root
mean squared error (RMSE, Eqn (1)), and the bias (Eqn (2)),
overall percentile classes p at each of the 49 test sites j as follows:

RMSEj =
∑100
p=1

������������������������������������
(MWGY p,j − MWGYbaseline, p,j)

2
√

(1)

and

Biasj (%) = 1
N

∑100
p=1

MWGY p,j − MWGYbaseline, p,j

MWGYbaseline, p,j

( )
× 100 (2)

The bias of the MWGY represents the difference between the risk
profiles of MWGY built with weather data adjusted with long-
term adjustment factors and those built with data adjusted with
shorter record lengths, as illustrated in Fig. 2.

Both indices, RMSE and bias, were mapped for every type of
adjustment applied to the reference location, to (i) visualize the
spatial variation of the performance indices, (ii) compare the
regions and (iii) determine the effect of adjusting a particular
set of climate variables on the robustness of the MWGY risk pro-
files. Construction and statistical analysis of the risk profiles of the

Table 2. Equations for calculating adjustment factors of weather data

Climate variable adjusted

Aggregation of weather data

Adjustment factor equationsseasonal (s) monthly (m)

Precipitation (Precip) ✓ PrecipsAF (%) = GSPrecipref − GSPrecipk
GSPref

( )
× 100

Maximum temperature (MaxTemp) ✓ MaxTempsAF (
◦C) = GSMaxTempref − GSMaxTempk

✓ MaxTempmAF
(◦C) = MaxTempmref

− MaxTempmk

Minimum temperature (MinTemp) ✓ MinTempsAF (
◦C) = GSMinTempref − GSMinTempk

✓ MinTempmAF
(◦C) = MinTempmref

− MinTempmk
MinTempmref

− MinTempmk

Global solar radiation (Solar) ✓ SolarsAF (%) = GSSolarref−GSSolark
GSSolarref

( )
× 100

Note: GSPrecip, GSMaxTemp, GSMinTemp, and GSSolar refer to the long-term average growing season precipitation, maximum temperature, minimum temperature, and global solar
radiation, respectively. MaxTempm and MinTempm refer to the long-term monthly temperature averages for monthsm = 4, 5,…, 10, within the growing season. The terms ref and k refer to the
reference location and test sites.

Table 3. Step-wise adjustment applied to the daily weather data at the reference location

Adjustment Weather variable(s) adjusted

Averaged weather data used for calculating
adjustment factors

Seasonal(s) Monthly(m)

Precips Precipitation ✓

PrecipsTemps Precipitation and maximum and minimum temperatures ✓

PrecipsTempm Precipitation and maximum and minimum temperatures Precipitation Temperatures

PrecipsTempsSolars Precipitation, maximum and minimum temperatures and global solar
radiation

✓

PrecipsTempmSolars Precipitation, maximum and minimum temperatures and global solar
radiation

Precipitation and global solar
radiation

Temperatures

Note: Weather data at the reference site is adjusted by a seasonal adjustment factor for precipitation only (Precips), seasonal adjustment factors for precipitation and temperatures only
(PrecipsTemps), a seasonal adjustment factor for precipitation and monthly adjustment factors for temperatures (PrecipsTemps), a seasonal adjustment factor for precipitation, temperatures
and global solar radiation (PrecipsTempsSolars), and, a seasonal adjustment factor for precipitation and global solar radiation, and monthly adjustment factors for temperatures
(PrecipsTempmSolars)
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MWGY were performed using R software (R Development Core
Team, 2020) and maps were created using ArcGIS® software
(ESRI 2015).

Results

Long-term adjustment factors and weather data record
lengths

The calculation of 100-year adjustment factors is based on the dif-
ference in the long-term growing-season average of the reference
and test sites. Here, we examined the sensitivity of four adjust-
ment factors – for precipitation, maximum temperature, min-
imum temperature and solar radiation – to the length of the
weather record (Figs 3 and 4).

All seasonal adjustment factors were sensitive to the record
length, especially for records shorter than 30 years. In the case
of precipitation, departures ranged from −14 and 20% for the

10-year series and dropped within the range −10 and 10% with
40 or more years (Fig. 3). Long-term adjustment factors for tem-
peratures were mostly underestimated with shorter records; series
of 10 years diverged by −0.9 and 0.3°C for maximum and
between −1.2 and 0.5°C for minimum temperature in relation
to 100-year series. At most test sites, these departures were
reduced to −0.5 to 0.5°C with records longer than 30 years.
Solar radiation was the variable with the lowest sensitivity to
the record length, with departures ranging between −2.4 and
3%, and with a slight increment at record lengths between 30
and 60 years of weather data.

The effect of record length on the calculation of adjustment
factors for maximum and minimum temperatures was stronger
at the monthly level (Fig. 4). Particularly, record lengths equal
and shorter than 40 years produced the highest departures of
adjustment factors from the 100-year factors, independent of
the month. However, the departures were higher during the tran-
sition months, i.e. April and May for the minimum temperature

Table 4. Cultivar-specific parameters for wheat cultivars Mace and Gregory used for the parameterisation of APSIM

Cultivar Parameter Value

Mace Vernalisation sensitivity (vern_sens) 2.3

Photoperiod sensitivity (photop_sens) 3.2

Grains per gram stem (grains_per_gram_stem) 25

Potential grain filling rate (potential_grain_filling_rate, grain−1 d−1) 0.002

Potential grain growth rate (potential_grain_growth_rate, g grain−1 d−1) 0.001

Maximum grain size (max_grain_size, g) 0.041

Thermal time from emergence to end of juvenile (tt_end_of_juvenile, °Cd) 400

Thermal time from end of juvenile to floral initiation (tt_flowering_initiation, °Cd) 555

Thermal time from flowering to start grain filling (tt_start_grain_fill, °Cd) 545

Gregory Vernalisation sensitivity (vern_sens) 2.7

Photoperiod sensitivity (photop_sens) 3.2

Grains per gram stem (grains_per_gram_stem) 25

Potential grain filling rate (potential_grain_filling_rate, grain−1 d−1) 0.002

Potential grain growth rate (potential_grain_growth_rate, g grain−1 d−1) 0.001

Maximum grain size (max_grain_size, g) 0.041

Thermal time from emergence to end of juvenile (tt_end_of_juvenile, °Cd) 400

Thermal time from end of juvenile to floral initiation (tt_flowering_initiation, °Cd) 555

Thermal time from flowering to start grain filling (tt_start_grain_fill, °Cd) 650

Table 5. Key soil characteristics used for the initialisation of APSIM

Depth (cm)
BD

(g/cm3)
AirDry

(mm/mm) LL (mm/mm)
DUL

(mm/mm)
SAT

(mm/mm)
OC

(total %)
Fbiom
(0–1)

Finert
(0–1)

0–10 1.3 0.044 0.087 0.204 0.459 0.64 0.035 0.4

10–20 1.3 0.096 0.12 0.25 0.459 0.66 0.02 0.6

20–40 1.3 0.175 0.175 0.25 0.459 0.72 0.02 0.7

40–60 1.3 0.18 0.18 0.25 0.459 0.61 0.015 0.7

60–80 1.3 0.18 0.18 0.25 0.459 0.27 0.015 0.8

Note: BD, bulk density; AirDry, Air-dry soil water content; LL, Lower limit of plant available water or permanent wilting point; DUL, drained upper limit of plant available water or field capacity;
SAT, saturated soil water content; OC, Organic carbon; Fbiom, fraction of susceptible organic carbon; Finert, fraction of organic carbon that is not susceptible to decomposition.
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factors, and April and October for the maximum temperature fac-
tors. At most test sites, departures were within −0.5 to 0.5°C with
records longer than 40 years (Fig. 4).

Long-term risk profiles of MWGY and weather data record
lengths

The use of averaged climate data for record lengths shorter than
the 100-year period affected the long-term risk profile of
MWGY. In Fig. 5, all the test sites are included, but we only
present three of the five types of adjustments used in this study
(i.e. Precips, PrecipsTempm and PrecipsTempmSolars). The adjust-
ments PrecipsTemps and PrecipsTempsSolars are not shown

since lower bias was obtained with the PrecipsTempm and
PrecipsTempmSolars adjustments (bias and RMSE values are sum-
marized in the Supplementary Material, Table S6).

The bias of MWGY risk profiles varied spatially (Fig. 5,
Table S6). Test sites in the temperate agro-ecological zones with
winter-dominant rainfall (Fig. 1) had the lowest biases across all
types of adjustments and climate data record lengths (Fig. 5).
Long-term risk profiles of MWGY of test sites in wet subtropical
coast, subhumid subtropical, and semiarid tropical and subtrop-
ical locations were mostly overestimated, with the greatest biases
in the study area (Fig. 5). The low matching observed in northern
and north-eastern sites is exacerbated by the shortest climate data
record lengths. Matching in the −10 to 10% range was only

Fig. 2. Comparison of two risk profiles of MWGY, using recorded
weather data at the study site Nyngan (NSW, Australia), and
using adjusted weather data from a reference site with a
10-year adjustment factor. Bias (normalized) at percentile 50th
corresponds to the difference between both MWGY normalized
with the mean of the MWGY modelled with observed weather
data at the study site.

Fig. 3. Departures from the 100-year adjustment factors relative to those calculated with shorter record lengths in 49 locations of the Australian wheat-belt. From
left to right weather records of the reference location were adjusted as a function of seasonal precipitation (PrecipsAF), seasonal maximum temperature
(MaxTempsAF), seasonal minimum temperature (MinTempsAF) and seasonal solar radiation (SolarsAF). IQR refers to the inter-quartile range.
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achieved in those sites with record lengths of 80 or more years
and including all adjustments.

The proportion of test sites in which the long-term risk pro-
files were estimated within −5 to 5% bias improved with extra
adjustments (precipitation, temperature, and solar radiation)
and as the record length was increased (Fig. 5, pie charts).
Using the shortest record length (10 years) the simplest adjust-
ment (Precips) produced matching of long-term risk profiles in
range −10 to 10% for 41% of the sites, which increased to 49%
with the PrecipsTemps adjustment, 53% with the PrecipsTempm,
and up to 60% of the sites with the most complete types of adjust-
ments (PrecipsTempmSolars). These proportions did not change
substantially for record lengths between 10 and 50 years of aver-
aged climate data. However, using averaged climate data for a per-
iod of 60 or more years increased the number of sites with bias
within −10 and 10%. For example, with the Precips adjustment,
the number of sites went from 47% (60 years of record length)
to 51% (with 100 years of record length), while the use of the

PrecipsTempmSolars adjustment the number of sites increased
from 59 to 86% of the test sites.

Discussion

The effect of limited temporal coverage of averaged climate data on
the validity of a method for scaling weather data for extrapolation of
long-term risk profiles for simulated crop yields was examined in
the current study. This method uses averaged climate data for pre-
cipitation, temperature and solar radiation to scale daily weather
data from a reference site with long-term records. Scaled daily
data are then used for simulating crop yields and building long-term
risk profiles, demonstrating that the method tested is able to provide
a robust spatial extrapolation of risk profiles, even if the temporal
extent of the averaged climate data is limited.

The adjustment factors showed different responses to the
record length used for averaging the climate data. As expected,
sensitivity to record length ranked precipitation > minimum

Fig. 4. Departures from the 100-year monthly adjustment factors for maximum and minimum temperatures relative to those calculated with shorter record lengths
in 49 locations of the Australian wheat-belt. Weather records of the reference location were adjusted as a function of the monthly maximum
temperature (MaxTempmAF), and the seasonal minimum temperature (MinTempmAF). IQR refers to the inter-quartile range.
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temperature > maximum temperature > global solar radiation.
This response is primarily driven by the natural variability of
these climate variables, which is considerably higher for precipita-
tion, and lower for temperature and solar radiation (Jäger, 1988;
Von Storch and Zwiers, 1999). Despite this fact, reasonable esti-
mates of the long-term adjustment factors were obtained when
using averaged data for shorter time periods. In the case of pre-
cipitation, at least 40 years were necessary to obtain departures
of the long-term adjustment factor within the range −10 and
10% (Fig. 3). For both, the maximum and the minimum

temperatures, a minimum of 30 years at most test sites produced
departures spanning from −0.5 to 0.5°C at seasonal level (Fig. 3),
and a minimum of 40 years for monthly adjustment factors
(Fig. 4). For solar radiation, 10 years records produced departures
between −2.4 and 3% (Fig. 3). This finding is relevant for poten-
tial future applications of the method in data-sparse
environments.

The long-term risk profile of MWGY was also sensitive to the
temporal coverage of the averaged climate data (Figs 3–5).
However, the number of adjustments applied had a major effect

Fig. 5. Bias (%) of the risk profiles of MWGYs built with adjustment factors calculated with variable record lengths of weather data across the different types of
adjustments incorporated. Bias compares the risk profiles obtained with weather data observed at the study site for the period 1901–2000, and those obtained with
scaled weather data using a variable record length of size n (n = 10, 20, …, 100) for calculating the seasonal adjustment factors for precipitation, maximum and
minimum temperatures and solar radiation. The pie charts show the proportion of test sites within different categories of bias.
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on the long-term risk profile. The most complete adjustment
(PrecipsTempmSolars) produced acceptable matching of risk pro-
files in ∼60% of the test sites using record lengths between 10 and
50 years. This proportion of sites was higher than the 51% of sites
when 100 years of record length was used with only precipitation
adjusted. There was also a spatial pattern in the matching of risk
profiles. Better results were obtained in winter-rainfall sites, which
required fewer adjustments and record lengths, while most
summer-rainfall sites required more adjustments and the longest
period of averaged climate data. This could be explained by the
similarity in climates in the reference location and the western,
southern and south-eastern sites, all falling in temperate regions
(Williams et al., 2002) with comparable rainfall patterns in
terms of amount, seasonality and size of events (Table 1;
Williamson, 2007).

The current study uses a simple method for extrapolating risk
profiles described in Hayman et al. (2010b) and Liddicoat et al.
(2012) and further developed in Bracho-Mujica et al. (2019b),
and expand in several aspects. Firstly, the extrapolation method
was tested under a non-uncommon situation of having limited
daily weather data (in terms of both temporal and spatial coverage)
for estimating modelled risk profiles. Secondly, it endorses the
incorporation of the monthly adjustment of maximum and min-
imum temperatures accounting for the role of temperature on
crop development (Bracho-Mujica et al., 2019b). Thirdly, it demon-
strates the importance of the number of adjustments over the record
length of the averaged climate data, which was not tested in previous
studies. Fourthly, results from this study allow us to estimate the
minimum record length necessary for calculating robust adjustment
factors. This enables to produce more robust matching between
MWGY risk profiles and illuminate similarities and differences
among and across locations on a continental scale.

Crop modellers working in data-sparse environments can use
these results to save computational time on climate data, which
frees up resources for other factors such as soil types. Farmers
and agronomists can use the findings to judge the reliability of sim-
ple climate adjustments for risk analysis based on modelled yield.
The extensive comparison across the Australian grain belt not
only highlights the importance of adjusting the most critical climate
variable determining wheat yield, precipitation, but also points to
the need to adjust temperature and solar radiation to improve the
estimation of the risk profiles of modelled crop yields.

The impact of the temporal coverage of the averaged climate
data was explored in the current research, assuming that all cli-
mate variables had the same record length. However, another
interesting aspect to explore in future studies would be the impact
of different temporal coverages across all the climate variables.
Nevertheless, these findings provide evidence that temporal cover-
age is not as important as the type and number of adjustments
used for the determination of robust risk profiles of MWGY.

The use of the method for scaling climate data has been rigor-
ously tested across multiple sites and climates within the
Australian grain belt, and results demonstrate the power of this
simple method for extrapolating the long-term risk profiles of
MWGY. However, it is important to note that this method was
not intended for estimating year-to-year crop yields but for long-
term risk profiles of crop yields. Furthermore, it is important to
highlight that the approach used in the current study did not
account for the spatial variability of soils and management prac-
tices (i.e. sowing dates and nitrogen fertilization), which allowed
examination of the maximum impact of climate on the method
of extrapolation of risk profiles.

Conclusions

A simple method for adjusting daily weather data for extrapolat-
ing risk profiles was tested across the entire Australian-grain belt.
Risk profiles based on process-based models could be accurately
extrapolated even if only short climate data series were available
to compute adjustment factors. The results indicated that
although the temporal coverage of the climate data used for
adjusting daily records is important, the adjustment of all climate
variables (i.e. precipitation, temperatures and solar radiation) pro-
duced the most reliable estimations of modelled yield risk across a
large area, encompassing a diversity of climates.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859621000253
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