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Summary

This paper investigates the existence and equality of the double and
repeated integrals of a real function on a plane set. The main result
(Theorem 2) is that if a function on a plane Lebesgue measurable set is
continuous in one variable and measurable in the other then it is measurable

'• in the plane.

1 j Introduction
ie i

3_ j Consider the following conditions on a bounded function f(x, y) on the
I unit square: —
I (A) Continuity in x and Lebesgue integrability in y.
I (B) Riemann integrability in x and in y.

(C) Plane L-measurability.
(D) Riemann integrability in x and L-integrability in y.

9. I (E) Existence and equality of the two repeated L-integrals.
j (F) Existence of the repeated L-integrals.
I (G) L-integrability in x and' in y.

f. i The relations between these conditions are shown in the diagram below,
where each condition implies those below it.

https://doi.org/10.1017/S1446788700025039 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025039


22 J. H. Michael and B. C. Rennie [2]

That (A) implies (C) is Theorem 1.
That (C) implies (E) is Fubini's Theorem.
That (D) implies (E) is Theorem 3. The slightly weaker result, that (B)

implies (E) was given by L. Lichtenstein [1].
The other implications are trivial.
The problem arises of showing that the diagram above includes all the

cases in which one of the seven conditions implies another. This can be
done by means of examples given by W. Sierpinski; [2] gives a function
satisfying (B) but not (C). It is the characteristic function of a non-mea-
surable set of which any section by a straight line, in any direction, contains
at most two points. In [3] he shows how to construct a function satisfying
(F) but not (E) or satisfying (G) but not (F). It is easy to construct functions
satisfying (C) but not (D) or (D) but not (B), so the completeness of the
table of implications is proved.

Notation

/ denotes the unit square {(x, y); 0 ^ x ^ 1, 0 5̂  y ^ 1}.
If A is a plane set then for any real x we put:

Ax* = {y, (x, y) in A)
and for any real y we put:

A*v = {x; (x, y) in A).

The Lebesgue measure of a measurable set 5 is denoted by JU(S), the
context should make it clear whether linear or plane measure is meant.

The distance from a point p to a set 5 is d{j>, 5].
THEOREM 1. Let E be a closed subset of / and / a real-valued function

defined on E and having the following three properties:

i) 0 ^ f(x, y) ^ 1 for all {x, y) in E.
(ii) For each real x satisfying 0 ^ x ^ 1, f{x, y) is measurable on Exif

with respect to y.
(iii) For each real y satisfying 0 ^ y ^ 1, f[x, y) is relatively continuous

on E*y with respect to x.
Then / is plane measurable on E.

The truth of this theorem follows from Lemmas 1.1, 1.2 and 1.3, which
appear below. In proving these lemmas we assume that / and E are as
in the statement of the theorem. We extend the definition of / to be zero
on the complement of E. We also adopt the following notation.

For each n = 1, 2, • • • and i = 1, 2, • • • n, we can choose a real ani

such that:

(1) (i - l)/n ^ ani < i/n

and
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We also put:

(3) 4 B < = {(a;, y)\ (i —l)/n^x< i/n, (ani, y) in E)

(4)

(5)

(6) B =

n
**• ni

oo

k=n

n - 1

Evidently each of Ani, An, Bn> and B is measurable. By Fubini's theorem
we have:

(7) f*(An) ^ ju(E) — \\n for all n.

For each n = 1, 2, • • • and all (x, y) in / , define:

(8) {"f' 1̂ = ^fl"" ^ lf ^ ~ 1)/W ^ x < l l n

\ /»(1, 2/) = 0

LEMMA 1.1. is is the union of B with some set of measure zero.
Proof: For each n = 1, 2, • • •, put:

(9) Cn = {(*, 2/); <?[>, y), E] ̂  l/n}

Since E is closed:
oo

(io) E = n cB
n=l

Also it follows from (3) that if i ^ m and n f^Lm then i4TOi C Cw, and
hence by (4) Am Q Cn) so that by (5):

By (6), (10) and (11):

(12) BQE

But by (5) and (7):

(13) p(Bn) ^ p{E) - l/n

Since by (5) Bn2Bn+1 we have by (13):

(14) p(B)=limii(Bn)

Therefore by (12) and (14) the result follows.

LEMMA 1.2. For each n = 1, 2, • • • the function fn(x, y) is plane measurable
on / and hence also on E.

Proof: For each i = 1, 2 • • • n, put:
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> y)> (*' - l ) / n ^ x < *ln. o ^ y ^ i }

Then by (8):

(15) fn(x, y) = f{ani, y) for all {x, y) in / ,

But by condition (ii) of the theorem, f(ani, y) is measurable with respect
to y on the unit interval. Therefore by (15) fn{x, y) is plane measurable
on Jt and hence on / .

LEMMA 1.3. For each (x, y) in B:

l imsup/Jz , y) = f{x, y)

Proof: Take any {x, y) in B, we know x ^ 1.
For each positive integer k there is i such that (i — l)/k ^ x < ijk.
First consider the set of all k for which (x, y) is in Ak, it is an infinite

set because by (6) the set B is the upper limit of the sequence Alt A2, • • •
Take any e > 0.
For all sufficiently large k it follows from the condition (iii) of the theorem

that
|/(£, * / ) - / ( * , y)\<e

for all | such that (g, y) is in E and |# — | | < Ilk.
In particular «fcl. satisfies these conditions for £, so that

i.e.
l/t(*. 2/) - / (*» 2/)! < «

This holds for all e > 0, so we have shown that as k tends to infinity
in this subset (the subset for which (x, y) is in Ak)

fk(*> V) ->/(*» y)-

Now consider the other values of k, for which (x, y) is not in Ak. For
these values (aki, y) is not in E by (3) and (4), and therefore fk{x,y) =
/(««. y) = o.

We have thus shown that the sequence fk{x,y) (k = 1, 2, • • •) contains
an infinite sub-sequence converging to f{x, y) and that the members not
in this sub-sequence are all zero.

The measurability of f(x, y) on B and therefore on E follows from the
three lemmas.

THEOREM 2. Suppose that f(x, y) is defined on a measurable plane set E
and is 0 outside E and that f(x, y) is a continuous function of x on E relatively
to E for almost all y and that it is a measurable function of y for almost
all x; then f{x, y) is plane measurable.

Proof: By Theorem 1 the result holds when the following four additional
conditions are satisfied:
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(a) E is closed,
(/?) E is a subset of the unit square and / 5̂  1,
(y) /^o,
(<5) In the statement of the theorem 'almost all' may be replaced by 'all'.

ct
. These restrictions can be removed one by one as follows:
le J

(a) There is a sequence of closed sets En increasing and converging in
measure to E. Let fn{x, y) be equal to / if (x, y) is in En and 0otherwise.
These functions are all plane measurable and converge to f{x, y) almost
everywhere.

(/?) Let fn(x, y) be 0 if \x\ or \y\ > n and otherwise let it be the smaller
of / and n, then each /„ is plane measurable and therefore also /.

(y) Apply the results already obtained to the positive and negative parts
of/.

(d) The set of points affected is of plane measure zero, so they can be
removed from E.

Some more definitions are required for the next theorem:
A 'Riemann dissection' of the unit interval is a choice of real an and

cn for n = 1, 2, • - ' N such that aN = 1 and (if a0 = 0) an_1 ^ cn ^ an

for n — 1, 2, • • • N. The 'Riemann sum' for this dissection and a function
f{x) is E{an - an_!)/(cw).

If 2 is such a dissection let A {Si) = max {an — «„_!).
We say that a sequence 2X, 3>2, • • • of Riemann dissections 'converges'

if A{@n) -> 0 as n -> oo.
It can be shown that a function is Riemann integrable if and only if

for any convergent sequence of Riemann dissections the Riemann sums
converge, and that if so then the limit equals the integral.

THEOREM 3. If in the unit square / the function f{x, y) is Riemann in-
tegrable in x for each y and Lebesgue measurable in y for each x, and
0 5̂  / ^ 1, then the repeated integrals exist and are equal,

s ! Proof. Let 2X, @2) • • • be any convergent sequence of Riemann dis-
t I sections of the unit interval.

Let gn{y) be the Riemann sum of f{x, y) with respect to x corresponding
to the dissection Qin. The function gn{y) is measurable in y because it is
the sum of a finite number of measurable functions, so that its limit, which

7 is jlfdx, is also a measurable function of y.
The Riemann sum of jlfdy corresponding to 3)n is Jgn{y)dy, which by

, the theorem of bounded convergence tends to

as n tends to infinity. This is for any convergent sequence of Riemann
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dissections, so that the Riemann integral of flfdy exsists and equals
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