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1. In this note we formally solve the following triple integral equations,

f
Jo

f
JoI

g{k) sin Axdl =/t(x) (0 < x < a), (1)

A"1 g(k) tanh kh sin Ax dk = /2(x) (a < x < p), (2)

' g{k) sin Ax dk = /3(x) (0 < x < oo), (3)

where /i(x), /2(x) and /3(x) are integrable for 0 < x < a, a < x < /? and /? < x < oo,
respectively, and the function g{X) is assumed to satisfy sufficient conditions for the Fourier
sine transform to exist. A special case of this system arose in a problem concerned with
transistors.

2. Solution of equations. We follow the normal procedure for triple integral equations
(see [3], for example), and write

•>

g(k) sin Ax dk = p(x) (a < x < /?), (4)

so that p(x) is integrable over [a, /?). By using the inversion theorem for the Fourier sine
transform we obtain

2 C" 2 f" 2 f00

g(k) = - /i(x) sin Ax dx + - p(x) sin kxdx-1— f3(x) sin Ax dx. (5)
^ J 0 ^ J« ^JP

Substitute (5) into (2) and interchange the order of integration of the resulting double integrals
to obtain

f fi(y)H(x,y)dy+ \ p(y)H(x,y)dy+ i"f3(y)H(x,y)dy = ^/2(x) (a < x < j?), (6)
JO Ja Jfl 2-

where
f00

H(x,y)=\ A 'tanhA/isinAysinAxdA. (7)

Jo

The interchanges in the order of integrations can be justified by applying the results of
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sections 4.3, 4.431(1) and 4.44(11) of [4]. However, by [1, p. 516],

f00

H(x, y) = i\ X'1 tanh Xh {cos (x - y)X - cos (x+y)X}dX
Jo

(8)

We may rewrite the right-hand side of (8) as

sinh yx + sinh yy
ilog

sinh yx — sinh yy

where y = n/2A, and hence we can rewrite (6) as

,y), say,

Let

r* re /•
fiiyMx. y)dy + tfyW*. y)dy +

Jo J« J

^2L(x) = 7r/2(x) - f7iG#(*. y)dy - f
Jo J/

, y)dy = «/,(*) (« < x <

Then we can rewrite (9) as

r sinh yx+sinh yy

sinh yx-sinh yy

(9)

(10)

(11)

Now, since sinh yx is a positive mono tonic increasing function in (a, ft), (11) can be solved
by a result due to Parihar [2]. The solution is

where

and

i = sinh2yy, m(y) = sinh yy {(sinh2 yy-sinh2 ya)(sinh2y/?—sinh2 yy)}*

;'(y)dyfm(x)L'(x)dxg__ ŝinhyff pS'(x)L(x)dx 2 r"s'
JK sinhyalj, w(x) J,
L2'sinhy)?J

m(y) }a s(y)-s(x)
(13)

where the first integral in (12) and the last integral in (13) are to be understood in the sense of
their principal values. Once p{y) has been obtained we use (5) to obtain g{X).

In the problem about transistors the functions fi(x),f2(x) and/3(x) have the values 0,
— 1 and 0 respectively. For this case the analysis is greatly simplified, and we find that the
particular form of p(y) is given by the expression:

—y cosh yy sinh y/?
^<y<P)

{(sinh2yy-sinh2ya)(sinh2y/?-sinh2yy)}*F(fc) ^<y<P)'

where y = njlh, k = sinh ya/sinh yp and F(k) is the complete elliptic integral of the first kind.
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Hence
-ysinhy/?

Ja {(sinhF(k) J a {(sinh2 yy—sinh2 ya)(sinh2 yP - sinh2 yy)}* '

3. A further result. If in the relevant intervals, /x(x), /2(x) and /3(x) are non-constant
differentiable functions, we can obtain the solution of (l)-(3) with cos Xx instead of sin Xx
by differentiating with respect to x. However if/i(x),/2(x) and/3(x) are constants we cannot
solve the problem in this manner and we have to obtain the solution by a method similar to
that of section 2. The solution for the particular case/^x) = 0 for 0 < x < a, /2(x) = — 1,
for a < x < P, and /3(x) = 0 for j8 < x < oo, and with h = n, is given by:

B
- c o s h - 1

where /c = cosh (a/2)/cosh {fill); hence #(A) is given by

8 f
g(X) = — p(x) sinh x cos xA dx.
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