M. Itô and N. SuzukiNagoya Math. J.Vol. 99 (1985), 89-110

THE SEMI-BALAYABILITY OF REAL CONVOLUTION KERNELS

MASAYUKI ITÔ AND NORIAKI SUZUKI

Dedicated to Professor Yukio Kusunoki on his 60th birthday

§ 1.

Let X be a locally compact, σ -compact and non-compact abelian group. Throughout this paper, we shall denote by ξ a fixed Haar measure on X and by δ the Alexandroff point of X.

A real convolution kernel (i.e., a real Radon measure) N on X is said to be semi-balayable if N satisfies the semi-balayage principle on all open sets (see Definition 6). We know that every convolution kernel N of logarithmic type is semi-balayable (see [8]). Here N is said to be of logarithmic type if, with a vaguely continuous, markovian, semi-transient and recurrent convolution semi-group $(\alpha_t)_{t\geq 0}$ of non-negative Radon measures on X,

$$N*\mu = \int_0^\infty lpha_t * \mu dt \left(= \lim_{t o\infty} \int_0^t lpha_s * \mu ds$$
 1)

for all real Radon measure μ on X with compact support and $\int d\mu = 0.$

In this paper, we shall show that the semi-balayability is an essential property to characterize convolution kernels of logarithmic type. More precisely, we shall establish the following theorems.

Theorem 1. Let N be a real convolution kernel on X. If $X \approx R \times F$ or $X \approx Z \times F$, we suppose an additional condition: N = o(|x|) at the infinity². Then N is of logarithmic type if and only if N is semi-balayable, non-periodic and satisfies $\inf_{x \in X} N * f(x) \leq 0$ for any finite continuous function f on X with compact support and $\int f d\xi = 0$.

Received May 28, 1984.

For a net $(\mu_{\alpha})_{\alpha \in \Lambda}$ of real Radon measures and a real Radon measure μ , we write $\mu = \lim_{\alpha \in \Lambda} \mu_{\alpha}$ if $(\mu_{\alpha})_{\alpha \in \Lambda}$ converges vaguely to μ along Λ .

²⁾ If $X = R \times F$ or $X = Z \times F$, N = o(|x|) at the infinity means that for any $f \in C_K^+(X)$, N*f((x,y)) = o(|x|) as $|x| \to \infty$, where $(x,y) \in R \times F$ or $\in Z \times F$. In the case of $X \approx R \times F$ or $X \approx Z \times F$, the definition N = o(|x|) at the infinity follows naturally from the above definition.

Here R, Z and F denote the additive group of real numbers, the additive group of integers and a certain compact abelian group, respectively.

By virtue of the main theorems in [8] (see Théorèmes 52 and 52'), Theorem 1 follows immediately from the following

Theorem 2. Let N be a non-periodic real convolution kernel on X satisfying $\inf_{x\in X}N*f(x)\leq 0$ for any finite continuous function f on X with compact support and $\int f d\xi=0$. Then N is semi-balayable if and only if N satisfies the semi-complete maximum principle and $\eta_{N,\delta}=-\infty$, i.e., for any exhaustion $(K_n)_{n=1}^\infty$ of X^3 and any non-negative continuous function $f\neq 0$ on X with compact support, $\lim_{n\to\infty}\int f d\eta_{N,CK_n}=-\infty$, where η_{N,CK_n} is the N-reduced measure of N on CK_n .

The "if" part is already known (see Proposition 28 in [8]), so that this paper will be devoted principally to the proof of the "only if" part.

It is interesting to compare Theorem 1 with the Choquet-Deny theorem for Hunt convolution kernels⁴⁾ (see [3]).

Contrary to a conjecture in [8] (see Problème 29), Theorem 1 shows that, under some additional conditions, non-periodic and semi-balayable real convolution kernels are of logarithmic type.

§ 2.

We denote by:

C(X) the usual Fréchet space of finite continuous functions on X;

 $C_{\kappa}(X)$ the usual topological vector space of finite continuous functions on X with compact support;

 $M(X) = C_{\kappa}(X)^*$ the topological vector space of real Radon measures on X with the vague (weak*) topology;

 $M_{\kappa}(X) = C(X)^*$ the usual topological vector space of real Radon measures on X with compact support;

 $C^+(X), \ C^+_{\it K}(X), \ M^+(X)$ and $M^+_{\it K}(X)$ their subsets of non-negative elements.

Furthermore, we put

$$C_{\mathtt{K}}^{\scriptscriptstyle{0}}(X) = \left\{ f \in C_{\mathtt{K}}(X); \int \! f d\xi = 0
ight\} \quad ext{and} \quad M_{\mathtt{K}}^{\scriptscriptstyle{0}}(X) = \left\{ \mu \in M_{\mathtt{K}}(X); \int d\mu = 0
ight\} \,.$$

³⁾ An exhaustion $(K_n)_{n=1}^{\infty}$ of X means a sequence of compact sets satisfying $K_n \subset$ the interior of K_{n+1} and $\bigcup_{n=1}^{\infty} K_n = X$.

⁴⁾ A non-negative convolution kernel N_0 on X is a Hunt convolution kernel if and only if N_0 is balayable (see Remark 14 (3)) and not pseudo-periodic.

DEFINITION 3. A real convolution kernel N on X is said to satisfy the semi-complete maximum principle (denoted by $N \in (SMP)$) if for any $f,g \in C_K^+(X)$ with $\int f d\xi = \int g d\xi$ and any $a \in R$, we have the implication:

$$N*f(x) \leq N*g(x) + a$$
 on $\operatorname{supp}(f) \Longrightarrow N*f(x) \leq N*g(x) + a$ on X , where $\operatorname{supp}(f)$ denotes the support of f .

DEFINITION 4. A real convolution N on X is said to satisfy the transitive semi-complete maximum principle with respect to ξ (denoted by $(N, \xi) \in (TSMP)$) if for any $f, g \in C_K^+(X)$ with $\int f d\xi = \int g d\xi$ and any $a \in R$, we have the implication:

$$N * f(x) \le N * g(x) + a$$
 on supp $(f) \Longrightarrow a \ge 0$.

We can describe the above principles by the term of non-negative Radon measures.

Remark 5. $N \in (SMP)$ (resp. $(N, \xi) \in (TSMP)$) if and only if for any $\mu, \nu \in M_K^+(X)$ with $\int d\mu = \int d\nu$ and any $a \in R$, we have the implication:

$$N*\mu \le N*\nu + a\xi$$
 in a certain open set \supset supp (μ) $\Longrightarrow N*\mu \le N*\nu + a\xi$ on X (resp. $\Longrightarrow a \ge 0$),

where supp (μ) denotes also the support of μ .

For a real convolution kernel N on X, we put

$$D^{\scriptscriptstyle +}(N) = \{\mu \in M^{\scriptscriptstyle +}(X);\ N \ast \mu \text{ is defined in } M(X)\}$$
 .

Let $\mu \in M^+(X)$. Evidently $\mu \in D^+(N)$ if and only if for any $f \in C_K^+(X)$, $\int |\check{N} * f| d\mu < \infty$. Here \check{N} denotes the real convolution kernel on X defined by $\int f d\check{N} = \int \check{f} dN$ for all $f \in C_K(X)$, where $\check{f}(x) = f(-x)$.

DEFINITION 6. A real convolution kernel N on X is said to satisfy the semi-balayage principle (resp. the semi-balayage principle on all open sets) (denoted by $N \in (SBP)$ (resp. denoted by $N \in (SBP_g)$)) if for any $\mu \in M_K^+(X)$, any $\alpha \in R$ and any relatively compact open set (resp. any open set) $\omega \neq \phi$ in X, there exists an element $(\mu', \alpha') \in M^+(X) \times R$ such that:

(B.1)
$$\int d\mu' = \int d\mu$$
.

(B.2) supp
$$(\mu') \subset \overline{\omega}$$
.

(B.3)
$$\mu' \in D^+(N)$$
 and $N * \mu' + \alpha' \xi = N * \mu + \alpha \xi$ in ω .

(B.4)
$$N*\mu' + a'\xi \leq N*\mu + a\xi$$
 on X .

In this case, we call (μ', a') a semi-balayaged couple of (μ, a) on ω with respect to N and denote by $SB_N((\mu, a); \omega)$ the totality of such couples. If $N \in (SBP_g)$, we say that N is semi-balayable.

We set

$$\underline{SB}_{N}((\mu, a); \omega) = \{(\mu', a') \in SB_{N}((\mu, a); \omega); N * \mu + a' \xi \\ = \inf \{N * \mu'' + a'' \xi; (\mu'', a'') \in SB_{N}((\mu, a); \omega)\}^{5}\}.$$

When $\overline{\omega}$ is non-compact, it is not easy to examine directly whether $\underline{SB}_{N}((\mu, \alpha); \omega) \neq \phi$ or $= \phi$.

Let $N \in (SBP)$ (resp. $N \in (SBP_g)$). For $\mu \in D^+(N)$ with $\int d\mu < \infty$, $a \in R$ and a relatively compact open set (resp. an open set) $\omega \neq \phi$ in X, we can define $SB_N((\mu, a); \omega)$ and $\underline{SB}_N((\mu, a); \omega)$ analogously.

We shall use known results concerning potential theoretic principles for a real convolution kernel N on X (see Remarques 2, 7, Proposition 11 and Corollaire 14 in [8]).

Remark 7. (1) $N \in (SMP)$ and $N \in (SBP)$ are equivalent.

- (2) Assume that $N \in (SMP)$. Then $(N, \xi) \in (TSMP)$ is equivalent to $\inf_{x \in X} N * f(x) \leq 0$ for any $f \in C_K^0(X)$.
- (3) Assume that $(N, \xi) \in (TSMP)$. Then N and \check{N} satisfy the maximum principle, that is, for any $f \in C_K^+(X)$, we have $N * f(x) \leq \sup_{y \in \text{supp}(f)} N * f(y)$ on X and $\check{N} * f(x) \leq \sup_{y \in \text{supp}(f)} \check{N} * f(y)$ on X.

Lemma 8. Let $N \in (SMP)$ and $\omega \neq \phi$ be a relatively compact open set in X. Then we have:

- (1) For any $\mu \in D^+(N)$ with $\int d\mu < \infty$ and any $a \in R$, we have $\underline{\operatorname{SB}}_N((\mu, a); \omega) \neq \phi$, and for any $(\mu', a') \in \underline{\operatorname{SB}}_N((\mu, a); \omega)$, there exist nets $(\mu_a)_{a \in A}$ in $M_K^+(X)$ and $(a_a)_{a \in A}$ in R such that $\operatorname{supp}(\mu_a) \subset \omega$ and $(N * \mu_a + a_a \xi)_{a \in A}$ converges increasingly to $N * \mu' + a' \xi$ on X along Λ .
 - (2) For $0 < c \in R$, we denote by $SP_c(N)$ the vague closure of

$$\left\{N*
u\,+\,a\xi;\,
u\in M_{\scriptscriptstyle{K}}^{\scriptscriptstyle{+}}\!(X),\,\, \left\{d
u\,=\,c,\,\,a\in R
ight\}\,.$$

For any $\eta \in \mathrm{SP}_c(N)$, there exists an element $(\mu', a') \in M_K^+(X) \times R$ such that

⁵⁾ This means that $\inf\{N*\mu''+\alpha''\xi; (\mu'',\alpha'')\in SB_N((\mu,\alpha);\omega)\}\$ exists as a real Radon measure on X and it is equal to $N*\mu'+\alpha''\xi$.

$$\int d\mu' = c, \; \mathrm{supp}\,(\mu') \subset \overline{\omega}, \, N*\mu' + a'\xi = \eta \; in \; \omega \; and \; N*\mu' + a'\xi \leqq \eta \; on \; X.$$

Proof. The assertion (1) is proved in the same manner as in [8] (see Corollaire 12). We shall show the assertion (2). We choose nets $(\mu_{\alpha})_{\alpha\in\Lambda}$ in $M_K^+(X)$ with $\int d\mu_{\alpha} = c$ and $(a_{\alpha})_{\alpha\in\Lambda}$ in R such that $\lim_{\alpha\in\Lambda}(N*\mu_{\alpha}+a_{\alpha}\xi)=\eta$. Let $(\mu'_{\alpha},a'_{\alpha})\in \mathrm{SB}_N((\mu_{\alpha},a_{\alpha});\omega)$. Since $\int d\mu'_{\alpha}=\int d\mu_{\alpha}=c$, we may assume that $(\mu'_{\alpha})_{\alpha\in\Lambda}$ converges vaguely. Put $\mu'=\lim_{\alpha\in\Lambda}\mu'_{\alpha}$. All μ'_{α} being supported by the compact set $\overline{\omega}$, we have $N*\mu'=\lim_{\alpha\in\Lambda}N*\mu'_{\alpha}$. This implies that $(a'_{\alpha})_{\alpha\in\Lambda}$ converges. Putting $a'=\lim_{\alpha\in\Lambda}a'$, we see that (μ',a') is a required element.

We shall use a more general form of the semi-complete maximum principle.

PROPOSITION 9. Let $N \in (SMP)$, $(N, \xi) \in (TSMP)$, $\mu \in D^+(N)$ with $c = \int d\mu < \infty$, $a \in R$ and let $\eta \in SP_c(N)$. If $N * \mu + a\xi \leq \eta$ in a certain open set containing supp (μ) , then the same inequality holds on X.

For the proof of this proposition, we shall use the following known lemma.

LEMMA 10 (see Lemme 21 in [8]). Let $N \in (SMP)$ and $(\mu_a)_{a \in A}$ be a net in $M_{\kappa}^+(X)$. If $\lim_{\alpha \in A} \int d\mu_{\alpha} = 0$ and $(N * \mu_{\alpha})_{\alpha \in A}$ converges vaguely, then there exists $b \in R$ such that $\lim_{\alpha \in A} N * \mu_{\alpha} = b\xi$. Furthermore, if $(N, \xi) \in (TSMP)$, then $b \leq 0$.

Proof of Proposition 9. If $\mu \in M_K^+(X)$, then our assertion follows from Remark 5 and Lemma 8. In general case, we choose an open exhaustion $(\omega_n)_{n=1}^{\infty}$ of X^{0} . Let ω be an open set in X satisfying $\omega \supset \operatorname{supp}(\mu)$ and $N * \mu + a\xi \leq \eta$ in ω . We may assume that $\omega \cap \omega_1 \neq \phi$. Put $\mu_n = \mu|_{\omega_n}^{-1}$ and $\lambda_n = \mu - \mu_n$. Let $(\lambda'_n, a'_n) \in \operatorname{\underline{SB}}_N((\lambda_n, a); \omega \cap \omega_n)$. Then $(\mu_n + \lambda'_n, a'_n) \in \operatorname{\underline{SB}}_N((\mu, a); \omega \cap \omega_n)$, and Lemma 8 (1) gives

$$N*(\mu_n + \lambda'_n) + \alpha'_n \xi \leq \eta$$
 on X .

Hence it suffices to show that $\lim_{n\to\infty}\left(N*(\mu_n+\lambda_n')+a_n'\xi\right)=N*\mu+a\xi$.

⁶⁾ An open exhaustion $(\omega_n)_{n=1}^{\infty}$ of X means a sequence of relatively compact open sets $\neq \phi$ in X satisfying $\omega_{n+1} \supset \overline{\omega}_n$ and $\bigcup_{n=1}^{\infty} \omega_n = X$.

⁷⁾ Far $\mu \in M(X)$ and a universally measurable set E in X, $\mu|_E$ denotes the real Radon measure on X defined by $\mu|_E = \mu$ on E and $\mu|_E = 0$ on CE.

From $(N,\xi) \in (TSMP)$, we see that $a'_n \leq a'_{n+1} \leq a$ for all $n \geq 1$, so that $(N*\lambda'_n)_{n=1}^{\infty}$ converges vaguely. By Lemma 10 and $\lim_{n\to\infty} \int d\lambda'_n = 0$, there exists $0 \geq b \in R$ such that $\lim_{n\to\infty} N*\lambda'_n = b\xi$. Since

$$\lim_{n o\infty}N*(\mu_n+\lambda_n')+(\lim_{n o\infty}a_n')\xi=N*\mu+a\xi$$
 in ω ,

 $\lim_{n\to\infty} a'_n = a$ and b = 0. Thus $N * (\mu_n + \lambda'_n) + a'_n \xi$ converges increasingly to $N * \mu + a \xi$ as $n \uparrow \infty$, which completes the proof.

Similarly we obtain the following

PROPOSITION 11. Let $N \in (SBP_g)$ and $(N, \xi) \in (TSMP)$. Then, for any $\mu \in M_R^+(X)$, any $a \in R$, any open set $\omega \neq \phi$ in X and any $(\mu', a') \in SB_N((\mu, a); \omega)$, we have $a' \leq a$. Furthermore, if $C\omega$ is compact, a' = a.

Proof. Let $(\omega_n)_{n=1}^{\infty}$ be an open exhaustion of X. Put $\mu'_n = \mu'|_{\omega_n}$ and $\lambda_n = \mu' - \mu'_n$. Choose $(\lambda'_n, a'_n) \in \underline{SB}_N((\lambda_n, a'); \omega_n)$; then $(\mu'_n + \lambda'_n, a'_n) \in \underline{SB}_N((\mu', a'); \omega_n)$. Then $(N, \xi) \in (TSMP)$ gives $a'_n \leq a$. From the above proof, we see that $\lim_{n \to \infty} a'_n = a'$, that is, $a' \leq a$.

The latter part is shown in the same manner as in Proposition 28 (2) in [8].

It is a question when a' = a holds.

§ 3.

In this paragraph, we shall prepare some potential theoretic results concerning shift-bounded Hunt convolution kernels.

Definition 12. A non-negative convolution kernel N_0 on X is said to be a Hunt convolution kernel if it is of form

$$(3.1) \qquad N_0 = \int_0^\infty \alpha_t dt \text{ (i.e., for any } f \in C_K(X), \ \int f dN_0 = \int_0^\infty dt \int f d\alpha_t) \ ,$$

where $(\alpha_t)_{t\geq 0}$ is a vaguely continuous convolution semi-group (of positive Radon measures) on X, i.e., α_0 = the unit measure ε at the origin 0, $\alpha_t * \alpha_s = \alpha_{t+s}$ for all $t \geq 0$, $s \geq 0$ and $t \to \alpha_t$ is vaguely continuous.

In this case, $(\alpha_t)_{t\geq 0}$ is uniquely determined (see [5]) and called the convolution semi-group of N_0 .

A vaguely continuous convolution semi-group $(\alpha_t)_{t\geq 0}$ is said to be sub-markovian (resp. markovian) if $\int d\alpha_t \leq 1$ (resp. $\int d\alpha_t = 1$) for all $t \geq 0$.

DEFINITION 13. A family $(N_p)_{p>0}$ of non-negative convolution kernels on X is said to be a resolvent if for any p>0 and q>0,

(3.2)
$$N_p - N_q = (q - p)N_p * N_q$$
 (The resolvent equation).

A non-negative convolution kernel N_0 on X possesses the resolvent if there exists a resolvent $(N_p)_{p>0}$ with $N_0 = \lim_{p \downarrow 0} N_p$.

In this case, $N_0 - N_p = pN_0 * N_p$ and supp $(N_0) = \text{supp }(N_p)$ (p > 0) hold, and $(N_p)_{p>0}$ is uniquely determined (see [5]). We call it the resolvent of N_0 .

A resolvent $(N_p)_{p>0}$ is said to be sub-markovian (resp. markovian) if for any $p>0,\; p\int dN_p \le 1$ (resp. $p\int dN_p=1$).

The following results are fundamental for Hunt convolution kernels (see [1], [3], [5], [6] and [7]).

- Remark 14. (1) A non-negative convolution kernel N_0 on X is a Hunt convolution kernel if and only if its resolvent exists and N_0 is non-periodic, i.e., for any $x \in X$, $N_0 \neq N_0 * \varepsilon_x$ provided with $x \neq 0$, where ε_x denotes the unit measure at x.
- (2) Let N_0 be a Hunt convolution kernel on X. Then the equivalences (a) \Leftrightarrow (b) \Leftrightarrow (c) hold:
- (a) The convolution semi-group of N_0 is sub-markovian (resp. markovian).
 - (b) The resolvent of N_0 is sub-markovian (resp. markovian).
- (c) N_0 is shift-bounded, i.e., for any $f \in C_K(X)$, N*f is bounded on X (resp. shift-bounded and $\int dN_0 = \infty$).
- (3) Let N_0 be a shift-bounded Hunt convolution kernel on X. Then we have:
- (a) (The balayability). For any $\mu \in M_K^+(X)$ and any open set ω in X, there exists $\mu' \in D^+(N_0)$ such that supp $(\mu') \subset \overline{\omega}$, $N_0 * \mu' = N_0 * \mu$ in ω and $N_0 * \mu' \leq N_0 * \mu$ on X.

In this case, μ' is called an N_0 -balayaged measure of μ on ω , and $\int d\mu' \le d\mu$ holds. We have $\int dN_0 = \infty$ if and only if, for any $\mu \in M_K^+(X)$, any open set ω in X whose complement is compact and any N_0 -balayaged measure μ' of μ on ω , $\int d\mu' = \int d\mu$.

(b) (The complete maximum principle). For any $\mu, \nu \in M_K^+(X)$ and any $0 \le c \in R$, $N_0 * \mu \le N_0 * \nu + c\xi$ in a certain neighborhood of supp (μ)

implies that the same inequality holds on X.

(c) (The equilibrium principle). For any relatively compact open set ω in X, there exists $\gamma \in M_K^+(X)$ such that supp $(\gamma) \subset \overline{\omega}$, $N_0 * \gamma = \xi$ in ω and $N_0 * \gamma \leq \xi$ on X.

In this case, γ is called an N_0 -equilibrium measure of ω .

- (d) (The positive mass principle). For any $\mu, \nu \in M_K^+(X), \ N_0 * \mu \leqq N_0 * \nu$ on X implies $\int d\mu \leqq \int d\nu$.
- (e) (The dominated convergence property). Let $(\mu_{\alpha})_{\alpha\in\Lambda}$ be a net in $D^+(N_0)$ and $\mu\in M^+(X)$. If $\lim_{\alpha\in\Lambda}\mu_{\alpha}=\mu$ and there exists $\nu\in D^+(N_0)$ satisfying $N_0*\mu_{\alpha}\leqq N_0*\nu$ on X for all $\alpha\in\Lambda$, then $\lim_{\alpha\in\Lambda}N_0*\mu_{\alpha}=N_0*\mu$.
- (f) (The injectivity). For any $\mu, \nu \in D^+(N_0)$, $N_0 * \mu = N_0 * \nu$ on X implies $\mu = \nu$.

For $\mu \in D^+(N_0)$ and an open set ω in X, we can define analogously N_0 -balayaged measures of μ on ω and denote by $B_{N_0}(\mu;\omega)$ their totality. It is well-known that $B_{N_0}(\mu;\omega) \neq \phi$. Put

$$\mathrm{B}_{N_0}(\mu;\omega) = \{\mu' \in \mathrm{B}_{N_0}(\mu;\omega); \, N_0 * \mu' = \inf\{N_0 * \mu''; \, \mu'' \in \mathrm{B}_{N_0}(\mu;\omega)\}\} \quad (\mathsf{see}^{5})$$
 and

$$\overline{B}_{N_0}(\mu;\omega) = \{\mu' \in B_{N_0}(\mu;\omega); \, N_0 * \mu' = \sup \{N_0 * \mu''; \, \mu'' \in B_{N_0}(\mu;\omega)\}\} \quad (\text{see}^{5)}) \; .$$

For an open set ω in X, we can define analogously N_0 -equilibrium measures of ω and denote by $E_{N_0}(\omega)$ their totality. Put

$$\underline{\underline{\mathbf{E}}}_{N_0}(\omega) = \{ \varUpsilon \in \underline{\mathbf{E}}_{N_0}(\omega); N_0 * \varUpsilon = \inf \{ N_0 * \varUpsilon'; \varUpsilon' \in \underline{\mathbf{E}}_{N_0}(\omega) \} \} \quad (\text{see}^{5)})$$

provided with $E_{N_0}(\omega) \neq \phi$.

Lemma 15. Let N_0 be a shift-bounded Hunt convolution kernel on X. Then we have:

- (1) For any $\mu \in D^+(N_0)$ and any open set ω in X, $\underline{B}_{N_0}(\mu; \omega) \neq \phi$ and $\overline{B}_{N_0}(\mu; \omega) \neq \phi$. Moreover, $\underline{B}_{N_0}(\mu; \omega)$ and $\overline{B}_{N_0}(\mu; \omega)$ form only one element.
- (2) For any $\mu \in D^+(N_0)$ and any two open sets ω_1, ω_2 in X with $\omega_1 \subset \omega_2$, we have $N_0 * \mu_1' \leq N_0 * \mu_2'$ and $N_0 * \mu_1'' \leq N_0 * \mu_2''$ on X, where $\mu_i' \in \underline{B}_{N_0}(\mu; \omega_i)$ and $\mu_i'' \in \overline{B}_{N_0}(\mu; \omega_i)$ (i = 1, 2).
- (3) Put $P(N_0) = \overline{\{N_0 * \mu; \mu \in D^+(N_0)\}}$, where the closure is in the sense of the vague topology. For any $\mu \in D^+(N_0)$ and any $\eta \in P(N_0)$, $N_0 * \mu \leq \eta$ in a certain open set $\supset \operatorname{supp}(\mu)$ implies that the same inequality holds on X.

- (4) For an open set ω in X, $E_{N_0}(\mu) \neq \phi$ implies $\underline{E}_{N_0}(\mu) \neq \phi$. In this case, $\underline{E}_{N_0}(\mu)$ forms only one element.
- $(5) \quad \textit{For } 0 < c \in \textit{R}, \textit{ we put } P_c(N_0) = \left\{ N_0 * \mu; \; \mu \in D^+(N_0), \; \int d\mu \leqq c \right\}. \quad \textit{For } \\ \textit{any } \; \mu \in D^+(N_0) \; \textit{ and } \; \textit{any } \; \eta \in P_c(N_0), \; N_0 * \mu \leqq \eta \; \textit{ on } \; \textit{X implies } \int d\mu \leqq c.$
- (6) Let $(\mu_{\alpha})_{\alpha\in\Lambda}$ be a net in $D^+(N_0)$ and $0 \neq \lambda_1$, $0 \neq \lambda_2 \in M_K^+(X)$. If there exist $\nu \in D^+(N_0)$ and a relatively compact net $(x_{\alpha})_{\alpha\in\Lambda}$ in X such that $N_0 * \mu_{\alpha} * \lambda_1 \leq N_0 * \nu * \varepsilon_{x_{\alpha}} * \lambda_2$ on X, then $(\mu_{\alpha})_{\alpha\in\Lambda}$ is vaguely bounded. If $\mu_{\alpha} \to \mu \in M^+(X)$, then $\lim_{\alpha\in\Lambda} N_0 * \mu_{\alpha} = N_0 * \mu$.
- Proof. (1) Let $(\omega_{\alpha})_{\alpha\in A}$ be a net of open sets in X with $\overline{\omega}_{\alpha}\subset \omega_{\beta}(\alpha \leq \beta)$ and $\bigcup_{\alpha\in A}\omega_{\alpha}=\omega$. We choose $\mu'_{\alpha}\in B_{N_0}(\mu;\omega_{\alpha})$. Then the complete maximum principle of N_0 implies that for any $\mu''\in B_{N_0}(\mu;\omega)$, $N_0*\mu'_{\alpha}\leq N_0*\mu''$ on X. This and the dominated convergence property of N_0 show that $(\mu')_{\alpha\in A}$ is vaguely bounded and every vaguely accumulation point of $(\mu'_{\alpha})_{\alpha\in A}$ as $\omega_{\alpha}\uparrow\omega$ is contained in $\underline{B}_{N_0}(\mu;\omega)$, which gives $\underline{B}_{N_0}(\mu;\omega)\neq\phi$. Let $(\omega'_{\alpha'})_{\alpha'\in A'}$ be a net of open sets in X with $\omega'_{\alpha'}\supset\overline{\omega}'_{\beta'}$ ($\alpha'\leq\beta'$) and $\bigcap_{\alpha'\in A'}\omega'_{\alpha'}=\overline{\omega}$. We choose $\mu''_{\alpha'}\in B_{N_0}(\mu;\omega)$. Similarly as above, $(\mu''_{\alpha'})_{\alpha'\in A'}$ as $\omega'_{\alpha'}\downarrow\overline{\omega}$ is contained in $\overline{B}_{N_0}(\mu;\omega)$, that is, $\overline{B}_{N_0}(\mu;\omega)\neq\phi$. The injectivity of N_0 shows that $\underline{B}_{N_0}(\mu;\omega)$ and $\overline{B}_{N_0}(\mu;\omega)$ form only one element.

Consequently, let $\mu'_{\alpha} \in \underline{B}_{N_0}(\mu; \omega_{\alpha})$, $\mu' \in \underline{B}_{N_0}(\mu; \omega)$, $\mu''_{\alpha'} \in \overline{B}_{N_0}(\mu; \omega'_{\alpha})$ and $\mu'' \in \overline{B}_{N_0}(\mu; \omega)$; then $\lim_{\alpha \in A} \mu'_{\alpha} = \mu'$ and $\lim_{\alpha' \in A'} \mu''_{\alpha'} = \mu''$.

- (2) Using the complete maximum principle of N_0 and noting the above proof, we see easily (2).
- (3) Let $\nu \in M_K^+(X)$ with $\nu \leq \mu$. We choose a relatively compact open set ω in X such that $\omega \supset \operatorname{supp}(\nu)$ and $N_0 * \nu \leq \eta$ in ω . By virtue of the balayability of N_0 , we can choose $\lambda \in M_K^+(X)$ such that $\operatorname{supp}(\lambda) \subset \overline{\omega}$, $N_0 * \lambda = \eta$ in ω and $N_0 * \lambda \leq \eta$ on X. This shows that $N_0 * \nu \leq N_0 * \lambda \leq \eta$ on X, and ν being arbitrary, we have $N_0 * \mu \leq \eta$ on X.
- (4) In the same manner as in the proof of $\underline{B}_{N_0}(\mu;\omega) \neq \phi$ in (1), we see that $\underline{E}_{N_0}(\omega) \neq \phi$ implies $\underline{E}_{N_0}(\omega) \neq \phi$. For any $\gamma \in \underline{E}_{N_0}(\omega)$, $\underline{E}_{N_0}(\omega) = \underline{B}_{N_0}(\gamma;\omega)$. If $\underline{E}_{N_0}(\omega) \neq \phi$, the injectivity of N_0 shows that $\underline{E}_{N_0}(\omega)$ forms only one element.
- (5) By using the positive mass principle of N_0 and the similar method to (3), we obtain (5).
- (6) Evidently $(\mu_{\alpha})_{\alpha\in\Lambda}$ is vaguely bounded. We shall show only the latter half part. Let $(K_n)_{n=1}^{\infty}$ be an exhaustion of X. We choose $\varepsilon'_n\in B_{N_0}(\varepsilon, CK_n)$. The dominated convergence property of N_0 gives $\lim_{n\to\infty}N_0*\varepsilon'_n=0$. Let

 $f \in C_K^+(X)$. Since $(x_{\alpha})_{\alpha \in A}$ is relatively compact, $\int f dN_0 * \varepsilon'_n * \varepsilon_{x_{\alpha}} * \nu * \lambda_2$ converges uniformly to 0 on $(x_{\alpha})_{\alpha \in A}$ as $n \to \infty$. Hence

$$\lim_{lpha\in A}\int\!fdN_{\scriptscriptstyle 0}st\mu_{\scriptscriptstylelpha}st\lambda_{\scriptscriptstyle 1}\leqq\int\!fdN_{\scriptscriptstyle 0}st\must\lambda_{\scriptscriptstyle 1}$$
 .

Using the lower semi-continuity of convolutions of non-negative Radon measures, we have $\varliminf_{\alpha\in A}\int fdN_0*\mu_\alpha\geq \int fdN_0*\mu$. Thus $\mu\in D^+(N_0)$ and $\lim_{\alpha\in A}N_0*\mu_\alpha=N_0*\mu$.

From Lemma 15 and its proof, we see the following

LEMMA 16. Let N_0 be a shift-bounded Hunt convolution kernel on X, $(\Omega_j)_{j=1}^m$ and $(\omega_k)_{k=1}^n$ two finite families of open sets in X and let $(\mu_j)_{j=1}^m \subset D^+(N_0)$. Assume that $E_{N_0}(\omega_k) \neq \phi$ $(k=1,2,\cdots,n)$. Let $\mu_j' \in \underline{B}_{N_0}(\mu_j;\Omega_j)$, $\Gamma_k \in \underline{E}_{N_0}(\omega_k)$ $(j=1,2,\cdots,m;k=1,2,\cdots,n)$ and let $\eta \in P(N_0)$. If $\sum_{j=1}^m \sum_{k=1}^n N_0 * (\mu_j' + \Gamma_k) \leq \eta$ in $(\bigcup_{j=1}^m \Omega_j) \cup (\bigcup_{k=1}^n \omega_k)$, then the same inequality holds on X.

LEMMA 17. Let N_0 be the same as above, $\mu \in D^+(N_0)$ and let ω be an open set in X. For $x \in X$, we denote by μ'_x and μ''_x the unique element in $\underline{B}_{N_0}(\mu * \varepsilon_x; \omega)$ and that in $\overline{B}_{N_0}(\mu * \varepsilon_x; \omega)$, respectively. Then we have:

- (1) The mapping $x \to \mu'_x$ and $x \to \mu''_x$ are universally measurable, that is, for any $f \in C_K(X)$, the functions $\int f d\mu'_x$ and $\int f d\mu''_x$ of x are universally measurable on X.
- (2) For any $\nu \in M_K^+(X)$, $(\mu * \nu)' \in \underline{B}_{N_0}(\mu * \nu; \omega)$ and $(\mu * \nu)'' \in \overline{B}_{N_0}(\mu * \nu; \omega)$ are of form

(3.3)
$$(\mu * \nu)' = \int \mu_x' d\nu(x)^{8)} \quad and \quad (\mu * \nu)'' = \int \mu_x'' d\nu(x) .$$

Proof. Let $x \in X$ and $(x_{\alpha})_{\alpha \in A}$ be a net in X with $x_{\alpha} \to x$. Then Lemma 15 (6) shows that $(\mu'_{x_{\alpha}})_{\alpha \in A}$ and $(\mu''_{x_{\alpha}})_{\alpha \in A}$ are vaguely bounded and that every vaguely accumulation point of $(\mu'_{x_{\alpha}})_{\alpha \in A}$ and that of $(\mu''_{x_{\alpha}})_{\alpha \in A}$ as $x_{\alpha} \to x$ belong to $B_{N_0}(\mu * \varepsilon_x; \omega)$. This implies that the mapping $x \to N_0 * \mu'_x$ is lower semi-continuous (i.e., for any $f \in C_K^+(X)$, the function $\int f dN_0 * \mu'_x$ is lower semi-continuous) and the mapping $x \to N_0 * \mu''_x$ is upper semi-continuous. Let $(N_p)_{p>0}$ be the resolvent of N_0 . Then, for any p>0, $x \to N_0 * N_p * \mu'_x$

⁸⁾ This means that for any $f \in C_K(X)$, $\int f d(\mu * \nu)' = \int \int f d\mu_x' d\nu(x)$

is also lower semi-continuous and $x \to N_0 * N_p * \mu_x''$ is also upper semi-continuous, because N_p is also a Hunt convolution kernel on X, so that N_p possesses the dominated convergence property. Hence, for any $f \in C_K(X)$ and any p > 0, the resolvent equation shows that $\int f dN_p * \mu_x'$ and $\int f dN_p * \mu_x''$ are universally measurable functions of x on X. Since $\lim_{p\to\infty} pN_p = \varepsilon$ and there exists $g \in C_K^+(X)$ such that $|p\check{N}_p * f| \leq \check{N}_0 * g$ on X for all p > 0, the Lebesgue dominated convergence theorem gives $\int f d\mu_x'' = \lim_{p\to\infty} p \int f dN_p * \mu_x''$ and $\int f d\mu_x'' = \lim_{p\to\infty} p \int f dN_p * \mu_x''$, which show that $x \to \mu_x'$ and $x \to \mu_x''$ are universally measurable.

We shall show the assertion (2). For any $f \in C_K^+(X)$, $\iint f d\mu_x' d\nu(X)$ and $\iint f d\mu_x'' d\nu(x)$ are defined and

$$\iint \check{N}_{\scriptscriptstyle 0} * f d\mu_x' d
u(x) \leqq \iint \check{N}_{\scriptscriptstyle 0} * f d\mu_x'' d
u(x) \leqq \int f dN_{\scriptscriptstyle 0} * (\mu *
u) \; ,$$

so that $\int \mu_x' d\nu(x)$ and $\int \mu_x'' d\nu(x)$ belong to $D^+(N_0)$. We see easily that $\int \mu_x' d\nu(x)$, $\int \mu_x'' d\nu(x) \in B_{N_0}(\mu * \nu; \omega)$. Let $(\omega_a)_{\alpha \in A}$ be a net of open sets in X satisfying $\overline{\omega}_a \subset \omega_\beta(\alpha \leq \beta)$ and $\bigcup_{\alpha \in A} \omega_\alpha = \omega$. We choose $\mu_{x,\alpha}' \in \underline{B}_{N_0}(\mu * \varepsilon_x; \omega_\alpha)$. Then Lemma 15 (1), (3) show that $N_0 * \mu_{x,\alpha}' \uparrow N_0 * \mu_x'$ as $\omega_\alpha \uparrow \omega$, that is,

$$N_{\scriptscriptstyle 0}*\left(\int \mu'_{\scriptscriptstyle x,\,lpha} d
u(x)
ight) \uparrow N_{\scriptscriptstyle 0}*\left(\int \mu'_{\scriptscriptstyle x} d
u(x)
ight) \qquad ext{as} \quad \omega_lpha \uparrow \omega \;.$$

This shows that $\int \mu'_x d\nu(x) \in \underline{B}_{N_0}(\mu * \nu; \omega)$, and Lemma 15 (1) gives the first equality in (3.3). Let $(\omega'_{\alpha'})_{\alpha' \in A'}$ be a net of open sets in X satisfying $\omega'_{\alpha'} \supset \overline{\omega}'_{\beta'}$ $(\alpha' \nleq \beta')$ and $\bigcap_{\alpha' \in A'} \omega'_{\alpha'} = \overline{\omega}$. We choose $\mu''_{x,\alpha'} \in \overline{B}_{N_0}(\mu * \varepsilon_x; \omega'_{\alpha'})$. Similarly as above, we have

$$N_{\scriptscriptstyle 0} * \left(\int \mu_{x,lpha'}^{\prime\prime} d
u(x)
ight) \downarrow N_{\scriptscriptstyle 0} * \left(\int \mu_x^{\prime\prime} d
u(x)
ight) \qquad ext{as} \quad \omega_{lpha'}^\prime \downarrow \overline{\omega} \; ,$$

and hence the second equality in (3.3) holds. Thus Lemma 17 is shown. The following proposition will play an important role to prove our main theorem.

PROPOSITION 18. Let N_0 be a shift-bounded Hunt convolution kernel on X and assume that the closed subgroup generated by supp (N_0) is equal to X. Then, for any $0 \neq \mu \in M_K^+(X)$, there exist an open set $\omega \neq \phi$ in X

and an open neighborhood V of the origin such that:

- (1) For any $\mu' \in \mathcal{B}_{N_0}(\mu, \omega + V)^{9}$, $\int d\mu' < \int d\mu$.
- (2) N_0 -equilbrium measures of ω with finite total mass do not exist.

For the poof of this proposition, we use the following result:

LEMMA 19 (see [2], [4]). Let $\sigma \in M^+(X)$ with $\int d\sigma = 1$. If a shift-bounded real Radon measure μ on X satisfies $\mu = \mu * \sigma$, then, for any x in the closed subgroup Γ generated by supp (σ) , we have $\mu = \mu * \varepsilon_x$, that is, each x in Γ is a period of μ .

Proof of Proposition 18. It suffices to show the following assertion: Let $0 \neq f \in C_K^+(X)$. Then there exist an open set $\omega \neq \phi$ in X and open neighborhood V of the origin such that:

$$(1') \quad \text{For } (f\xi)'' \in \overline{\mathrm{B}}_{\scriptscriptstyle N_0}(f\xi;\omega + V), \ \int d(f\xi)'' < \int \! f d\xi.$$

$$(2') \quad \mathrm{E}_{N_0}(\omega) = \phi, \text{ or } \mathrm{E}_{N_0}(\omega) \neq \phi \text{ and for } \varUpsilon \in \underline{\mathrm{E}}_{N_0}(\omega), \ \int d \varUpsilon = \infty.$$

In fact, admit this assertion and let $0 \neq \mu \in M_K^+(X)$. Choose $\varphi \in C_K^+(X)$ with $\int \varphi d\xi = 1$. Then there exist an open set $\omega \neq \phi$ in X and an open neighborhood V of the origin such that, for $f = \mu * \varphi$, (1') and (2') are verified. Since $\int d\mu = \int \mu * \varphi d\xi$, Lemma 17 (2) shows that there exists $x \in \text{supp}(\varphi)$ such that for $(\mu * \varepsilon_x)'' \in \overline{B}_{N_0}(\mu * \varepsilon_x; \omega + V)$, $\int d(\mu * \varepsilon_x)'' < \int d\mu * \varepsilon_x = \int d\mu$. We remark here that $(\mu * \varphi)\xi = \int \mu * \varepsilon_x \varphi(x) d\xi(x)$ and for any $y \in X$, $\int d(\mu * \varepsilon_y)'' \leq \int d\mu * \varepsilon_y$. Put $\omega_x = \omega - \{x\}$ and $\mu_x'' \in \overline{B}_{N_0}(\mu; \omega_x + V)$. Then we see easily that $(\mu * \varepsilon_x)'' = \mu_x'' * \varepsilon_x$, which implies $\int d\mu_x'' < \int d\mu$. We remark that $E_{N_0}(\omega) = \phi$ and $E_{N_0}(\omega_x) = \phi$ are equivalent and if $E_{N_0}(\omega) \neq \phi$, then, for $\gamma \in \underline{E}_{N_0}(\omega)$ and $\gamma_x \in \underline{E}_{N_0}(\omega_x)$, $\gamma = \gamma_x * \varepsilon_x$. By the positive mass principle and Lemma 15 (5), we see that ω_x and V are our required open set and open neighborhood of the origin.

Dividing into the following two cases, we shall show our required assertion.

(a) Assume that there exists $0 \neq g \in C_X^+(X)$ with $\overline{\lim}_{x \to \delta} N_0 * g(x) > 0$. Then $\int dN_0 = \infty$. Noting that $(N_0 * \varepsilon_x)_{x \in X}$ is vaguely bounded, we can

⁹⁾ For subsets A, B of X, $A + B = \{x + y; x \in A, y \in B\}, -B = \{-x; x \in B\}.$

choose a net $(x_a)_{a\in A}$ in X with $x_a\to \delta$ such that $(N_0*\varepsilon_{x_a})_{a\in A}$ converges vaguely and $\lim_{\alpha\in A}N_0*\varepsilon_{x_\alpha}*g(0)=\overline{\lim}_{x\to \delta}N_0*g(x)$. Put $\eta=\lim_{\alpha\in A}N_0*\varepsilon_{x_\alpha}$; then $\eta\neq 0$. Let $(N_p)_{p>0}$ be the resolvent of N_0 . By the resolvent equation and $p\int dN_p=1$ (p>0), we have

$$\eta = pN_p * \eta (p > 0)$$
.

Since supp $(N_p) = \operatorname{supp}(N_0)$ (p>0) and η is shift-bounded, Lemma 19 gives $\eta=c\xi$ with some constant c>0. We may assume that $\int\!f d\xi=1.$ Let Ω be a relatively compact open set with $\Omega \supset \text{supp}(f)$. Since $(N_0 * \varepsilon_x * f)_{x \in X}$ converges uniformly to $N_0 * f$ on $\overline{\Omega}$ as $x \to 0$, there exists an open neighborhood V of the origin such that V = -V, supp $(f) + \overline{V} \subset \Omega$ and for any $x \in \overline{V}$, $|N_0 * \varepsilon_x * f - N_0 * f| < \frac{1}{3}c$ on $\overline{\Omega}$. By virtue of the complete maximum principle of N_0 , we have $|N_0 * \varepsilon_x * f - N_0 * f| < \frac{1}{3}c$ on X for all $x \in \overline{V}$. Put $\omega = \{x \in X; N_0 * f(x) < \frac{1}{3}c\} \text{ and } \omega = \{x \in X; N_0 * f(x) < \frac{2}{3}c\}. \text{ Then } \overline{\omega} + \overline{V} \subset \omega'.$ We shall show that ω and V are our required open set and open neighborhood of the origin. First we see that $E_{N_0}(\omega) = \phi$, because, if there exists $\gamma \in \mathbb{E}_{N_0}(\omega)$, then $N_0 * (\frac{1}{3}c\gamma + f\xi) \ge \frac{1}{3}c\xi$ on X, which contradicts $p \int dN_p = 1$ for all p > 0 and $pN_p * N_0 \downarrow 0$ as $p \downarrow 0$. It remains to prove that (1') is verified. By Lemma 15 (2), it suffices to show that for any $(f\xi)'\in B_{N_0}(f\xi;\,\omega'),\; \int d(f\xi)'<\int fd\xi=1. \;\;\; ext{For any integer}\;\, m\geqq 1,\; N_0*(f\xi)'$ $\leq (\frac{2}{3} + 1/m)\eta$ in a certain open set $\supset \text{supp}((f\xi)')$, so that Lemma 15 (3) gives $N_0*(f\xi)' \leq (\frac{2}{3}+1/m)\eta$ on X. Letting $m\uparrow\infty$ and using Lemma 15 (5), we obtain $\int d(f\xi)' \leq \frac{2}{3}$. Thus ω and V are our required open set and open neighborhood of the origin.

(b) Assume that N_0 vanishes at the infinity (i.e., for any $g \in C_K(X)$, $\lim_{x \to \delta} N_0 * g(x) = 0$). Let U_0 be a relatively compact open set $\neq \phi$ in X with $\overline{U}_0 \subset \{x \in X; f(x) > 0\}$. Since $\mathrm{supp}(N_0) \ni 0$, we may assume that $N_0 * f(x) > 1$ on \overline{U}_0 . We choose an open set $\omega_0 \neq \phi$ and an open neighborhood V of the origin such that $\overline{\omega}_0 + \overline{V} \subset U_0$. Since $\lim_{x \to \delta} N_0 * \varepsilon_x = 0$, we can choose inductively a sequence $(x_n)_{n=0}^{\infty}$ in X with $x_0 = 0$ and $x_n \to \delta$ $(n \to \infty)$ such that, for any $n \ge 0$ and $m \ge 0$ with $n \ne m$,

$$N_{\scriptscriptstyle 0} * arepsilon_{x_n} * f \leq rac{1}{2^{{\scriptscriptstyle |n-m|}+1}} \qquad ext{on } \{x_{\scriptscriptstyle m}\} + \, U_{\scriptscriptstyle 0}$$
 .

Put $U_n=\{x_n\}+U_0\ (n=1,2,\,\cdots) \ {
m and}\ U=\bigcup_{n=1}^\infty U_n.$ Evidently $\overline{U}_n\cap \overline{U}_n=\phi$

if $n \neq m$. Put $\omega_n = \{x_n\} + \omega_0$ $(n = 1, 2, \cdots)$ and $\omega = \bigcup_{n=1}^{\infty} \omega_n$. Then $\omega + V \subset U$. For any $(f\xi)' \in B_{N_0}(f\xi; U)$, we set $(f\xi)'_n = (f\xi)'|_{\overline{U}_n}$ $(n \geq 1)$. Then, by virtue of the complete maximum priciple of N_0 ,

$$N_0*(f\xi)_n' \leq rac{1}{2^{n+1}}(N_0*arepsilon_{x_n}*f) \qquad ext{on } X$$
 ,

and hence $\int d(f\xi)'_n \leq (1/2^{n+1}) \int f d\xi$. Consequently, $\int d(f\xi)' \leq \frac{1}{2} \int f d\xi$. From Lemma 15 (2), it follows that for $(f\xi)'' \in \overline{B}_{N_0}(f\xi; \omega + V)$, $\int d(f\xi)'' \leq \frac{1}{2} \int f d\xi$. Let $I'_n \in \underline{E}_{N_0}(\omega_n)$. Then $N_0 * I'_n \leq (N_0 * \varepsilon_{x_n} * f)\xi$ on I. For any $I \geq 1$ and any I with $I \leq I$ is $I \leq I$, we have, in I is I in I

$$N_0*(\sum\limits_{j=1}^n\varUpsilon_j')\leqq \xi+\sum\limits_{j=1}^{k-1}(N_0*arepsilon_{x_f}*f)\xi+\sum\limits_{j=k+1}^n(N_0*arepsilon_{x_f}*f)\xi\leqq 2\xi$$
 ,

that is, $N_0*(\sum_{j=1}^n\varUpsilon_j')\leq 2\xi$ in $\bigcup_{j=1}^n\omega_j$. This and Lemma 16 show that the same inequality holds on X. Thus $\sum_{n=1}^\infty\varUpsilon_n'$ converges vaguely. Put $\varUpsilon'=\sum_{n=1}^\infty\varUpsilon_n'$; then $N_0*\varUpsilon'\geq \xi$ in ω and $N_0*\varUpsilon'\leq 2\xi$ on X. Let $\varUpsilon_n\in\underline{\mathbf{E}}_{N_0}(\bigcup_{k=1}^n\omega_k)$. Then $N_0*\varUpsilon'\geq N_0*\varUpsilon_n$ and $\sum_{k=1}^nN_0*\varUpsilon_k'\leq 2N_0*\varUpsilon_n$ on X. By virtue of the dominated covergence property of N_0 , we have $\underline{\mathbf{E}}_{N_0}(\omega)\neq\phi$. Let $\varUpsilon\in\underline{\mathbf{E}}_{N_0}(\omega)$; then $\lim_{n\to\infty}\varUpsilon_n=\varUpsilon$. This implies that

$$N_0 * \gamma \leq N_0 * \gamma' \leq 2N_0 * \gamma$$
 on X .

Evidently $\int d \gamma'_n = \int d \gamma'_m$ for all $n \geq 1$, $m \geq 1$ and $\gamma' \neq 0$, so that $\int d \gamma' = \infty$. The positive mass principle of N_0 gives $\int d \gamma = \infty$. Thus ω and V are our required open set and open neighborhood of the origin.

It is a question if there exist an open set $\omega \neq \phi$ in X and an open neighborhhod V of the origin such that for any $0 \neq \mu \in M_K^+(X)$ with supp $(\mu) \subset C(\overline{\omega+V})$ and any $\mu' \in B_{N_0}(\mu;\omega+V)$, $\int d\mu' < \int d\mu$ and N_0 -equilibrium measures γ of ω with $\int d\gamma < \infty$ do not exist.

§ 4.

We return to the argument of real convolution kernels. We begin with the following

DEFINITION 20. For a real convolution kernel N on X and an open set $\omega \neq \phi$ in X, we denote by $SP_1(N; \omega)$ the vague closure of

$$\Big\{N*\mu\,+\,a\xi;\,\mu\in M_{{\scriptscriptstyle{K}}}^+(X),\;\int d\,\mu\,=\,1,\;{
m supp}\,(\mu)\subset\omega,\,a\in R\Big\}$$

and put

$$\eta_{N,\omega} = \sup \{ \eta \in \mathrm{SP}_{\mathsf{I}}(N;\omega); \ \eta \leq N \ \text{on} \ X \}$$

provided that the right hand exists in M(X). If $\eta_{N,\omega}$ exists, we call it the N-reduced measure of N on ω .

Assume that $N \in (\mathrm{SMP})$. Then $\eta_{N,\omega}$ always exists and satisfies $\eta_{N,\omega} = N$ in ω , $\eta_{N,\omega} \leq N$ on X (see Remarque 19 in [8]). Let $(K_n)_{n=1}^{\infty}$ be an exhaustion of X. Then $(\eta_{N,CK_n})_{n=1}^{\infty}$ is decreasing and $\lim_{n\to\infty}\eta_{N,CK_n}$ is independent of the choice of $(K_n)_{n=1}^{\infty}$ (see § 3 in [8]). Put $\eta_{N,\delta} = \lim_{n\to\infty}\eta_{N,CK_n}$. Then $\eta_{N,\delta} = -\infty$, i.e., for any $0 \neq f \in C_K^+(X)$, $\lim_{n\to\infty}\int f d\eta_{N,CK_n} = -\infty$, or $\eta_{N,\delta} \in M(X)$ (see Remarque 19 in [8]).

Proposition 9 gives immediately the following

Remark 21. Let $N \in (SMP_g)$, $(N, \xi) \in (TSMP)$, $(K_n)_{n=1}^{\infty}$ be an exhaustion of X and let $(\varepsilon'_{CK_n}, 0) \in SB_N((\varepsilon, 0); CK_n)$ (see Proposition 11). Then, for any $n \geq 2$,

$$\eta_{N,CK_n} \leq N * \varepsilon'_{CK_n} \leq \eta_{N,CK_{n-1}} \quad \text{on } X.$$

The following proposition is shown in [8] (see Théorème 20).

PROPOSITION 22. Let $N \in (SMP)$, $(N, \xi) \in (TSMP)$ and let $(\omega_n)_{n=1}^{\infty}$ be an open exhaustion of X. Then we have:

- (1) For any $0 and any <math>n \ge 1$, there exists a uniquely determined $(\varepsilon'_{p,n}, a_{p,n}) \in M_K^+(X) \times R$ such that $\int d\xi'_{p,n} = 1$, $\operatorname{supp}(\varepsilon'_{p,n}) \subset \overline{\omega}_n$, $(N+(1/p)\varepsilon)*\varepsilon'_{p,n} + a_{p,n}\xi = N$ in ω_n , $(N+(1/p)\varepsilon)*\varepsilon'_{p,n} + a_{p,n}\xi \le N$ on X and for any $\nu \in M_K^+(X)$ with $\int d\nu = 1$ and any $a \in R$, $(N+(1/p)\varepsilon)*\nu + a\xi \ge (N+(1/p)\varepsilon)*\varepsilon'_{p,n} + a_{p,n}\xi$ on X whenever $(N+(1/p)\varepsilon)*\nu + a\xi \ge N$ in ω_n .
- (2) Put $V_{p,\omega_n}\varepsilon=(1/p)\varepsilon_{p,n}'$. Then $V_{p,\omega_n}\varepsilon\geqq V_{p,\omega_{n+1}}\varepsilon$ in ω_n and $\lim_{n\to\infty}V_{p,\omega_n}\varepsilon$ exists.
 - (3) *Put*

$$(4.1) N_p = \lim_{n \to \infty} V_{p,\omega_n} \varepsilon(\in M^+(X)) ,$$

then $(N_p)_{p>0}$ is a sub-markovian resolvent and independent of the choice of $(\omega_n)_{n=1}^{\infty}$.

By using Proposition 22, we have the following

Lemma 23. Let $N \in (SBP_g)$, $(N, \xi) \in (TSMP)$ and assume that N is non-periodic. Then there exists a uniquely determined resolvent $(N_p)_{p>0}$ such that

$$(4.2) N = pN * N_n + N_n.$$

Proof. First we remark that $N \in (SBP)$ and $N \in (SMP)$ are equivalent. Let $V_{p,\omega_n}\varepsilon$, N_p and $a_{p,n}$ be the same as in Proposition 22. Then, for any p>0,

(4.3)
$$\lim_{n\to\infty} ((pN+\varepsilon)*V_{p,\omega_n}\varepsilon + a_{p,n}\xi) = N.$$

Let $(K_m)_{m=1}^{\infty}$ be an exhaustion of X with $K_1\ni 0$. We shall show that for any $m\ge 2$, $N\ne \eta_{N,CK_m}$. Assume contrary that for an $m\ge 2$, $N=\eta_{N,CK_m}$. Then Remark 21 gives $N=N*\varepsilon'_{CK_m}$, where $(\varepsilon'_{CK_m},0)\in \mathrm{SB}_N((\varepsilon,0);CK_m)$. Let Γ be the closed subgroup generated by supp (ξ'_{CK_m}) ; then $\Gamma\ne\{0\}$. For any $x\in X$, $N*(\varepsilon-\varepsilon_x)$ is shift-bounded (see Remarque 4 in [8]), and Lemma 19 shows that for any $y\in \Gamma$, $N*(\varepsilon-\varepsilon_x)*\varepsilon_y=N*(\varepsilon-\varepsilon_x)$. This implies that for any $x\in \Gamma$ and any integer $n\ge 1$, $N-N*\varepsilon_{nx}=n(N-N*\varepsilon_x)$. Since for any $f\in C_K^+(X)$, N*f is upper bounded (see Remark 7 (3)), we have $\int fd(N-N*\varepsilon_x)\ge 0$, and Γ being a subgroup of K, we see that K=K for all K=K. This contradicts the non-periodicity of K. Thus K=K for all K=K. This contradicts the non-periodicity of K. Thus K=K for all K=K and K=K being a subgroup of K as K=K for all K=K. This contradicts the non-periodicity of K. Thus K=K for all K=K and K=K being a subgroup of K as K=K for all K=K. This contradicts the non-periodicity of K. Thus K=K for all K=K and K=K being a subgroup of K as K=K for all K=K being a subgroup of K as K=K for all K=K being a subgroup of K being a subgroup of K being the subgroup of K being

$$(4.4) N * \varepsilon'_{CK_m} = p(N - N * \varepsilon'_{CK_m}) * N_p + N_p * (\varepsilon - \varepsilon'_{CK_m}).$$

Assume that $(N_p)_{p>0}$ is not markovian. Then, for any p>0, $p\int dN_p<1$. From (4.4), it follows that for any p>0, any $n\geq 1$ and any $m\geq 1$,

$$N-N*arepsilon_{CK_m}'=(N-N*arepsilon_{CK_m}')*(pN_p)^n+rac{1}{p}\sum\limits_{k=1}^n(pN_p)^k*(arepsilon-arepsilon_{CK_m}')$$
 ,

where $(pN_p)^1=pN_p$ and $(pN_p)^n=(pN_p)^{n-1}*(pN_p)$ $(n\geq 2)$. Letting $n\uparrow\infty$, we have

$$N-N*arepsilon_{CK_m}'=rac{1}{p}\sum_{k=1}^{\infty}(pN_p)^k*(arepsilon-arepsilon_{CK_m}')$$
 .

Since $\int d(\sum_{k=1}^{\infty} (pN_p)^k) < \infty$ and $\int d\varepsilon'_{CK_m} = 1$, we have $\int d(N-N*\varepsilon'_{CK_m}) = 0$, so that $N = N*\varepsilon'_{CK_m}$. This contradicts $N \neq \eta_{N,CK_m}$ and $\eta_{N,CK_{m-1}} \geq N*\varepsilon'_{CK_m}$ $(m \geq 2)$. Thus $(N_p)_{p>0}$ is markovian. In the same manner as in [8] (see Théorème 20 and Remarque 24), we see the rest of the proof.

DEFINITION 24. Let $N \in (SMP)$. If a sub-markovian resolvent $(N_p)_{p>0}$ satisfying (4.2) exists, then $(N_p)_{p>0}$ is called the resolvent associated with N.

The resolvent associated with N is uniquely determined if it exists (see Remarque 24 in [8]).

LEMMA 25. Let $N \in (SMP)$ and $(N, \xi) \in (TSMP)$. Assume that $\eta_{N,\delta} \neq -\infty$, N is non-periodic and that the resolvent $(N_p)_{p>0}$ associated with N exists and is markovian. Put $N' = \eta_{N,\delta}$ and $N_0 = N - N'$. Then N_0 is a shift-bounded Hunt convolution kernel on X, $N_0 = \lim_{p \to 0} N_p$ and every point in the closed subgroup generated by $\sup_{n \to \infty} (N_n)$ is a period on N'.

Proof. Let $(K_n)_{n=1}^{\infty}$ and $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of X and an open exhaustion of X, respectively. We choose $(\varepsilon'_{n,m}, a_{n,m})$ $\underline{\operatorname{SB}}_N((\varepsilon,0); CK_n \cap \omega_m)$ whenever $CK_n \cap \omega_m \neq \phi$. Then $N * \varepsilon'_{n,m} + a'_{n,m} \xi \uparrow \eta_{N,CK_n}$ as $m \uparrow \infty$ (see Remarque 19 in [8]). Here we may assume that $(\varepsilon'_{n,m})_{m=1}^{\infty}$ converges vaguely as $m \to \infty$. Put $\varepsilon'_n = \lim_{m \to \infty} \varepsilon'_{n,m}$; then $\int d\varepsilon'_n \leq 1$. Since $\int dN_p = 1/p \ (p > 0)$, we have, for any p > 0 and any $n \geq 1$,

$$(4.5) p(N - \eta_{N,CK_n}) * N_p = \lim_{m \to \infty} p(N - N * \varepsilon'_{n,m} - a_{n,m}\xi) * N_p$$

$$= \lim_{m \to \infty} (N - N * \varepsilon'_{n,m} - N_p + N_p * \varepsilon'_{n,m} - a_{n,m}\xi)$$

$$= N - \eta_{N,CK_n} - N_p + N_p * \varepsilon'_n.$$

Letting $n \uparrow \infty$, we have $pN_0 * N_p = N_0 - N_p$. Letting $p \downarrow 0$ in (4.5), we have $\lim_{p \downarrow 0} N_p \geq N - \eta_{N,CK_n}$. Thus we see $\lim_{p \to 0} N_p = N_0$, that is, $(N_p)_{p>0}$ is the resolvent of N_0 . Since N is non-periodic, (4.2) shows that N_p is also non-periodic (p > 0), which implies that N_0 is also non-periodic. Remark 14 (1), (2) show that N_0 is a shift-bounded Hunt convolution kernel. On the other hand, we have $pN' * N_p = N'$ for all p > 0. Let Γ be the closed subgroup generated by supp (N_0) . For any $x \in X$, $N - N * \varepsilon_x$ is shift-bounded (see Remarque 4 in [8]), and $N' \in \mathrm{SP}_1(N)$ gives the shift-boundedness of $N' - N' * \varepsilon_x$. Lemma 19 and supp $(N_0) = \mathrm{supp}(N_p)$ (p > 0) show that for any $y \in \Gamma$, $(N' - N' * \varepsilon_x) * \varepsilon_y = N' - N' * \varepsilon_x$. This implies

that for any $x \in \Gamma$ and any integer $n \geq 1$, $N' - N' * \varepsilon_{nx} = n(N' - N' * \varepsilon_x)$. For any $f \in C_K^+(X)$, we have $\check{N}' * f(x) \leq \check{N} * f(x) \leq \sup_{y \in \operatorname{supp}(f)} \check{N} * f(y)$ on X. Similarly as in Lemma 23, we have $N' = N' * \varepsilon_x$ for all $x \in \Gamma$. Thus every point in Γ is a period of N'.

We shall give the proof of the "only if" part in Theorem 2. By Remark 7, it suffices to show the following

Proposition 26. If a real convolution kernel N on X is semi-balayable, non-periodic and satisfies $(N, \xi) \in (TSMP)$, then $\eta_{N,\delta} = -\infty$.

Proof. Assume contrary that $\eta_{N,\delta} \neq -\infty$. Then $\eta_{N,\delta} \in M(X)$. Put $N' = \eta_{N,\delta}$ and $N_0 = N - N'$. We denote by Γ the closed subgroup generated by $\sup(N_0)$. First we shall show that $N' \in (\operatorname{SMP})$. Let $\mu, \nu \in M_K^+(X)$ with $\int d\mu = \int d\nu \neq 0$ and $a \in R$. Assume that $N' * \mu \leq N' * \nu + a\xi$ in a certain open set $\omega' \supset \sup(\mu)$. By Lemma 23 and Lemma 25, we have $N' * \mu \leq N' * \nu + a\xi$ in $\omega' + \Gamma$. We choose a relatively compact open set ω in X such that $\omega' \supset \overline{\omega} \supset \omega \supset \sup(\mu)$. Let $(\mu', a') \in \operatorname{SB}_N(\mu, 0)$; $C(\overline{\omega} + \Gamma)$. Then $N * \mu' + a'\xi \leq N' * \mu$ in $C(\sup(\mu) + \Gamma)$. Put $c = \int d\mu$. Then $N * \mu \in \operatorname{SP}_c(N)$. Hence Proposition 9 gives $N * \mu' + a'\xi \leq N' * \mu$ on X. Evidently $N * \mu' + a'\xi = N' * \mu$ in $C(\overline{\omega} + \Gamma)$. For an exhaustion $(K_n)_{n=1}^\infty$ of X, we choose $\varepsilon'_{CK_n} \in \operatorname{B}_{N_0}(\varepsilon; CK_n)$. Then $\sup(\varepsilon'_{CK_n}) \subset \Gamma$ and $\int d\varepsilon'_{CK_n} = 1$ (see Remark 14 (2) and Lemmas 23, 25), so that

$$N*\mu'*\varepsilon'_{CK_n}+a'\xi \leq N'*\mu*\varepsilon'_{CK_n}=N'*\mu$$
 on X

and

$$N*\mu'*\varepsilon'_{CK_n} + a'\xi = N'*\mu$$
 in $C(\bar{\omega} + \Gamma)$.

Letting $n \uparrow \infty$, we obtain that

$$N'*\mu'+a'\xi\leqq N'*\mu$$
 on X and $N'*\mu'+a'\xi=N'*\mu$ in $C(ar{\omega}+arGamma)$,

because $\lim_{n\to\infty} N_0 * \varepsilon'_{CK_n} = 0$. Hence $N' * \mu' = N * \mu'$ in $C(\overline{\omega} + \Gamma)$, which shows that $\operatorname{supp}(N_0 * \mu') \subset \overline{\omega} + \Gamma$. This implies $\operatorname{supp}(\mu') \subset \overline{\omega} + \Gamma$. On the other hand, $\operatorname{supp}(\mu') \subset \overline{C(\overline{\omega} + \Gamma)}$, that is, $\operatorname{supp}(\mu')$ is contained in the boundary $\partial(\overline{\omega} + \Gamma)$ of $\overline{\omega} + \Gamma$. Thus $N * \mu' + a'\xi \leq N' * \mu \leq N' * \nu + a\xi$ in $\omega' + \Gamma \supset \operatorname{supp}(\mu')$, and Proposition 9 gives $N * \mu' + a'\xi \leq N' * \nu + a\xi$ on X. This implies $N' * \mu \leq N' * \nu + a\xi$ in $C(\overline{\omega} + \Gamma)$, that is, $N' * \mu \leq N' * \nu + a\xi$ on X, which shows that $X' \in (SMP)$. From $(N, \xi) \in (TSMP)$ and $X' \in (SMP)$, we see also $(N', \xi) \in (TSMP)$.

Evidently N_0 may be considered as a shift-bounded Hunt convolution kernel on Γ . We denote by ξ_{Γ} a fixed Haar measure on Γ . Proposition 18 shows that, for any positive Radon measure $\mu \neq 0$ on Γ with compact support (i.e., $\mu \in M_K^+(\Gamma)$), there exist an open set $\omega_{\Gamma} \neq \phi$ in Γ and a relatively compact open neighborhood V_{Γ} of the origin in Γ such that:

(A) For any
$$\mu'' \in \mathrm{B}_{\scriptscriptstyle N_0,\varGamma}(\mu;\omega_{\scriptscriptstyle \Gamma}+\c V_{\scriptscriptstyle \Gamma}), \ \int d\mu'' < \int d\mu.$$

$$(\mathrm{B}) \quad \mathrm{E}_{N_0,\varGamma}(\omega_\varGamma) = \phi, \text{ or } \mathrm{E}_{N_0,\varGamma}(\omega_\varGamma) \neq \phi \text{ and for any } \varUpsilon \in \mathrm{E}_{N_0,\varGamma}(\omega_\varGamma), \int d \varUpsilon = \infty,$$

where N_0 being considered as a shift-bounded Hunt convolution kernel on Γ , $B_{N_0,\Gamma}(\mu;\omega_{\Gamma}+V_{\Gamma})$ denotes the totality of N_0 -balayaged measures of μ on $\omega_{\Gamma} + V_{\Gamma}$ and $E_{N_0,\Gamma}(\omega_{\Gamma})$ denotes the totality of N_0 -equilibrium measures of ω_r^{10} . Let V be a relatively compact open neighborhood of the origin in X with $\overline{V} \cap \Gamma = \overline{V}_{\Gamma}$. Put $\omega_{V} = \omega_{\Gamma} + V$; then ω_{V} is open in X. We choose another open neighborhood U of the origin in X such that U = -Uand $U + U \subset V$. We may consider $M_{\kappa}(\Gamma)$ as a subset of $M_{\kappa}(X)$. Choose $(\mu', \alpha') \in \mathrm{SB}_{\scriptscriptstyle N}((\mu, 0); \omega_{\scriptscriptstyle V}).$ Then $N * \mu \geq N * \mu' + \alpha' \xi$ on X implies $N' * \mu \geq N * \mu' + \alpha' \xi$ $N'*\mu'+a'\xi$ on X. Assume that $N'*\mu-N'*\mu'-a'\xi=0$. Then $N_0*\mu'$ $=N_0*\mu$ in $\omega_{\scriptscriptstyle V}$ and $N_0*\mu'\leqq N_0*\mu$ on X. Hence $\mathrm{supp}\,(\mu')=\overline{\omega}_{\scriptscriptstyle V}\cap \varGamma=0$ $(\overline{\omega}_{\Gamma} + \overline{V}) \cap \Gamma = \overline{\omega}_{\Gamma} + \overline{V}_{\Gamma}$. Thus we may consider μ' as in $M^{+}(\Gamma)$. shows that $\mu' \in \mathcal{B}_{N_0,\Gamma}(\mu;\omega_\Gamma + V_\Gamma)$ and $\int d\mu' = \int d\mu$, which contradicts (A). Therefore $N' * \mu - N' * \mu' - a'\xi \neq 0$. By $N' \in (SMP)$ and Proposition 9, we have supp $(N'*\mu - N'*\mu' - a'\xi) \cap \text{supp } (\mu) \neq \phi$, which implies $\operatorname{supp}\left(N'*\mu-N'*\mu'-a'\xi\right)\supset \Gamma.$ Let $f\in C_{\kappa}^+(X)$ with $\operatorname{supp}\left(f\right)\subset U$ and f(0) > 0. Then there eixsts $g \in C_K^+(X)$ such that $g \leq f$, g(0) > 0 and

$$(4.6) (N' * \mu - N' * \mu' - a'\xi) * f \ge \xi_{\Gamma} * g \text{on } X.$$

Since $N_0 * \mu' = N_0 * \mu + (N' * \mu - N' * \mu' - \alpha' \xi)$ in ω_{ν} , we obtain that

(4.7)
$$N_0 * \mu' * f = N_0 * \mu * f + (N' * \mu - N' * \mu' - \alpha' \xi) * f$$
 in $\omega_{\Gamma} + U$.

Let $(\omega_{\Gamma,\alpha})_{\alpha\in\Lambda}$ be a net of relatively compact open sets in Γ with $\overline{\omega}_{\Gamma,\alpha}\subset\omega_{\Gamma,\beta}$ $(\alpha \leq \beta)$ and $\bigcup_{\alpha\in\Lambda}\omega_{\Gamma,\alpha}=\omega_{\Gamma}, \gamma_{\alpha}\in E_{N_0,\Gamma}(\omega_{\Gamma,\alpha})$ $(\alpha\in\Lambda)$ and let $\mu''_{\omega_{\Gamma}}\in \underline{B}_{N_0,\Gamma}(\mu;\omega_{\Gamma})^{11}$. Then, by (4.6) and (4.7), we have

¹⁰⁾ In the case of $E_{N_0,\Gamma}(\omega_{\Gamma}) \neq \phi$, each $\gamma \in E_{N_0,\Gamma}(\omega_{\Gamma})$ satisfies $\mathrm{supp}\,(\gamma) \subset \overline{\omega}_{\Gamma}, \, N_0 * \gamma \leq \xi_{\Gamma}$ and $N_0 * \gamma = \xi_{\Gamma}$ on ω_{Γ} .

¹¹⁾ Similarly as in the definition of $\underline{B}_{N_0}(\mu;\omega)$, we define $\underline{B}_{N_0,\Gamma}(\mu;\omega_{\Gamma})$ from $B_{N_0,\Gamma}(\mu;\omega_{\Gamma})$.

Since supp $((\mu''_{\omega_{\Gamma}} + \gamma_a) * g) \subset \omega_{\Gamma} + U$, the complete maximum principle of N_0 gives $N_0 * (\mu''_{\omega_{\Gamma}} + \gamma_a) * g \leq N_0 * \mu' * f$ on X. Letting $\omega_{\Gamma,a} \uparrow \omega_{\Gamma}$, we see, from the dominated convergence property of N_0 , that there exists $\gamma \in E_{N_0,\Gamma}(\omega_{\Gamma})$ such that

$$N_{\scriptscriptstyle 0}*(\mu''_{\scriptscriptstyle \omega_{\scriptscriptstyle \Gamma}}+\varUpsilon)*g\leqq N_{\scriptscriptstyle 0}*\mu'*f$$
 on X

(see also Lemma 15 (6)). By the positive mass principle of N_0 (see also Lemma 15 (5)), we have $\left(\int d\mu_{\sigma_{\Gamma}}^{\prime\prime} + \int d\hat{\tau}\right) \cdot \int g d\xi \le \left(\int d\mu'\right) \cdot \int f d\xi$, which implies $\int d\hat{\tau} < \infty$. This contradicts (B). The assumption $\eta_{N,\delta} \ne -\infty$ leads to this contradiction. Consequently, $\eta_{N,\delta} = -\infty$. This completes the proof.

Let $(\alpha_t)_{t\geq 0}$ be a vaguely continuous convolution semi-group on X. It is said to be recurrent if there exists $0\neq f\in C_K^+(X)$ with $\lim_{t\to\infty}\int_0^t\int fd\alpha_sds=\infty$, and it is said to be semi-transient if $\lim_{t\to\infty}\alpha_t=0$ and $\mu\in M_K^0(X)$, $\left(\int_0^t\alpha_s*\mu ds\right)_{t>0}$ is vaguely bounded.

As we mentioned in Section 1, Theorem 2 and main theorems in [8] (Théorèmes 52 and 52') imply Theorem 1. By Theorem 2 and a result in [8] (see Théorème 25), it can be also stated as follows:

Theorem 27. If a real convolution kernel N on X is semi-balayable, non-periodic and satisfies $\inf_{x\in X} N*f(x) \leq 0$ for all $f\in C^0_K(X)$, then there exists a uniquely determined vaguely continuous, markovian, semi-transient and recurrent convolution semi-group $(\alpha_t)_{t\geq 0}$ on X such that for any t>0, $N\geq N*\alpha_t$ and

$$\lim_{t\to 0}\frac{N-N*\alpha_t}{t}=\varepsilon.$$

In Theorem 2, it is a question if the condition $\inf_{x \in X} N * f(x) \leq 0$ for all $f \in C_K^0(X)$ can be removed. By Theorem 2 and Proposition 28 in [8], we have the following

Remark 28. Assume that a real convolution kernel N on X satisfies the same conditions as in Theorem 27. Then, for any $\mu \in D^+(N)$ with

 $\int d\mu < \infty$ and any open set $\omega \neq \phi$ in X, $\underline{\operatorname{SB}}_{\scriptscriptstyle N}((\mu,0);\omega) \neq \phi$ and it forms only one element.

In fact, it is known that if $\mu \in M_K^+(X)$, $\underline{\operatorname{SB}}_N((\mu,0);\omega) \neq \phi$ (see Proposition 28 in [8]). Assume that $\operatorname{supp}(\mu)$ is non-compact. Then we write $\mu = \sum_{n=1}^\infty \mu_n$, where $\mu_n \in M_K^+(X)$. Let $(\mu'_n, a'_n) \in \underline{\operatorname{SB}}_N((\mu_n, 0); \omega)$. Then $a'_n \leq 0$. Let ω' be a relatively compact open set $\neq \phi$ in X with $\overline{\omega}' \subset \omega$ and $(\nu, b) \in \underline{\operatorname{SB}}_N((\mu, 0); \omega')$ (see Lemma 8). Then $\sum_{n=1}^\infty a'_n \geq b$, that is, $\sum_{n=1}^\infty a'_n > -\infty$. This implies that $\sum_{n=1}^\infty \mu'_n \in D^+(N)$. Hence we see easily that $(\sum_{n=1}^\infty \mu'_n, \sum_{n=1}^\infty a'_n) \in \underline{\operatorname{SB}}_N((\mu, 0); \omega)$, that is, $\underline{\operatorname{SB}}_N((\mu, 0); \omega) \neq \phi$. Let (μ', a') and (μ'', a'') be in $\underline{\operatorname{SB}}_N((\mu, 0); \omega)$. Then $N * \mu' + a' \xi = N * \mu'' + a'' \xi$. Let $(N_p)_{p>0}$ be the resolvent associated with N and $x \in X$. Since $N * \mu' * (\varepsilon - \varepsilon_x)$ and $N * \mu'' * (\varepsilon - \varepsilon_x)$ are shift-bounded, the above equality and (4.2) give

$$N_p * (\mu' * (\varepsilon - \varepsilon_x)) = N_p * (\mu'' * (\varepsilon - \varepsilon_x))$$
 for all $p > 0$,

which implies $\mu' - \mu' * \varepsilon_x = \mu'' - \mu'' * \varepsilon_x$. Letting $x \to \delta$, we have $\mu' = \mu''$, because $\int d\mu' = \int d\mu'' = \int d\mu < \infty$, so that a' = a''. Thus $\underline{\operatorname{SB}}_N((\mu, 0); \omega)$ forms only one element.

BIBLIOGRAPHY

- C. Berg and G. Forst, Potential theory on locally compact abelian groups, Springerverlag, 1975.
- [2] G. Choquet and J. Deny, Sur l'équation de convolution $\mu = \mu * \sigma$, C. R. Acad. Sc. Paris, 250 (1960), 799-801.
- [3] —, Aspects linéaires de la théorie du potentiel III. Noyaux de composition satisfaisant au principe du balayage sur tout ouvert, C. R. Acad. Sc. Paris, 250 (1960), 4260-4262.
- [4] J. Deny, Sur l'équation de convolution $\mu = \mu * \sigma$, Sém. de la théorie du potentiel, 4ème année, n°5, 1959/60.
- [5] —, Noyaux de convolution de Hunt et les noyaux associés à une famille fondamentale, Ann. Inst. Fourier (Grenoble), 12 (1962), 643-667.
- [6] M. Itô, Sur la famille sous-ordonnée au noyau de convolution de Hunt II, Nagoya Math. J., 53 (1974), 115-126.
- [7] —, Sur le principe relatif de domination pour les noyaux de convolution, Hiroshima Math. J., 5, 2 (1975), 239-350.
- [8] —, Une caractérisation de noyaux de convolution réels de type logarithmique, Nagoya Math. J., 97 (1985), 1-49.

Masayuki Itô
Department of Mathematics
Faculty of Sciences
Nagoya University
Chikusa-ku, Nagoya 464
Japan

Noriaki Suzuki
Department of Mathematics
Faculty of Sciences
Hiroshima University
Naka-ku, Hiroshima 730
Japan