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§1.

Let X be a locally compact, o-compact and non-compact abelian
group. Throughout this paper, we shall denote by ¢ a fixed Haar measure
on X and by ¢ the Alexandroff point of X.

A real convolution kernel (i.e., a real Radon measure) N on X is
said to be semi-balayable if IV satisfies the semi-balayage principle on all
open sets (see Definition 6). We know that every convolution kernel N
of logarithmic type is semi-balayable (see [8]). Here N is said to be of
logarithmic type if, with a vaguely continuous, markovian, semi-transient

and recurrent convolution semi-group («,),», of non-negative Radon meas-
ures on X,

Nxpy= -roat *ydt(: lim tas *yds“)
0 0

t—oo

for all real Radon measure ¢ on X with compact support and Jd/,: =0.

In this paper, we shall show that the semi-balayability is an essen-
tial property to characterize convolution kernels of logarithmic type.
More precisely, we shall establish the following theorems.

THEOREM 1. Let N be a real convolution kernel on X. If X=R X F
or X= 2 X F, we suppose an additional condition: N = o(|x|) at the in-
finity?. Then N is of logarithmic type if and only if N is semi-balayable,
non-periodic and satisfies inf,.y N x f(x) < 0 for any finite continuous func-

tion f on X with compact support andjfd&‘ = 0.

Received May 28, 1984.

L For a net (¢a)acs of real Radon measures and a real Radon measure p, we write
1= limaes pa if (ta)aca converges vaguely to x along 4.

D If X=RXF or X=2ZXF, N=o(«|) at the infinity means that for any fe
Cy(X), N=f(%,¥)) =o(x|) as |x| — oo, where (x,y)e R X F or ¢Z X F. 1In the case of
X=~RXF orX~ZXxF, the definition N =0 (x| at the infinity follows naturally from
the above definition.
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Here R, Z and F denote the additive group of real numbers, the addi-
tive group of integers and a certain compact abelian group, respectively.

By virtue of the main theorems in [8] (see Théorémes 52 and 52'),
Theorem 1 follows immediately from the following

THEOREM 2. Let N be a non-periodic real convolution kernel on X
satisfying inf,. » N « f(x) < 0 for any finite continuous function f on X with

compact support andf fdé = 0. Then N is semi-balayable if and only if

N satisfies the semi-complete maximum principle and 5, = — oo, i.e., for
any exhaustion (K,)7., of X® and any non-negative continuous function
f + 0 on X with compact support, lim, _., j fAny cx, = — oo, where 9y k. 18
the N-reduced measure of N on CK,.

The “if” part is already known (see Proposition 28 in [8]), so that
this paper will be devoted principally to the proof of the “only if” part.

It is interesting to compare Theorem 1 with the Choquet-Deny theorem
for Hunt convolution kernels® (see [3]).

Contrary to a conjecture in [8] (see Probléme 29), Theorem 1 shows
that, under some additional conditions, non-periodic and semi-balayable
real convolution kernels are of logarithmic type.

§2.

We denote by:

C(X) the usual Fréchet space of finite continuous functions on X;

Cx(X) the usual topological vector space of finite continuous functions
on X with compact support;

M(X) = Cx(X)* the topological vector space of real Radon measures
on X with the vague (weak*) topology;

M (X) = C(X)* the usual topological vector space of real Radon meas-
ures on X with compact support;

C*(X), CxX), M*(X) and M3;(X) their subsets of non-negative
elements.

Furthermore, we put

C4(X) = {7 e CX); [ fde = 0} and M3(X) = {ive My(X0; [ dp = 0} .

3 An exhaustion (Kn),_; of X means a sequence of compact sets satisfying K,.c

the interior of Kn+1 and U, _; K,=X.
9 A non-negative convolution kernel Ny on X is a Hunt convolution kernel if and
only if N, is balayable (see Remark 14 (3)) and not pseudo-periodic.
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DeFINITION 3. A real convolution kernel N on X is said to satisfy
the semi-complete maximum principle (denoted by N ¢ (SMP)) if for any

f, g € CX) with j fde = J‘ gdé and any a € R, we have the implication:

Nxf(x) Nxg(x)+a onsupp(f)=>Nxf(x) S Nxgx)+a onX,
where supp (f) denotes the support of f.

DErFINITION 4. A real convolution N on X is said to satisfy the tran-
sitive semi-complete maximum principle with respect to & (denoted by

(N, &) e (TSMP)) if for any f, g € Ci(X) with jde = Jgdé and any ae¢ R,
we have the implication:
Nx«f(x) S Nxg(x)+a on supp(f)=—>a=0.

We can describe the above principles by the term of non-negative
Radon measures.

Remark 5. Ne(SMP) (resp. (N, &) ¢ (TSMP)) if and only if for any
pve MiX) Withj‘d/,z = jdv and any a < R, we have the implication:

Nxp < Nxyv+ a8 in a certain open set D supp (p)
= Nsxp < Nxy+ a& on X (resp. =—> a=>=0),

where supp (1) denotes also the support of p.
For a real convolution kernel N on X, we put

D+(N) = {pe M*(X); Nxp is defined in M(X)}.
Let pe M*(X). Evidently pe D*(N) if and only if for any f e Ci(X),
J.|]\VT xfldy < co. Here N denotes the real convolution kernel on X de-

fined by jde = Ide for all fe Cx(X), where f(x) = f(— x).

DrrFiNITION 6. A real convolution kernel N on X is said to satisfy
the semi-balayage principle (resp. the semi-balayage principle on all open
sets) (denoted by Ne (SBP) (resp. denoted by Ne(SBP,)) if for any
reMiX), any ae R and any relatively compact open set (resp. any open
set) w+¢ in X, there exists an element (¢, a’) e M*(X)X R such that:

(B.1) j dy = j dp.
(B.2) supp (¢) C @.
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B.3) ¢ eD*(N)and Nxy' + a’s = Nxp + af in o.

(B4) Nxpy +ae< Nxp+ af on X.

In this case, we call (¢, a’) a semi-balayaged couple of (#,a) on w
with respect to IV and denote by SB,((g, a); w) the totality of such couples.
If Ne (SBP,), we say that N is semi-balayable.

We set

SB((1, @); 0) = {(¢/, @) € SBy((1, @); w); Nx p + @'
= inf {Nx ¢ + a”¢; (", @”) € SBu((1, @); 0)}} .

When @ is non-compact, it is not easy to examine directly whether
SBy((1, @); @) # ¢ or = 4.

Let N e (SBP) (resp. Ne(SBP,)). For pe D*(N) with de < o0,aeR
and a relatively compact open set (resp. an open set) o # ¢ in X, we can
define SB,((y, @); w) and SB,((4, a); ) analogously.

We shall use known results concerning potential theoretic principles

for a real convolution kernel NV on X (see Remarques 2, 7, Proposition 11
and Corollaire 14 in [8]).

Remark 7. (1) Ne (SMP) and Ne (SBP) are equivalent.

(2) Assume that Ne(SMP). Then (I, &) e (TSMP) is equivalent to
inf,c» N * f(x) < 0 for any f e C(X).

(3) Assume that (IV, &) € (TSMP). Then N and N satisfy the maximum
principle, that is, for any f e Cx(X), we have N x f(x) < sup,csuppy NV * F(¥)
on X and Nxf(x) < SUD, ¢ supp(s) N+f(y) on X.

LemMA 8. Let N ¢ (SMP) and o # ¢ be a relatively compact open set
in X. Then we have:
(1) For any peD+*(N) with jd# < oo and any acR, we have

SB.((1, @); ) # ¢, and for any (¢, @) € SB,((¢, a); w), there exist nets (tts)uc 4
in Mix(X) and (@.)ec, in R such that supp (1) Cw and (N x p, + @f)ses
converges increasingly to Nx ' + a'¢ on X along A.

(2) For 0 < ce R, we denote by SP(N) the vague closure of

{N*u + ag; ve MuX), jdu —c aeR} :

For any e SP,(N), there exists an element (¢/,a’)e M(X)X R such that

% This means that inf {N=p” + a”¢; (¢”, a”) € SBy((¢, @); ®)} exists as a real Radon
measure on X and it is equal to N=p' + a’é.
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fd,u’=c, supp () C o, Nxy/ +dé=nin o and Nxy + o'6 <y on X.

Proof. The assertion (1) is proved in the same manner as in [8] (see
Corollaire 12). We shall show the assertion (2). We choose nets (¢)acs

in Mx(X) with jd,u,, =c and (@,).es in R such that lim,., (IV* p, + @,&)

— 5. Let (4, a)) € SBy((ey @.); @). Since j dp, = jdy,, —c, we may as-
sume that ()., converges vaguely. Put p/ = lim,., .. All p being sup-
ported by the compact set @, we have Ny = lim,¢, N * ;. This implies
that (a)).., converges. Putting o' = lim,.,a/, we see that (¢, a’) is a
required element.

We shall use a more general form of the semi-complete maximum
principle.

ProposiTioN 9. Let Ne (SMP), (N, ¢) e (TSMP), pe D*(N) with ¢ =
jdy < oo, aeR and let neSP(N). If N+ p+ a& <y in a certain open
set containing supp (y), then the same inequality holds on X.

For the proof of this proposition, we shall use the following known
lemma.

LemMMA 10 (see Lemme 21 in [8]). Let Ne (SMP) and (p,).cs be a net
in M#}(X). If lim, Ajdya =0 and (N * p,).cq converges vaguely, then there
exists be R such that lim,e, N x p, = b&. Furthermore, if (N, &) e (TSMP),
then b < 0.

Proof of Proposition 9. If pe M}(X), then our assertion follows from
Remark 5 and Lemma 8. In general case, we choose an open exhaustion
(0)p-; of X9, Let o be an open set in X satisfying o D supp () and
Nxp+at <7 in o. We may assume that o N, = ¢. Put g, =pl,,”
and 2, = p —p,. Let (2,a,)eSBy((2,,a);0Nw,). Then (n, + 2,a))¢e
SB,((¢, @); » N w,), and Lemma 8 (1) gives

Nx(u, +2)+ a6 <y onX.
Hence it suffices to show that lim,.. (N * (z, + 4) + a,8) = Nx p + aé&.

® An open exhaustion (w,),_, of X means a sequence of relatively compact open
sets # ¢ in X satisfying on+1 D@, and U;_ 0, =X.

" Far peM(X) and a universally measurable set E in X, p|z denotes the real
Radon measure on X defined by plz =g on E and plz =0 on CE.
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From (N, &) e (TSMP), we see that a, < a,,, < a for all n =1, so that
(N « 2,)>_, converges vaguely. By Lemma 10 and lim,._., J' di, = 0, there
exists 0 = be R such that lim,_ . N« 2, = b&. Since

lim N x (g, + 2) + (lim a))§ = Nx ¢ + aé in o,
lim,.,a, =a and b =0. Thus N x (g, + ;) + a,& converges increasingly

to Nxp + a& as nt oo, which completes the proof.
Similarly we obtain the following

ProposiTiON 11. Let Ne (SBP,) and (N, &) e (TSMP). Then, for any
reMiX), any a e R, any open set w+¢ in X and any (¢, a’) € SBy((1, a); w),
we have o’ < a. Furthermore, if Co is compact, @' = a.

Proof. Let (w,)7_, be an open exhaustion of X. Put y, = ¢/|,, and 4, —
1 — pn. Choose (2, a;) € SBy((2,, @'); »,); then (1, + 4, a;) € SBy((¢, @'); 0,).
Then (V, &) e (TSMP) gives a, < a. From the above proof, we see that
lim,... a, = @/, that is, o’ < a.

The latter part is shown in the same manner as in Proposition 28
{2) in [8].

It is a question when o’ = a holds.

3.

In this paragraph, we shall prepare some potential theoretic results
concerning shift-bounded Hunt convolution kernels.

DerFINITION 12. A non-negative convolution kernel IV, on X is said
to be a Hunt convolution kernel if it is of form

31 N, = j: adt (i.e., for any fe Cy(X), f fdN, = j: dt j fda,) ,

where («,),s, 1S a vaguely continuous convolution semi-group (of positive
Radon measures) on X, ie., @, = the unit measure ¢ at the origin 0,
o, x oy = a,,, for all £=>0, s >0 and £ — «, is vaguely continuous.

In this case, (a,)s, is uniquely determined (see [5]) and called the
convolution semi-group of N,.

A vaguely continuous convolution semi-group (a.)s, is said to be

sub-markovian (resp. markovian) if fdozt <1 (resp. Id(xt = 1) for all £ > 0.
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DEeFiniTiON 13. A family (IV,),., of non-negative convolution kernels
on X is said to be a resolvent if for any p > 0 and g > 0,

3.2) N, — N, = (g — p)N, « N, (The resolvent equation).

A non-negative convolution kernel N, on X possesses the resolvent if
there exists a resolvent (IV,),., with N, = lim, , N,.

In this case, N, — N, = pN,x N, and supp (IN;) = supp (IV,) (p > 0)
hold, and (NV,),-, is uniquely determined (see [5]). We call it the resolvent
of N,.

A resolvent (N,),., is said to be sub-markovian (resp. markovian) if
for any p > 0, pf dN, <1 (resp. deNp = 1).

The following results are fundamental for Hunt convolution kernels
(see [1], [3], [5], [6] and [7]).

Remark 14. (1) A non-negative convolution kernel N, on X is a
Hunt convolution kernel if and only if its resolvent exists and NV, is
non-periodic, i.e., for any xe X, N, # N, x ¢, provided with x = 0, where
e, denotes the unit measure at x.

(2) Let N, be a Hunt convolution kernel on X. Then the equiva-
lences (a) & (b) & (c) hold:

(a) The convolution semi-group of N, is sub-markovian (resp.
markovian).

(b) The resolvent of N, is sub-markovian (resp. markovian).

(¢) N, is shift-bounded, i.e., for any fe Cx(X), N« f is bounded on

X (resp. shift-bounded and deo = oo).

(8) Let N, be a shift-bounded Hunt convolution kernel on X. Then
we have:

(a) (The balayability). For any pe M3z X) and any open set w in X
there exists p' € D*(N,) such that supp (¢)C @, Ny* ' = Ny p in o and
Nyx g/ < Nyxpoon X

In this case, y/ is called an Nj-balayaged measure of ¢ on w, and
Jdp’ < dp holds. We have J.dN(, = oo if and only if, for any pe M(X),
any open set o in X whose complement is compact and any N,-balayaged
measure g of g on o, Id,u’ = jdy.

(b) (The complete maximum principle). For any pg,ve Mj(X) and
any 0 < ceR, Nyxp < Nyxv -+ c£ in a certain neighborhood of supp (¢)
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implies that the same inequality holds on X.

(¢) (The equilibrium principle). For any relatively compact open
set o in X, there exists 7 ¢ M%(X) such that supp (") C@, N, *7 =& in
and N,x7 < & on X.

In this case, 7 is called an N,-equilibrium measure of w.

(d) (The positive mass principle). For any p,ve My(X), Nyxp <
N, xv on X implies Jd/,z < Jdv.

(e) (The dominated convergence property). Let (u.).c, be a net in
D*(IV) and pe M*(X). If lim,e,p. = ¢ and there exists v e D*(IV,) satis-
fying Ny * ¢, < Nyxv on X for all e 4, then lim,, Ny g, = Ny * g,

(f) (The injectivity). For any p,ve D*(IV)), Nyxp = Nyxv on X
implies g = .

For pe D*(N,) and an open set w in X, we can define analogously

Nj-balayaged measures of p on o and denote by B, (u; w) their totality.
It is well-known that By (z; 0) # ¢. Put

Bui(ps ) = {f € By(pt; 0); Nox ¢ = Inf {Ny x /5 1" € By (11; 0)}}  (see?)

and
Ba(u; @) = {1 € By(1r; 0); Nox pf = sup (N » p”; ¢ € By (s o)} (see®) .

rfor an open set o in X, we can define analogously N,-equilibrium
measures of o and denote by E,(0) their totality. Put

Ey(0) = {reEy(0); Nyx7 = inf {N,«7"; 7 e E (w)}} (see®)
provided with E, (o) # 4.

LemMA 15. Let N, be a shift-bounded Hunt convolution kernel on X.
Then we have:

(1) For any pe D*(N,) and any open set o in X, By(¢; 0) = ¢ and
By (1; @) # ¢. Moreover, B, (¢; 0) and B, (¢; ) form only one element.

(2) For any pe D*(N,) and any two open sets w,, w, in X with o; C v,
we have Nyx 1 < Nyx iy and Nyx g/ < Nyx g on X, where 1] € By (¢; ;)
and p e By(p:0,) (@ =1,2).

(38) Put P(N,) = {Nyx* y; p€ D*(N,y)}, where the closure is in the sense
of the vague topology. For any pe D*(N,) and any ne P(N), Nyx p < 5 in
a certain open set D supp () implies that the same inequality holds on X.
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(4) For an open set w in X, Ey (1) + ¢ implies E,(v) + ¢. In this
case, E, (1) forms only one element.

(5) For 0 < ce R, we put P(N,) = {No « 13 pe DY), jdﬂ < c}. For

any peD*(N,) and any pe P(N,), Ny ¢ <5 on X implies Idy <ec
(6) Let (tto)acs be a net in D*(IN,) and 0 # 4, 0 # 4,6 Mu(X). If there
exist ve D*(N,) and a relatively compact net (x,).c. in X such that

Nyspo %2 < Nyxvxe,, x 2 on X, then (t).c, is vaguely bounded. If p,—
re M+(X), then lim,., N, x pt, = N,  p.

Proof. (1) Let (w.).cq be a net of open sets in X with @, C wy(e = f)
and Use @, = 0. We choose y, € By (; w,). Then the complete maximum
principle of IV, implies that for any g e By (¢; ), Ny* gl < Ny* ¢/ on X.
This and the dominated convergence property of N, show that (#').. is
vaguely bounded and every vaguely accumulation point of (¢)).c, as 0,1 o
is contained in By,(y; ®), which gives By (u#; ®) # ¢. Let (0)).cr be a net
of open sets in X with o, D@} (¢/ £ f) and Naeror = @. We choose
e By (u; w,). Similarly as above, (¢),., as ol | @ is contained in
By (#; ), that is, By,(¢; w) # 4. The injectivity of N, shows that By (¢; »)
and B,,(z; ®) form only one element.

Consequently, let e By(#;0.), # €By(p;w), nleBy(y; ) and
¢ € By(¢; w); then lim,., ¢, = ¢/ and lim,.., pll = .

(2) Using the complete maximum principle of N, and noting the
above proof, we see easily (2). '

(8) Let ve Mi(X) with v < p. We choose a relatively compact open
set o in X such that w Dsupp(v) and Nyxv < 7 in . By virtue of the
balayability of N, we can choose 21e M#X) such that supp(1) C &,
Nyx2=7nin o and N;x 2 < 5 on X. This shows that Vyxv < Njx21 <7y
on X, and v being arbitrary, we have Nyx 4 < on X.

(4) In the same manner as in the proof of B, (y;0) = ¢ in (1), we
see that Ey () # ¢ implies E,(0) = ¢. For any 7eE,(0), Ey (o) =
B, (r;0). If Ey(w) # ¢, the injectivity of N, shows that E,(w) forms
only one element.

(5) By using the positive mass principle of N, and the similar method
to (3), we obtain (5).

(6) Evidently (¢,).c, is vaguely bounded. We shall show only the lat-
ter half part. Let (K,);_, be an exhaustion of X. We choose ¢, € B, (¢, CK,).
The dominated convergence property of N, gives lim, . Nyx¢, = 0. Let
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fe CiX). Since (x,),e, is relatively compact, j fAN, x ¢, % e, xv* A con-

verges uniformly to 0 on (x,),., as n — co. Hence
lim | fAN,  p, * 4, gjdeo*p*Zl .
a€d

Using the lower semi-continuity of convolutions of non-negative Radon
measures, we have maeAdeNo*ya > j fdN,+ . Thus peD*(N,) and
limge, V) * pt = Ny % p.

From Lemma 15 and its proof, we see the following

Lemma 16. Let N, be a shift-bounded Hunt convolution kernel on
X, (@)1, and (0)i., two finite families of open sets in X and
let (u)7.,C D*(IN;). Assume that Ey(o) +¢ (B=1,2---,n). Let
eBy(t; 2), 1€ Exfw) j=1,2,---,m; k= 1,2, -- -, n) and let 5 € P(N,).
If > >u  Nox(y +7) <75 in (U™ 2)U (Ui, w), then the same in-
equality holds on X.

LemMmA 17. Let N, be the same as above, pe D*(N,) and let o be an
open set in X. For xe X, we denote by p, and ] the unique element in
B, (¢4 *e.; ) and that in By(p * ¢,; ), respectively. Then we have:

(1) The mapping x — p, and x — p are universally measurable, that

is, for any fe Cx(X), the functions jfd,u; and f fduyy of x are universally

measurable on X.
(2) For any ve MHX), (nxv) € By(uxv;w) and (1% v) € By (1 v; »)
are of form

(3.3) () = [ ds@® and ey’ = [ pduo) .

Proof. Let xe X and (x,),c, be a net in X with x, — x. Then Lemma
15 (6) shows that (1 ).es and (¢ ).cs are vaguely bounded and that every
vaguely accumulation point of (¢ ).c. and that of (¢ )., as x, — x belong
to By,(¢xe,;0). This implies that the mapping x— N,y is lower

semi-continuous (i.e., for any fe Ci(X), the function deNo x y, is lower

semi-continuous) and the mapping x — IV, x ¢/ is upper semi-continuous.
Let (IV,),s, be the resolvent of N,. Then, for any p > 0, x — N, x N, % y;,

8 This means that for any feCK(X),J fd(psvy = '” fd pldy(x)
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is also lower semi-continuous and x— N;x N, x ¢/ is also upper semi-
continuous, because N, is also a Hunt convolution kernel on X, so that N,
possesses the dominated convergence property. Hence, for any fe Cx(X)

and any p > 0, the resolvent equation shows that I fdN,x p;, and j fAN, * p/

are universally measurable functions of x on X. Since lim,_.. pN, = ¢ and
there exists g € Cx(X) such that le,, *f| < N, g on X for all p > 0, the

Lebesgue dominated convergence theorem gives jf dy, =1lim, ..p J fAN, « p,
and jfd,u;’ — lim, .. p j fdN, « 1/, which show that x — 1, and x — x/ are
universally measurable.

We shall show the assertion (2). For any fe Ci(X), jj fdu,dy(X) and
” fdu/dy(x) are defined and

[ 8.« rdpdnt) < [[ N« fdprant) < [ FaNy s (e

so that J,u;dv(x) and I,u;’du(x) belong to D*(N,). We see easily that

Jp;du(x), J,u;'dv(x)e By(¢ xv; ). Let (0.).cs be a net of open sets in X

satisfying @, C wg(e = ) and U,es 0. = o. We choose p . € By (1 * ¢.; 0,).
Then Lemma 15 (1), (3) show that N, x p, . 1 N, * ¢, as o, } w, that is,

N« (j p;,,,dy(x)) PN, ( j ;z;dv(x)> as w.lo.

This shows that Jp;du(x) e By (¢ *v; 0), and Lemma 15 (1) gives the first
equality in (3.3). Let (w.).cr be a mnet of open sets in X satisfying
W, D@y (@ £p) and (Nyer ol =@ We choose ), €By(uxe,;al).
Similarly as above, we have

N, x (I ,u;’,,,,dv(x)) ¢N0*(j y;’du(x)) as ol )@,

and hence the second equality in (3.3) holds. Thus Lemma 17 is shown.
The following proposition will play an important role to prove our
main theorem.

ProposiTiON 18. Let N, be a shift-bounded Hunt convolution kernel
on X and assume that the closed subgroup generated by supp (IV,) is equal
to X. Then, for any 0 + pe Mi(X), there exist an open set w + ¢ in X
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and an open neighborhood V of the origin such that:

(1) For any ¢ € Byfu, 0 + V)°, f dy < de.

(2) Nj-equlibrium measures of o with finite total mass do not exist.

For the poof of this proposition, we use the following result:

LemMa 19 (see [2], [4]). Let e M~(X) with Ido —1 If a shift-

bounded real Radon measure p on X satisfies p = p * g, then, for any x in
the closed subgroup I' generated by supp(¢), we have p = pxe, that is,
each x in I' is a period of p.

Proof of Proposition 18. It suffices to show the following assertion:
Let 0 ##fe C%(X). Then there exist an open set v # ¢ in X and open
neighborhood V of the origin such that:

(1) For (f&) eBulfeso+ V), [difey’ < [ fae.

2) Ey(0) =g, or Ey(w) + ¢ and for 7 € Ey (), Jd?’ = oo.

In fact, admit this assertion and let 0 = x e M#(X). Choose ¢ e Ci(X)
with jgodf = 1. Then there exist an open set w = ¢ in X and an open
neighborhood V of the origin such that, for f = px¢, (1) and (2) are
verified. Since Idp = Jp*g&d{:, Lemma 17 (2) shows that there exists

xesupp(p) such that for (gx*e,)’ eBy(e*es0+ V), J.d(/,t xe,) <
Jd/" * &, = Id,u. We remark here that (u x )& = f o * e, 0(x)d&(x) and for
any ye X, Id(;z xe,) < jdy xe,. Putw, =0 — {x} and y € By (¢; 0, + V).

Then we see easily that (uxe,)” =y xe,, which implies fdg;’ < fd;z.
We remark that E, (0) = ¢ and E,(0,) = ¢ are equivalent and if E, (o) # 4,
then, for 7eEy(w) and 7,eEy(®,), 7 =7,xe,. By the positive mass
principle and Lemma 15 (5), we see that », and V are our required open
set and open neighborhood of the origin.

Dividing into the following two cases, we shall show our required
assertion.

(a) Assume that there exists 0 # ge C3(X) with lim,_, N, « g(x) > 0.

Then J‘dNo = co. Noting that (N,*e.),cx is vaguely bounded, we can

9 For subsets 4, Bof X, A+ B={x+y;xecd,yeB}, —B={—x;xeBh.

https://doi.org/10.1017/5S0027763000021516 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021516

CONVOLUTION KERNELS 101

choose a net (%,).c, in X with x,—d such that (N, xe, )., converges
vaguely and lim,c, N, * ¢,, * g(0) = lim,_, N, * g(x). Put y = lim,., N, x ¢, ;
then 7 = 0. Let (NV,),., be the resolvent of N,. By the resolvent equation
and deNp =1 (p > 0), we have

7 =pN,x79(p > 0).

Since supp (V) = supp (V,) (p > 0) and 7 is shift-bounded, Lemma 19 gives
n» = ¢ with some constant ¢ > 0. We may assume that ffd& = 1. Let

£ be a relatively compact open set with 2 D supp (f). Since (IV, * e, * f).cx
converges uniformly to N,*f on 2 as x — 0, there exists an open neigh-
borhood V of the origin such that V = — V, supp (f) + V < 2 and for any
xeV, |[Nyxe,xf — Nyxf| <ic on Q. By virtue of the complete maximum
principle of N,, we have |N, ¢, xf — N, xf| <4c on X for all xe V. Put
o ={xeX;N,xf(x) <icland o = {xe X; N, f(x) < %c}. Thena+ VC o'
We shall show that v and V are our required open set and open neigh-
borhood of the origin. First we see that E,(0) = ¢, because, if there
exists 7eEy(w), then Nyx(cr 4+ f&) = 4c6 on X, which contradicts

pdep =1 for all p >0 and pN,x«N, |0 as p| 0. It remains to prove
that (1") is verified. By Lemma 15 (2), it suffices to show that for any
(fé € Bu(fe; o), [d(fey < [fde =1. For any integer m = 1, Ny« (fey
<(% + 1/m)y in a certain open set D supp ((f¢)), so that Lemma 15 (3)
gives N, = (f&)y < (3 + 1/m)y on X. Letting m1 o and using Lemma 15
(5), we obtain jd(f&‘)’ < 4. Thus w and V are our required open set and
open neighborhood of the origin.

(b) Assume that N, vanishes at the infinity (i.e., for any ge Cy(X),
lim,.; N, « g(x) = 0). Let U, be a relatively compact open set # ¢ in
X with U,c{xe X;f(x) > 0}. Since supp(N)50, we may assume that
N,xf(x) >1 on U, We choose an open set w, #+ ¢ and an open neigh-
borhood V of the origin such that @, + V C U, Since lim,_ ; N;*¢, = 0,
we can choose inductively a sequence (x,);., in X with ¥, =0 and x, — ¢
(n— o) such that, for any n > 0 and m = 0 with n # m,

Nyxe, xf < 1

- 2|n-m|+1

on {x,} + U,.

Put U,={x,}+ U,(n=1,2,---)and U= Uz, U,. Evidently U,NU, = ¢
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ifntm Puto,={x}+0 n=12—---)and 0 = J;,0,. Then o +
Vc U. For any (f&) € By(f&; U), we set (f&), = (f&)|y, (n = 1). Then,
by virtue of the complete maximum priciple of N,,

Nos (Fe) £ 5o Mowes, +f) o X,

and hence Jd(f&); < @/2"+Y jfd&. Consequently, Id(f&)’ <3 I fd&. From

Lemma 15 (2), it follows that for (f¢)” € By (f&; 0 + V), jd(fé)” < %ffd&.

Let 1, e Ey(w,). Then N, x7, < (Nyxe,, f)§ on X. For any n=>1
and any k with 1 < k2 < n, we have, in o,,

3 (Nywe,, xf)E < 28,

Jj=k+1

Ny« (317) <6+ 3 (Nyxes, # E +
Jj=1 Jj=1

that is, Ny * (357.,77) < 26 in U}, 0;. This and Lemma 16 show that the
same inequality holds on X. Thus > ;.,7, converges vaguely. Put 7’ =
> 7h; then Nyx77 = &in w and Ny 7/ <28 on X. Let7, e B, (U2, o).
Then N, x7" = N,x7, and > 7 Ny 7; < 2N, *7, on X. By virtue of the
dominated covergence property of N,, we have E, (0) # ¢. Let 7 ¢ Ey (0);
then lim,_.. 7, = 7. This implies that

Nyx7 < Nyx7 < 2N, x7 on X.

Evidently Id?’; = jd?’jn foralln =1, m=>=1and " +# 0, so that jd?” = oo,

The positive mass principle of N, gives fd)’ = oo. Thus w and V are

our required open set and open neighborhood of the origin.
It is a question if there exist an open set w # ¢ in X and an open
neighborhhod V of the origin such that for any 0 # x e M%(X) with supp ()

C C(w + V) and any ¢/ € By (z;0 + V), .[dy' < Id;z and N,-equilibrium

measures 7 of o with Jd?’ < oo do not exist.

§4.

We return to the argument of real convolution kernels. We begin
with the following

DerFiniTION 20. For a real convolution kernel NV on X and an open
set o # ¢ in X, we denote by SP,(V; w) the vague closure of
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{N*ﬂ + ag; pe M(X), jd# =1, supp(/l)Cw,aeR}

and put
v, = SUp {n € SP(IV; 0); » < N on X}

provided that the right hand exists in M(X). If 5,, exists, we call it
the N-reduced measure of N on w.

Assume that Ne (SMP). Then 7, , always exists and satisfies 7y, = N
in o, 7y, <N on X (see Remarque 19 in [8]). Let (K,);., be an exhaus-
tion of X. Then (yy,cx)n-: is decreasing and lim, ... 7y ¢k, is independent
of the choice of (K,);., (see §3 in [8]). Put 5y, =lim, . 9y ok, Then
Yy,s = — o0, 1.e., for any 0 # fe Ci(X), lim,_., J.fdm,,c,(n = — 00, OF 7y;€
M(X) (see Remarque 19 in [8]).

Proposition 9 gives immediately the following

Remark 21. Let Ne (SMP,), (N, &) € (TSMP), (K,);;-, be an exhaustion
of X and let (¢x,, 0) € SBy((¢, 0); CK,) (see Proposition 11). Then, for any
n=2,

NN, ckn = N 52‘1{,, < YN, ek on X.
The following proposition is shown in [8] (see Théoréme 20).

ProrosiTioN 22. Let Ne (SMP), (N, &) e (TSMP) and let (0,);., be an
open exhaustion of X. Then we have:

(1) For any 0<peR and any n =1, there exists a uniquely
determined (e, a,,)e MiX) x R such that f e, = 1, supp (c).,) Ca,,
NV + (Up)e) % e + @y = Nin wy (N + (Up)) # ¢fn + @06 < Non X and
for any ve Mu(X) with jdv =1 and any ac R, (N + (1/p)e) xv + a& =
(N + p)e) x €}, + @,,.6 on X whenever (N + (1/p)e) xv + a& = N in o,.

2 PutV,,e=1/p)p, ThenV,,e=V,, eino,andlim,. . V,, e
exists.

(3) Put
“.1) N, =1limV,

pyon

(e M*(X)),

n—oo

then (N,),s, is a sub-markovian resolvent and independent of the choice of

(w'ﬂ.):;‘:l‘
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By using Proposition 22, we have the following

LEmma 23. Let Ne(SBP,), (N, & € (TSMP) and assume that N is non-
periodic. Then there exists a uniquely determined resolvent (N,),., such
that

4.2) N=pN«N,+N,.

Proof. First we remark that N e (SBP) and N ¢ (SMP) are equivalent.
Let V,,e N, and a,, be the same as in Proposition 22. Then, for any
p >0,

“4.3) lim((pN+¢)*V,,e+a,.5) =N.

n— 00

Let (K,):_, be an exhaustion of X with K,50. We shall show that for
any m = 2, N+ 5y ,cx,. Assume contrary that for an m = 2N = gy o«,.
Then Remark 21 gives N = N * e/, where (¢, 0) € SBy((e, 0); CK,). Let
I' be the closed subgroup generated by supp (£¢k,); then I' = {0}. For
any x € X, N« (¢ — ¢,) is shift-bounded (see Remarque 4 in [8]), and Lemma
19 shows that for any yel, Nx(c —¢,) ¢, = Nx* (¢ —¢,). This implies
that for any xel’ and any integer n>1, N — Nxe¢,, = n{lN — N x¢,).
Since for any fe CxX), Nx«f is upper bounded (see Remark 7 (3)), we
have J fd(N — Nx¢,) =0, and I' being a subgroup of X, we see that
N = N=x¢, for all xeI'. This contradicts the non-periodicity of N. Thus
N # yy,cx, for all m = 2. Next we shall show that (IV,),., is markovian.
From (4.1), jdngm ~1 and (PN + )+ V,, e+ a,,61 N as nt oo, it fol-
lows that

“4.4) N - Nxepr, = p(N — Nxepg,) * N, + N, * (e — ex,) -

Assume that (IV,),., is not markovian. Then, for any p > 0, p J dN, <1.
From (4.4), it follows that for any p > 0, any n =1 and any m = 1,

N — Nxeok,, = (N — Nxeog,) * (PN,)* + %;(pr)" # (e — eox,)

where (pN,)' = pN, and (pN,)" = (pN,)"'« (pN,) (n = 2). Letting n 1 oo,
we have

SN # (¢ — ehx,) -

N = Nichy, =~
p k=1
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Since I d(Sz.. (pN,)") < oo and fdegKm ~ 1, we have j AN — N epe) =0,
so that N = N egx,. This contradicts N # 9y ox,, and gy o, = N el
(m = 2). Thus (NV,),., is markovian. In the same manner as in [8] (see
Théoreme 20 and Remarque 24), we see the rest of the proof.

DErFINITION 24. Let Ne(SMP). If a sub-markovian resolvent (IV,),.,
satisfying (4.2) exists, then (IV,),., is called the resolvent associated with
N.

The resolvent associated with N is uniquely determined if it exists
(see Remarque 24 in [8]).

LEmMmA 25. Let Ne (SMP) and (I, §) € (TSMP). Assume that 7y, +
— oo, N is non-periodic and that the resolvent (IN,),., associated with N
exists and is markovian. Put N’ = py, and N,= N — N'. Then N, is a
shift-bounded Hunt convolution kernel on X, N, = lim, , N, and every point
in the closed subgroup generated by supp (IV,) is a period on N'.

Proof. Let (K,)7., and (w,);., be an exhaustion of X and an open
exhaustion of X, respectively. We choose (e, n, @n.n) SBy((c,0); CK, N w,)
whenever CK,Nw, #¢. Then N=xe,, + @, &1 9y cx, @ m?T oo (see
Remarque 19 in [8]). Here we may assume that (e, ,.);_, converges vaguely

as m— oo, Pute, = lim, . ¢,,.; then jde; < 1. Since dep — 1/p (p > 0),

we have, for any p > 0 and any n > 1,

45)  p(N —gyex,) * Ny =limp(N — N ¢, — @,..6) x N,

m—oo

=lim(N — Nx¢,,, — N, + N,x¢,, — @, &)

m— oo

:N_ﬂNchn'—Np"{"Np*E,lz.

Letting n 1 oo, we have pN,« N, = N, — N,. Letting p |0 in (4.5), we
have lim,,, N, = N — 3y ¢¢,. Thus we see lim,., N, = N,, that is, (IV,),-,
is the resolvent of N,. Since N is non-periodic, (4.2) shows that N, is
also non-periodic (p > 0), which implies that IV, is also non-periodic.
Remark 14 (1), (2) show that IV, is a shift-bounded Hunt convolution
kernel. On the other hand, we have pN’x N, = N’ for all p > 0. Let I’
be the closed subgroup generated by supp (IV,). For any xe X, N — Nx¢,
is shift-bounded (see Remarque 4 in [8]), and N’ ¢ SP,(IN) gives the shift-
boundedness of N’ — N’ x¢,. Lemma 19 and supp (IV;) = supp (V,) (p > 0)
show that for any yel, (N' — N’ x¢e,)xe¢, = N — N’ x¢,. This implies
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that for any xe " and any integer n =1, N' — N’ x¢,, = n(N' — N’ x¢,).
For any f e Cix(X), we have N’ *flx) < N « (%) < Sup,couppin N*f(y) on X,
Similarly as in Lemma 23, we have N’ = N’ x¢, for all xeI". Thus every
point in I" is a period of N'.

We shall give the proof of the “only if” part in Theorem 2. By
Remark 7, it suffices to show the following

ProrosiTiON 26. If a real convolution kernel N on X is semi-balayable,
non-periodic and satisfies (N, §) € (TSMP), then 5y, = — oo.

Proof. Assume contrary that 7y; # — oco. Then 75,,e M(X). Put
N =y, and Ny= N — N’. We denote by I" the closed subgroup gener-
ated by supp (V,). First we shall show that N’ e (SMP). Let g, ve Mi(X)

with Jdp:fdv¢0 and aeR. Assume that N'xp < N’ %y + af in a

certain open set o Dsupp(x). By Lemma 23 and Lemma 25, we have
N sxp <N xy+af in o + I'. We choose a relatively compact open set
o in X such that o D@D o Dsupp (1). Let (¢, @) € SBy(y, 0); C(@ + IN).

Then Nx*xpy + a6 < N'xp in C(supp(w) +I). Put c= fdp. Then
N« peSP(N). Hence Proposition 9 gives Nxpy + a6 < N xpu on X.
Evidently N ¢/ + a’6 = N'xyu in C(@ + I'). For an exhaustion (K=,
of X, we choose ¢yx, € By,(e; CK,). Then supp (chx)C " and f dely, = 1
(see Remark 14 (2) and Lemmas 23, 25), so that
Nuxy sepg, + @8 < N s pxepy, = N oxp on X
and
Ny xetr, + 0’8 =N xp inC@+1).
Letting n 1 o, we obtain that
Nsxpy+de<Nsxp on X and N'sxpy/ +aé=Nxp in C@+1),
because lim,... Ny x ¢k, = 0. Hence N'xy' = Nxy/ in C(@ + I'), which
shows that supp (V,* ) C@ + I'. This implies supp(¢)Ca@ + I'. On
the other hand, supp (¢) € C(@ + I'), that is, supp (¢) is contained in the
boundary (@ + I') of @ + I'. Thus Nx ¢/ + a/¢ < N xp < N’ xv + aé in
o’ + I' D supp (¢), and Proposition 9 gives N« p/ + a’6 < N’ xv + a& on
X. This implies N'xpu < N'xv+aé in C@+ I'), that is, N’ xp <
N’ xv + a& on X, which shows that N’ e(SMP). From (N, ¢)e (TSMP)
and N’ e (SMP), we see also (IV, &) e (TSMP).
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Evidently N, may be considered as a shift-bounded Hunt convolution
kernel on I'. We denote by &, a fixed Haar measure on I'. Proposition
18 shows that, for any positive Radon measure g # 0 on I" with compact
support (i.e., x € Mj(I")), there exist an open set w, #+ ¢ in I" and a rela-
tively compact open neighborhood V., of the origin in I" such that:

() For any u€Bu,ilpior + Vo), [’ < [dp.

(B) Ey,or) = ¢, or Ey, (o) # ¢ and for any 7 € Ey, (o), Jd?’ = oo,

where N, being considered as a shift-bounded Hunt convolution kernel
on I', By, (¢;or + V) denotes the totality of N,-balayaged measures of
gon or + V, and Ey, (wr) denotes the totality of Nj-equilibrium measures
of ;. Let V be a relatively compact open neighborhood of the origin
in X with VNI'=V,. Put o, =0, + V; then v, is open in X. We
choose another open neighborhood U of the origin in X such that U= — U
and U + UcCV. We may consider M3(I") as a subset of M3(X). Choose
(¢, ) e SBy((¢, 0); w,). Then Nxp = Nxy + a’'6 on X implies N’ x p=>
N xy/ + adéon X. Assume that N« — N’ x ¢/ — a’6 = 0. Then N, x*
=N,xp¢ in 0w, and Nyxp/ < Nyxp on X. Hence supp () =a,NI[ =
@+ V)NI =@, + V.. Thus we may consider x/ as in M*(I"). This
shows that g e By, (¢;0r + V;) and ‘[dp’ = jd‘u, which contradicts (A).
Therefore N’ xpy — N’ xy' — ad’6 0. By N’'e(SMP) and Proposition 9,
we have supp(V'xp — N xp — d’&)Nsupp (1) # ¢, which implies
supp(V' x+ g — N’ s pf —a’§)DI. Let feCiX) with supp(f)cU and
f(0) > 0. Then there eixsts g € Ci(X) such that g < f, g(0) > 0 and

“6) (N'sp=N'sp/ —d®)sf=6vg onX.
Since Ny* ¢/ = Nyxp+ (N p — N' % ¢/ — a’€) in w,, we obtain that
@47 Nyxp/sxf=Nyspuxf+ N spuy—Nxpy —d&xf inaw,+U.

Let (@r,.).c4 be a net of relatively compact open sets in I" with @, ., Cw,,,
(¢ = B) and U,es0r,a = op, 7o € Ey, r(or,o) (@ € 4) and let ,U:)’I. € By, r(y; o).
Then, by (4.6) and (4.7), we have

10 In the case of Ew,r(or)# ¢, each yeEny, r(or) satisfies supp (r) Cc @r, No#7 < ér
and Noxy=~&r on or.

1 Similarly as in the definition of Bw,(¢; ), we define By, r(g; or) from
Bwo.r(g; or).
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No*(.ufulr+Ta)*g§No*ﬂ*g+$r*g
< Nywpsf + (N s — NV — &) o f
=Nyxp +f in o, + U.

Since supp ((,u,f,’r + 7)) *8) Cwr + U, the complete maximum principle of
N, gives Nyx (), + T)*8 < Nyxp/ «f on X. Letting o,,1 o, we see,
from the dominated convergence property of N, that there exists 7 ¢
Ey, r(0r) such that

Nyx (G +7)+g<Nyxp/«f onX

(see also Lemma 15 (6)). By the positive mass principle of N, (see also
Lemma 15 (5)), we have (j dull + jdr)-fgdg < ( j d;/>~j fde, which im-

plies de < oo. This contradicts (B). The assumption 75y, # — oo leads
to this contradiction. Consequently, 7y, = — co. This completes the
proof.

Let (a,),», be a vaguely continuous convolution semi-group on X. It
is said to be recurrent if there exists 0 = f ¢ Cx(X) with lim,_., r f fda,ds
= oo, and it is said to be semi-transient if lim, . «, = 0 and ;zoe MyY(X),
(f o, * ,;ds) is vaguely bounded.

' As we t;loentioned in Section 1, Theorem 2 and main theorems in [8]

(Théoreémes 52 and 52) imply Theorem 1. By Theorem 2 and a result in
[8] (see Théoreme 25), it can be also stated as follows:

THEOREM 27. If a real convolution kernel N on X is semi-balayable,
non-periodic and satisfies inf,.y N« f(x) < 0 for all f e CY(X), then there
exists a uniquely determined vaguely continuous, markovian, semi-transient
and recurrent convolution semi-group (a,),s, on X such that for any t > 0,
N= Nsxa, and

L N —-Nxa,
im = ST =
t—0 t
In Theorem 2, it is a question if the condition inf,.; N % f(x) < 0 for
all f e CWX) can be removed. By Theorem 2 and Proposition 28 in [8],

we have the following

Remark 28. Assume that a real convolution kernel N on X satisfies
the same conditions as in Theorem 27. Then, for any pe D*(N) with
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'[ dy < oo and any open set o = ¢ in X, SBy((x 0); ) = ¢ and it forms

only one element.

In fact, it is known that if pxe Mi(X), SB,((¢, 0); w) + ¢ (see Proposi-
tion 28 in [8]). Assume that supp () is non-compact. Then we write
B = 271 ftn, Where p, € M3(X). Let (17, a;) € SBy((¢s, 0); ). Then a;, < 0.
Let o’ be a relatively compact open set + ¢ in X with @ C w and (v, b) €
SBy((#, 0); o) (see Lemma 8). Then > 7 ,a, = b, that is, D7, a, > — oo.
This implies that >3 ; 1, € D*(IN). Hence we see easily that (3 o, pl, D an)
€ SB,((g, 0); w), that is, SBy((#, 0); w) # ¢. Let (¢, @’) and (¢, a”) be in
SBy((#,0);w). Then Nxpy + a'é = N=xpy” + a’6.  Let (IV,),., be the
resolvent associated with N and xeX. Since Nxp' x(e —e,) and
Nx p” (e — ¢,) are shift-bounded, the above equality and (4.2) give

N,x(tf x(e —e)) = N, (¢ % (e — ¢,)) for all p >0,

which implies ¢/ — p/ xe, = ¢/ — p” x¢,. Letting x — d, we have p/ = ",
because jd// = Id/,z” = jdpz < o0, so that o’ =a”. Thus SBy((g, 0); )

forms only one element.
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