A CHARACTERIZATION OF BANACH FUNCTION SPACES ASSOCIATED WITH MARTINGALES

MASATO KIKUCHI
Department of Mathematics, Toyama University, Gofuku 3190, Toyama 930-8555, Japan
e-mail: kikuchi@sci.toyama-u.ac.jp

(Received 21 October, 2002; accepted 18 February, 2003)

Abstract

Let $(\Omega, \Sigma, \mathbb{P})$ be a nonatomic probability space and let $\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{+}}$ be a filtration. If $f=\left(f_{n}\right)_{n \in \mathbb{Z}_{+}}$is a uniformly integrable \mathcal{F}-martingale, let $\mathcal{A}_{\mathcal{F}} f=$ $\left(\mathcal{A}_{\mathcal{F}} f_{n}\right)_{n \in \mathbb{Z}_{+}}$denote the martingale defined by $\mathcal{A}_{\mathcal{F}} f_{n}=\mathbb{E}\left[\mid f_{\infty} \| \mathcal{F}_{n}\right]\left(n \in \mathbb{Z}_{+}\right)$, where $f_{\infty}=$ $\lim _{n} f_{n}$ a.s. Let X be a Banach function space over Ω. We give a necessary and sufficient condition for X to have the property that $S(f) \in X$ if and only if $S\left(\mathcal{A}_{\mathcal{F}} f\right) \in X$, where $S(f)$ stands for the square function of $f=\left(f_{n}\right)$.

2000 Mathematical Subject Classification. 46E30, 60G42.

1. Introduction. Let $(\Omega, \Sigma, \mathbb{P})$ be a nonatomic probability space and let $\mathcal{F}=$ $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{+}}$be a filtration; i.e., an increasing sequence of sub- σ-algebras of Σ. If $f=$ $\left(f_{n}\right)_{n \in \mathbb{Z}_{+}}$is a uniformly integrable \mathcal{F}-martingale, we let $\mathcal{A} f \equiv \mathcal{A}_{\mathcal{F}} f=\left(\mathcal{A}_{\mathcal{F}} f_{n}\right)_{n \in \mathbb{Z}_{+}}$denote the \mathcal{F}-martingale defined by

$$
\mathcal{A} f_{n} \equiv \mathcal{A}_{\mathcal{F}} f_{n}=\mathbb{E}\left[\mid f_{\infty} \| \mathcal{F}_{n}\right] \quad\left(n \in \mathbb{Z}_{+}\right),
$$

where $f_{\infty}=\lim _{n \rightarrow \infty} f_{n}$ almost surely (a.s.) on Ω. If $f=\left(f_{n}\right)_{n \in \mathbb{Z}_{+}}$is a martingale, we denote by $S(f)$ the square function of f. Let us recall Burkholder's inequality: if $1<p<\infty$, then there are positive constants c_{p} and C_{p} such that

$$
c_{p}\left\|f_{\infty}\right\|_{p} \leq\|S(f)\|_{p} \leq C_{p}\left\|f_{\infty}\right\|_{p}
$$

for all uniformly integrable martingales $f=\left(f_{n}\right)$ (with the convention that $\|x\|_{p}=\infty$ unless $x \in L_{p}$). It then follows that $S(f) \in L_{p}$ if and only if $S(\mathcal{A} f) \in L_{p}$. There are similar results for other function spaces. For example, let L_{Φ} be the Orlicz space generated by an N-function Φ satisfying the Δ_{2} - and ∇_{2}-conditions. (See e.g. [13, p. 22].) Then $S(f) \in L_{\Phi}$ if and only if $S(\mathcal{A} f) \in L_{\Phi}$. This follows from the Burkholder-Davis-Gundy inequality and the Doob inequality in $L_{\Phi}([9$, p. 89, p. 96] $)$.

Now let X be a Banach function space over Ω. (See Definition 1 below.) Our aim is to find a necessary and sufficient condition for X to have the property that $S(f) \in X$ if and only if $S(\mathcal{A} f) \in X$. (See Theorem 1.)

Such a problem concerning the maximal function $M(f)=\sup _{n}\left|f_{n}\right|$ of f has been studied. As in [7], we can prove that the following statements are equivalent.
(i) $M(f) \in X$ if and only if $M(\mathcal{A} f) \in X$.

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-inAid for Scientific Research, No. 14540164, 2002.
(ii) X is rearrangement-invariant and can be renormed with a rearrangementinvariant norm for which the upper Boyd index is less than 1.
2. Preliminaries. We shall deal with martingales on a (fixed) nonatomic probability space $(\Omega, \Sigma, \mathbb{P})$. Let I denote the interval $(0,1]$ and let μ be Lebesgue measure on the σ-algebra \mathfrak{M} of measurable subsets of I. In order to deal with the two probability spaces $(\Omega, \Sigma, \mathbb{P})$ and (I, \mathfrak{M}, μ) at the same time, we shall work with an arbitrary nonatomic probability space (R, \Re, λ) throughout this section.

Let X and Y be Banach spaces of (equivalence classes of) random variables on R. We write $X \hookrightarrow Y$ to mean that X is continuously embedded in Y; i.e., $X \subset Y$ and $\|x\|_{Y} \leq c\|x\|_{X}$, for all $x \in X$ and some positive constant c.

Definition 1. A real Banach space $\left(X,\|\cdot\|_{X}\right)$ of random variables on R is called a Banach function space if it has the following properties:
(B1) $L_{\infty} \hookrightarrow X \hookrightarrow L_{1}$;
(B2) $x \in X,|y| \leq|x|$ a.s. $\Longrightarrow y \in X,\|y\|_{X} \leq\|x\|_{X}$;
(B3) $x_{n} \in X, 0 \leq x_{n} \uparrow x$ a.s., $\sup _{n}\left\|x_{n}\right\|_{X}<\infty$

$$
\Longrightarrow x \in X,\|x\|_{X}=\sup _{n}\left\|x_{n}\right\|_{X}
$$

From (B2) it follows that $x \in X$ if and only if $|x| \in X$, and also that $\|x\|_{X}=\|x\|_{X}$ for all $x \in X$.

Let x be a random variable on R. The nonincreasing rearrangement of x is the function $x^{*}(t)$ on $I=(0,1]$ defined by

$$
x^{*}(t)=\inf \{s>0 \mid \lambda(|x|>s) \leq t\} \quad(t \in I) .
$$

Notice that x^{*} is a unique right-continuous nonincreasing function on I that has the same distribution (with respect to μ) as $|x|$.

Let x and y be random variables on R. The inequality

$$
\begin{equation*}
\int_{R}|x y| d \lambda \leq \int_{0}^{1} x^{*}(s) y^{*}(s) d s \tag{1}
\end{equation*}
$$

is fundamental and called the Hardy-Littlewood inequality. (See, for example, [2, p. 44].) In particular, if $A \in \mathfrak{R}$, then

$$
\begin{equation*}
\int_{A}|x| d \lambda \leq \int_{0}^{\lambda(A)} x^{*}(s) d s \tag{2}
\end{equation*}
$$

Again let x and y be random variables on R. We write $y \prec x$ to mean that

$$
\int_{0}^{t} y^{*}(s) d s \leq \int_{0}^{t} x^{*}(s) d s \quad \text { for all } t \in I
$$

Note that if $y \prec x$ and $x \prec y$, then $x^{*}=y^{*}$ on I : in this case, we write $x \simeq_{d} y$. Thus $x \simeq_{d} y$ if and only if x and y are identically distributed.

Definition 2. Let X be a Banach function space equipped with the norm $\|\cdot\|_{X}$.
We say that X is rearrangement-invariant (r.i.) if

$$
\begin{equation*}
x \in X, x \simeq_{d} y \Longrightarrow y \in X \tag{R1}
\end{equation*}
$$

We say that X is equipped with a rearrangement-invariant norm (or an r.i. norm) if

$$
\begin{equation*}
x, y \in X, x \simeq_{d} y \Longrightarrow\|x\|_{X}=\|y\|_{X} \tag{R2}
\end{equation*}
$$

Using (B2), (B3), and (R2), we can easily verify that if X is equipped with an r.i. norm, then the space X is r.i. The converse is false in general. However, if X is r.i., then there exists an r.i. norm $\|\|\cdot\|\|_{X}$ on X such that $\|\cdot\|_{X} \approx\| \| \cdot\| \|_{X}$ (i.e., these norms are equivalent). See [10, p. 138] for details.

Since the underlying probability space Ω is nonatomic, we can replace (R1) by

$$
\begin{equation*}
x \in X, y \prec x \Longrightarrow y \in X, \tag{R1'}
\end{equation*}
$$

and (R2) by

$$
x, y \in X, y \prec x \Longrightarrow\|y\|_{X} \leq\|x\|_{X}
$$

For details, see [10, Section 11].
Now let us recall the Luxemburg representation theorem. If X is an r.i. space equipped with an r.i. norm $\|\cdot\|_{X}$, then there exists a unique r.i. space $\left(\widehat{X},\|\cdot\|_{\hat{X}}\right)$ over I equipped with an r.i. norm such that
(i) $x \in X \Longleftrightarrow x^{*} \in \widehat{X}$,
(ii) $\|x\|_{X}=\left\|x^{*}\right\|_{\widehat{X}}$ for all $x \in X$.

We call \widehat{X} the Luxemburg representation of X. See [2, pp. 62-64].
Now we recall the definition of Boyd indices. For each positive number s, the dilation operator D_{s}, acting on the space of measurable functions on I, is defined as follows: if $t \in I$, then

$$
\left(D_{s} \varphi\right)(t)= \begin{cases}\varphi(s t) & \text { if } s t \in I \\ 0 & \text { otherwise }\end{cases}
$$

If Y is an r.i. space over I equipped with an r.i. norm, then each D_{s} is a bounded linear operator from Y into Y and $\left\|D_{s}\right\|_{B(Y)} \leq 1 \vee s^{-1}$, where $\left\|D_{s}\right\|_{B_{(Y)}}$ denotes the operator norm of $D_{s}: Y \rightarrow Y$. The lower and upper Boyd indices are defined by

$$
\alpha_{Y}=\sup _{0<s<1} \frac{\log \left\|D_{s^{-1}}\right\|_{B(Y)}}{\log s}=\lim _{s \rightarrow 0+} \frac{\log \left\|D_{s^{-1}}\right\|_{B(Y)}}{\log s}
$$

and

$$
\beta_{Y}=\inf _{1<s<\infty} \frac{\log \left\|D_{s^{-1}}\right\|_{B(Y)}}{\log s}=\lim _{s \rightarrow \infty} \frac{\log \left\|D_{s^{-1}}\right\|_{B(Y)}}{\log s}
$$

respectively. If X is an r.i. space over Ω equipped with an r.i. norm, then the Boyd indices of X are defined as $\alpha_{X}=\alpha_{\widehat{X}}$ and $\beta_{X}=\beta_{\widehat{X}}$. Moreover, if X is an arbitrary r.i. space over Ω, then the Boyd indices of X are defined to be those of $\left(X,\| \| \cdot\| \|_{X}\right)$, where $\left\|\|\cdot \mid\|_{X}\right.$ is an r.i. norm such that $\| \cdot\|\approx\|\|\cdot \mid\|_{X}$.

For any r.i. space X, we have $0 \leq \alpha_{X} \leq \beta_{X} \leq 1$. See [3] or [2, p. 149]. For example, $\alpha_{L_{\infty}}=\beta_{L_{\infty}}=0$, and $\alpha_{L_{p}}=\beta_{L_{p}}=1 / p$ whenever $1 \leq p<\infty$.

Let $\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{+}}$be a filtration. If $f=\left(f_{n}\right)_{n \in \mathbb{Z}_{+}}$is an \mathcal{F}-martingale, we let

$$
\Delta_{0} f=f_{0}, \quad \Delta_{n} f=f_{n}-f_{n-1} \quad(n=1,2, \ldots), \quad \text { and } \quad S(f)=\left\{\sum_{n=0}^{\infty}\left(\Delta_{n} f\right)^{2}\right\}^{1 / 2}
$$

Given a Banach function space X over Ω, we denote by $\mathcal{H}_{\mathcal{F}}(X)$ the vector space consisting of all \mathcal{F}-martingales $f=\left(f_{n}\right)$ such that $S(f) \in X$. Since $X \hookrightarrow L_{1}$, every martingale in $\mathcal{H}_{\mathcal{F}}(X)$ is uniformly integrable. If we set $\|f\|_{\mathcal{H}_{\mathcal{F}}(X)}=\|S(f)\|_{X}$ for $f \in \mathcal{H}_{\mathcal{F}}(X)$, then $\mathcal{H}_{\mathcal{F}}(X)$ forms a Banach space with this norm; see [12].
3. Main results. From now on we shall consider a fixed Banach function space ($X,\|\cdot\|_{X}$) over Ω, and adopt the convention that $\|x\|_{X}=\infty$ unless $x \in X$. We denote by \mathbb{F} the collection of all filtrations $\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{+}}$such that $\Sigma=\sigma\left(\bigcup_{n=0}^{\infty} \mathcal{F}_{n}\right)$.

Theorem 1. The following are equivalent.
(i) For any $\mathcal{F}=\left(\mathcal{F}_{n}\right) \in \mathbb{F}$,

$$
f=\left(f_{n}\right) \in \mathcal{H}_{\mathcal{F}}(X) \Longleftrightarrow \mathcal{A}_{\mathcal{F}} f=\left(\mathcal{A}_{\mathcal{F}} f_{n}\right) \in \mathcal{H}_{\mathcal{F}}(X)
$$

(ii) There are positive constants c and C, depending only on X, such that

$$
\begin{equation*}
c\left\|f_{\infty}\right\|_{X} \leq\|S(f)\|_{X} \leq C\left\|f_{\infty}\right\|_{X}, \tag{3}
\end{equation*}
$$

for all uniformly integrable martingales f.
(iii) X is rearrangement-invariant and can be renormed with a rearrangementinvariant norm for which $0<\alpha_{X} \leq \beta_{X}<1$.

It was shown by Antipa [1] that (iii) implies (ii). See also [5], [6] and [11]. Furthermore we see from our convention that (ii) implies (i). Indeed if (ii) holds, then

$$
S(f) \in X \Longleftrightarrow f_{\infty} \in X \Longleftrightarrow\left|f_{\infty}\right| \in X \Longleftrightarrow S\left(\mathcal{A}_{\mathcal{F}} f\right) \in X .
$$

Thus, to prove Theorem 1, it suffices to show that (i) implies (iii). To this end, we shall prove Propositions 1, 2, and 3 below. Incidentally, we can prove directly that (ii) implies (iii), as in [8].

Proposition 1. If X satisfies the condition that

$$
\begin{equation*}
f \in \mathcal{H}_{\mathcal{F}}(X) \Longrightarrow \mathcal{A}_{\mathcal{F}} f \in \mathcal{H}_{\mathcal{F}}(X) \tag{4}
\end{equation*}
$$

for any $\mathcal{F}=\left(\mathcal{F}_{n}\right) \in \mathbb{F}$, then X is rearrangement-invariant.
Proposition 2. Suppose that X is rearrangement-invariant. If X satisfies (4) for any $\mathcal{F}=\left(\mathcal{F}_{n}\right) \in \mathbb{F}$, then $\beta_{X}<1$.

Proposition 3. Suppose that X is rearrangement-invariant. If $\beta_{X}<1$ and if X satisfies the condition that

$$
\mathcal{A}_{\mathcal{F}} f \in \mathcal{H}_{\mathcal{F}}(X) \Longrightarrow f \in \mathcal{H}_{\mathcal{F}}(X)
$$

for any $\mathcal{F}=\left(\mathcal{F}_{n}\right) \in \mathbb{F}$, then $\alpha_{X}>0$.
4. Proof of Proposition 1. We begin with a lemma.

Lemma 1. The following are equivalent.
(i) X is rearrangement-invariant.
(ii) Let x and y be nonnegative integer-valued random variables such that $x \simeq_{d} y$ and $x \wedge y=0$ a.s. If $x \in X$, then $y \in X$.

Proof. It suffices to show that (ii) implies (R1) of Definition 2. Suppose that $x \simeq_{d} y$ and $x \in X$. We must show that $y \in X$. If $x \in L_{\infty}$, then $y \in L_{\infty} \subset X$. Hence we deal with the case in which $x \notin L_{\infty}$. Choose an integer n so large that $\mathbb{P}(x \geq n) \leq 1 / 3$. If we set

$$
x^{\prime}=\sum_{j=n}^{\infty} j 1_{\{j \leq x<j+1\}} \quad \text { and } \quad y^{\prime}=\sum_{j=n}^{\infty} j 1_{\{j \leq y<j+1\}},
$$

then $x^{\prime} \leq x \in X$ and $x^{\prime} \simeq_{d} y^{\prime}$. Since $\mathbb{P}\left(x^{\prime}=0, y^{\prime}=0\right)=\mathbb{P}(x<n, y<n) \geq 1 / 3$ and the set $\left\{x^{\prime}=0, y^{\prime}=0\right\}$ contains no atom, we can find a random variable z such that $z \simeq{ }_{d} x^{\prime}$ and $\{z>0\} \subset\left\{x^{\prime}=0, y^{\prime}=0\right\}$. (See [4, p. 44].) From (ii) we see first that $z \in X$ and then that $y^{\prime} \in X$. Since $y \leq n+1+y^{\prime} \in X$, we conclude that $y \in X$, completing the proof.

Proof of Proposition 1. It suffices to show that (ii) of Lemma 1 holds. Let $\left\{c_{j}\right\}_{j=1}^{\infty}$ be a sequence of integers such that $0<c_{1}<c_{2}<\cdots$; let $\left\{A_{j}\right\}_{j=1}^{\infty}$ and $\left\{B_{j}\right\}_{j=1}^{\infty}$ be pairwise disjoint sequences of sets in Σ such that

$$
\left(\bigcup_{j=1}^{\infty} A_{j}\right) \cap\left(\bigcup_{j=1}^{\infty} B_{j}\right)=\emptyset \quad \text { and } \quad \mathbb{P}\left(A_{j}\right)=\mathbb{P}\left(B_{j}\right) \text { for all } j=1,2, \ldots
$$

We must show that if $x:=\sum_{j=1}^{\infty} c_{j} 1_{A_{j}} \in X$, then $y:=\sum_{j=1}^{\infty} c_{j} 1_{B_{j}} \in X$. Setting $\Lambda_{0}=\Omega$ and $\Lambda_{n}=\bigcup_{j=n}^{\infty}\left(A_{j} \cup B_{j}\right)$ for $n \geq 1$, we define $\mathcal{F}=\left(\mathcal{F}_{n}\right) \in \mathbb{F}$ by

$$
\begin{equation*}
\mathcal{F}_{n}=\sigma\left\{\Lambda \backslash \Lambda_{n} \mid \Lambda \in \Sigma\right\} \quad\left(n \in \mathbb{Z}_{+}\right) \tag{5}
\end{equation*}
$$

For each $j \in \mathbb{Z}_{+}$we divide A_{j} into two parts with the same measure; that is, let $A_{j 1}$ and $A_{j 2}$ be measurable subsets of A_{j} such that

$$
A_{j}=A_{j 1} \cup A_{j 2}, \quad A_{j 1} \cap A_{j 2}=\emptyset, \quad \text { and } \quad \mathbb{P}\left(A_{j 1}\right)=\mathbb{P}\left(A_{j 2}\right)
$$

Let $x_{k}=\sum_{j=1}^{\infty} c_{j} 1_{A_{j k}}(k=1,2)$, let $f_{\infty}=x_{1}-x_{2}$, and let $f=\left(f_{n}\right)_{n \in \mathbb{Z}_{+}}$be the martingale defined by

$$
\begin{equation*}
f_{n}=\mathbb{E}\left[f_{\infty} \mid \mathcal{F}_{n}\right]=f_{\infty} 1_{\Omega \backslash \Lambda_{n}} \quad\left(n \in \mathbb{Z}_{+}\right) . \tag{6}
\end{equation*}
$$

Then, since $\Delta_{0} f=f_{0} \equiv 0$ and $\Delta_{n} f=f_{\infty} 1_{\Lambda_{n-1} \backslash \Lambda_{n}}(n \geq 1)$, we see that $S(f)=\left|f_{\infty}\right|=$ $x \in X$; that is, $f \in \mathcal{H}_{\mathcal{F}}(X)$. Hence $\mathcal{A} f=\mathcal{A}_{\mathcal{F}} f \in \mathcal{H}_{\mathcal{F}}(X)$ or equivalently $S\left(\mathcal{A}_{\mathcal{F}} f\right) \in X$, by hypothesis. Observe that

$$
\mathcal{A} f_{n}=\mathbb{E}\left[x \mid \mathcal{F}_{n}\right]=\frac{1_{\Lambda_{n}}}{\mathbb{P}\left(\Lambda_{n}\right)} \int_{\Lambda_{n}} x d \mathbb{P}+x 1_{\Omega_{\backslash \Lambda_{n}}} \quad\left(n \in \mathbb{Z}_{+}\right)
$$

Then we have

$$
\begin{aligned}
\Delta_{n+1} \mathcal{A} f= & \left\{\frac{1}{\mathbb{P}\left(\Lambda_{n+1}\right)} \int_{\Lambda_{n+1}} x d \mathbb{P}-\frac{1}{\mathbb{P}\left(\Lambda_{n}\right)} \int_{\Lambda_{n}} x d \mathbb{P}\right\} 1_{\Lambda_{n+1}} \\
& +\left\{x-\frac{1}{\mathbb{P}\left(\Lambda_{n}\right)} \int_{\Lambda_{n}} x d \mathbb{P}\right\} 1_{\Lambda_{n} \backslash \Lambda_{n+1}} \quad\left(n \in \mathbb{Z}_{+}\right) .
\end{aligned}
$$

Since $B_{n} \subset \Lambda_{n} \backslash \Lambda_{n+1}$ and $x=0$ on B_{n}, we can deduce that

$$
\begin{aligned}
\left|\Delta_{n+1} \mathcal{A} f\right| 1_{B_{n}} & =\frac{1_{B_{n}}}{\mathbb{P}\left(\Lambda_{n}\right)}\left|\int_{\Lambda_{n}} x d \mathbb{P}\right|=\frac{1_{B_{n}}}{\mathbb{P}\left(\Lambda_{n}\right)} \sum_{j=n}^{\infty} c_{j} \mathbb{P}\left(A_{j}\right) \\
& \geq \frac{c_{n} 1_{B_{n}}}{\mathbb{P}\left(\Lambda_{n}\right)} \sum_{j=n}^{\infty} \mathbb{P}\left(A_{j}\right)=\frac{c_{n}}{2} 1_{B_{n}} \quad(n=1,2, \ldots) .
\end{aligned}
$$

Consequently,

$$
y=\sum_{n=1}^{\infty} c_{n} 1_{B_{n}} \leq 2 \sum_{n=1}^{\infty}\left|\Delta_{n+1} \mathcal{A} f\right| 1_{B_{n}}=2\left\{\sum_{n=1}^{\infty}\left(\Delta_{n+1} \mathcal{A} f\right)^{2} 1_{B_{n}}\right\}^{1 / 2} \leq 2 S(\mathcal{A} f)
$$

Since $S\left(\mathcal{A}_{\mathcal{F}} f\right) \in X$, we conclude that $y \in X$ as desired.
5. Proofs of Propositions 2 and 3. Let \mathcal{P} and \mathcal{Q} be the linear operators on $L_{1}(I)$ defined respectively by

$$
(\mathcal{P} \varphi)(t)=\frac{1}{t} \int_{0}^{t} \varphi(s) d s \quad \text { and } \quad(\mathcal{Q} \varphi)(t)=\int_{t}^{1} \frac{\varphi(s)}{s} d s \quad(t \in I)
$$

It is easy to verify that

$$
\begin{equation*}
\mathcal{P} \mathcal{Q} \varphi=\mathcal{P} \varphi+\mathcal{Q} \varphi \tag{7a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Q} \mathcal{P} \varphi=\mathcal{P} \varphi+\mathcal{Q} \varphi-\int_{0}^{1} \varphi(s) d s \tag{7b}
\end{equation*}
$$

for all $\varphi \in L_{1}(I)$. Let us recall Shimogaki's Theorem. In terms of Boyd indices, it can be expressed as follows.

Shimogaki's Theorem ([14]; cf. [3]). Let Y be a rearrangement-invariant space over I. Then
(i) $\beta_{Y}<1$ if and only if \mathcal{P} is a bounded linear operator from Y into Y;
(ii) $\alpha_{Y}>0$ if and only if \mathcal{Q} is a bounded linear operator from Y into Y.

The next lemma is a variant of Shimogaki's result. Before stating it, we introduce some notation.

Notation. Let Y be an r.i. space over I. We denote by \mathfrak{D}_{Y} the collection of all nonnegative, nonincreasing, and right-continuous functions $\varphi \in Y$ such that $\mu(\varphi \neq 0) \leq 1 / 2$.

Lemma 2. Let Y be a rearrangement-invariant space over I. Then
(i) $\beta_{Y}<1$ if and only if $\mathcal{P}\left(\mathfrak{D}_{Y}\right) \subset Y$,
(ii) $\alpha_{Y}>0$ if and only if $\mathcal{Q}\left(\mathfrak{D}_{Y}\right) \subset Y$.

Proof. (i) If $\mathcal{P}(Y) \subset Y$, then the graph $\{(\varphi, \mathcal{P} \varphi) \mid \varphi \in Y\}$ is closed in $Y \times Y$, since $Y \hookrightarrow L_{1}$. Hence \mathcal{P} is a bounded linear operator if and only if $\mathcal{P}(Y) \subset Y$. Therefore, in view of Shimogaki's Theorem, it suffices to show that if $\mathcal{P}\left(\mathfrak{D}_{Y}\right) \subset Y$, then $\mathcal{P}(Y) \subset Y$.

Suppose that $\mathcal{P}\left(\mathfrak{D}_{Y}\right) \subset Y$. Given $\psi \in Y$, we choose $\lambda>0$ so large that $\mu(|\psi|>\lambda) \leq$ $1 / 2$, and let $\varphi=\psi^{*} 1_{\left\{\psi^{*}>\lambda\right\}}$. Then $\varphi \in \mathfrak{D}_{Y}$ and therefore $\mathcal{P} \varphi \in Y$. On the other hand, by the Hardy-Littlewood inequality (2), we have that

$$
\begin{aligned}
|(\mathcal{P} \psi)(t)| & \leq \frac{1}{t} \int_{0}^{t}|\psi(s)| d s \leq \frac{1}{t} \int_{0}^{t} \psi^{*}(s) d s \\
& \leq \frac{1}{t} \int_{0}^{t}\{\varphi(s)+\lambda\} d s=(\mathcal{P} \varphi)(t)+\lambda \quad(t \in I)
\end{aligned}
$$

Since $\mathcal{P} \varphi+\lambda \in Y$, we conclude that $\mathcal{P} \psi \in Y$, as desired.
(ii) As in the proof of (i), we see that \mathcal{Q} is a bounded linear operator from Y into Y if and only if $\mathcal{Q}(Y) \subset Y$. Hence it suffices to show that if $\mathcal{Q}\left(\mathfrak{D}_{Y}\right) \subset Y$, then $\mathcal{Q}(Y) \subset Y$.

Suppose that $\mathcal{Q}\left(\mathfrak{D}_{Y}\right) \subset Y$. Given $\psi \in Y$, we let $\varphi_{1}=\psi^{*} 1_{(0,1 / 2)}$ and $\varphi_{2}=\psi^{*} 1_{[1 / 2,1]}$. Then $\varphi_{1} \in \mathfrak{D}_{Y}$ and hence $\mathcal{Q} \varphi_{1} \in Y$. As for φ_{2}, it is easy to see that $\mathcal{Q} \varphi_{2} \leq 2\|\psi\|_{1}$ on I. Therefore $\mathcal{Q} \varphi_{2} \in L_{\infty}(I) \subset Y$. Thus $\mathcal{Q} \psi^{*}=\mathcal{Q} \varphi_{1}+\mathcal{Q} \varphi_{2} \in Y$. On the other hand, by the Hardy-Littlewood inequality (1), we have that

$$
\int_{0}^{t}(\mathcal{Q}|\psi|)(s) d s=\int_{0}^{1} \frac{t \wedge s}{s}|\psi(s)| d s \leq \int_{0}^{1} \frac{t \wedge s}{s} \psi^{*}(s) d s=\int_{0}^{t}\left(\mathcal{Q} \psi^{*}\right)(s) d s
$$

for all $t \in I$. This can be written as $\mathcal{Q}|\psi| \prec \mathcal{Q} \psi^{*}$. Since $\mathcal{Q} \psi^{*} \in Y$, we conclude from ($\mathrm{R} 1^{\prime}$) that $|\mathcal{Q} \psi| \leq \mathcal{Q}|\psi| \in Y$. This completes the proof.

In order to prove Propositions 2 and 3, we need one more lemma.
LEMMA 3. If x is a nonnegative integrable random variable on Ω, then there exists a family $\{A(t) \mid t \in I\}$ of sets in Σ satisfying the following conditions:
(i) $A(s) \subset A(t)$ whenever $0<s<t \leq 1$;
(ii) $\mathbb{P}(A(t))=t$ for all $t \in I$;
(iii) $\left\{x>x^{*}(t)\right\} \subset A(t) \subset\left\{x \geq x^{*}(t)\right\}$;
(iv) $\int_{A(t)} x d \mathbb{P}=\int_{0}^{t} x^{*}(s) d s$ for all $t \in I$.

See [2, p. 46] for a proof.
Proof of Proposition 2. We may assume that X is equipped with an r.i. norm. In view of Lemma 2 , we show that $\mathcal{P} \varphi \in \widehat{X}$ whenever $\varphi \in \mathfrak{D}_{\widehat{X}}$, where \widehat{X} is the Luxemburg representation of X. If $\varphi \in L_{\infty}(I)$, then $\mathcal{P} \varphi \in L_{\infty}(I) \subset \widehat{X}$. Hence we may assume $\varphi \notin L_{\infty}(I)$. Because Ω is nonatomic and $\mu(\varphi \neq 0) \leq 1 / 2$, there are nonnegative random variables x and y such that $x \wedge y=0$ a.s. and $x^{*}=y^{*}=\varphi$ on I. (See [4, p. 44].) Then $x, y \in X$, since $x^{*}=y^{*} \in \widehat{X}$. By Lemma 3, there are increasing families $\{A(t) \mid 0<t \leq 1 / 2\}$ and $\{B(t) \mid 0<t \leq 1 / 2\}$ of sets in Σ such that

$$
\begin{array}{cc}
\mathbb{P}(A(t))=\mathbb{P}(B(t))=t & (0<t \leq 1 / 2), \\
\left\{x>x^{*}(t)\right\} \subset A(t) \subset\left\{x \geq x^{*}(t)\right\} & (0<t \leq 1 / 2), \\
\left\{y>x^{*}(t)\right\} \subset B(t) \subset\left\{y \geq x^{*}(t)\right\} & (0<t \leq 1 / 2), \tag{8c}
\end{array}
$$

and

$$
\begin{equation*}
\int_{A(t)} x d \mathbb{P}=\int_{B(t)} y d \mathbb{P}=\int_{0}^{t} x^{*}(s) d s \quad(0<t \leq 1 / 2) . \tag{8d}
\end{equation*}
$$

We define a sequence of numbers in the interval ($0,1 / 2$] by setting

$$
\begin{aligned}
& t_{0}=\mu(\varphi \neq 0)=\sup \left\{t \in I \mid x^{*}(t)>0\right\} \\
& t_{n}=\sup \left\{t \in I \mid\left(\mathcal{P} x^{*}\right)(t)>2\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)\right\} \quad(n=1,2, \ldots)
\end{aligned}
$$

Then, since $\mathcal{P} x^{*}$ is continuous and $\left(\mathcal{P} x^{*}\right)(t) \rightarrow \infty$ as $t \rightarrow 0+$,

$$
\begin{equation*}
\left(\mathcal{P} x^{*}\right)\left(t_{n}\right)=2\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right) \quad(n=1,2, \ldots) \tag{9}
\end{equation*}
$$

This implies that $t_{n} \downarrow 0$. Note that $A\left(t_{0}\right) \cap B\left(t_{0}\right)=\{x>0\} \cap\{y>0\}=\emptyset$ a.s. Setting $\Lambda_{n}=A\left(t_{n}\right) \cup B\left(t_{n}\right)$ for each $n \in \mathbb{Z}_{+}$, we define $\mathcal{F}=\left(\mathcal{F}_{n}\right) \in \mathbb{F}$ again by (5). Let $f_{\infty}=x-y$ and let $f=\left(f_{n}\right)$ be the martingale defined by (6). Then, since $\Delta_{n} f=f_{\infty} 1_{\Lambda_{n-1} \backslash \Lambda_{n}}(n=$ $1,2, \ldots)$, we see that $S(f)=\left|f_{\infty}\right|=x+y \in X$. Therefore $S(\mathcal{A} f) \in X$ by hypothesis. On the other hand, by (8d) we have that

$$
\begin{aligned}
\mathcal{A} f_{n} & =\frac{1_{\Lambda_{n}}}{\mathbb{P}\left(\Lambda_{n}\right)} \int_{\Lambda_{n}}(x+y) d \mathbb{P}+\left|f_{\infty}\right| 1_{\Omega \backslash \Lambda_{n}} \\
& =\left(\mathcal{P} x^{*}\right)\left(t_{n}\right) 1_{\Lambda_{n}}+\left|f_{\infty}\right| 1_{\Omega \backslash \Lambda_{n}} \quad\left(n \in \mathbb{Z}_{+}\right) .
\end{aligned}
$$

Hence by (9),

$$
\Delta_{n} \mathcal{A} f=\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right) 1_{\Lambda_{n}}+\left\{\left|f_{\infty}\right|-\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)\right\} 1_{\Lambda_{n-1} \backslash \Lambda_{n}} \quad\left(n \in \mathbb{Z}_{+}\right)
$$

As a result,

$$
\begin{equation*}
\left(\mathcal{P} x^{*}\right)\left(t_{n+1}\right) 1_{\Lambda_{n}}=4\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right) 1_{\Lambda_{n}} \leq 4\left|\Delta_{n} \mathcal{A} f\right| \quad(n=1,2, \ldots) \tag{10}
\end{equation*}
$$

We also have $\left(\mathcal{P} x^{*}\right)\left(t_{1}\right) 1_{\Lambda_{0}}=2\left(\mathcal{P} x^{*}\right)\left(t_{0}\right) 1_{\Lambda_{0}}=2 \mathcal{A} f_{0}$. Thus (10) remains valid for $n=0$. Since $\left(\mathcal{P} x^{*}\right)\left(2 t_{n+1}\right) \leq\left(\mathcal{P} x^{*}\right)\left(t_{n+1}\right)$, it follows from (10) that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\mathcal{P} x^{*}\right)\left(2 t_{n+1}\right) 1_{\Lambda_{n} \backslash \Lambda_{n+1}} \leq\left\{\sum_{n=0}^{\infty}\left(\mathcal{P} x^{*}\right)\left(t_{n+1}\right)^{2} 1_{\Lambda_{n}}\right\}^{1 / 2} \leq 4 S(\mathcal{A} f) \in X \tag{11}
\end{equation*}
$$

Observe that

$$
\left(\sum_{n=0}^{\infty}\left(\mathcal{P} x^{*}\right)\left(2 t_{n+1}\right) 1_{\Lambda_{n} \backslash \Lambda_{n+1}}\right)^{*}(t)=\sum_{n=0}^{\infty}\left(\mathcal{P} x^{*}\right)\left(2 t_{n+1}\right) 1_{\left[2 t_{n+1}, 2 t_{n}\right)}(t),
$$

for all $t \in I$. This, together with (11), implies that

$$
\begin{aligned}
(\mathcal{P} \varphi)(t) & =\left(\mathcal{P} x^{*}\right)(t) \leq\left(\mathcal{P} x^{*}\right)\left(t \wedge\left(2 t_{0}\right)\right) \\
& \leq \sum_{n=0}^{\infty}\left(\mathcal{P} x^{*}\right)\left(2 t_{n+1}\right) 1_{\left[2 t_{n+1}, 2 t_{n}\right)}(t)+\left(\mathcal{P} x^{*}\right)\left(2 t_{0}\right) \\
& \leq 4(S(\mathcal{A} f))^{*}(t)+\frac{1}{2 t_{0}} \int_{0}^{1} \varphi(s) d s
\end{aligned}
$$

for all $t \in I$. Since the function on the right-hand side belongs to \widehat{X}, so is $\mathcal{P} \varphi$. This completes the proof.

The proof of Proposition 3 is similar to the proof of Proposition 2.
Proof of Proposition 3. By Lemma 2, it suffices to show that $\mathcal{Q} \varphi \in \widehat{X}$ whenever $\varphi \in \mathfrak{D}_{\widehat{X}}$. To this end, we may assume that $\varphi \not \equiv 0$. Since Ω is nonatomic and $\{\mathcal{Q} \varphi \neq$ $0\} \subset(0,1 / 2)$, we can find nonnegative random variables x and y such that $x^{*}=y^{*}=$ $\mathcal{Q} \varphi$ and $x \wedge y=0$ a.s. Let $\{A(t) \mid 0<t \leq 1 / 2\}$ and $\{B(t) \mid 0<t \leq 1 / 2\}$ be increasing families of sets in Σ satisfying (8a)-(8d). Now we define a sequence in ($0,1 / 2$] by setting

$$
\begin{aligned}
& t_{0}=\mu(\mathcal{Q} \varphi \neq 0)=\sup \left\{t \in I \mid x^{*}(t)>0\right\} \\
& t_{n}=\sup \left\{t \in I \mid\left(\mathcal{P} x^{*}\right)(t)>\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)+1 / n\right\} \quad(n=1,2, \ldots)
\end{aligned}
$$

Then, since $\left(\mathcal{P} x^{*}\right)(t) \geq x^{*}(t) \rightarrow \infty$ as $t \rightarrow 0+$ and $\mathcal{P} x^{*}$ is continuous,

$$
\left(\mathcal{P} x^{*}\right)\left(t_{n}\right)=\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)+\frac{1}{n} \quad(n=1,2, \ldots)
$$

Hence $t_{n} \downarrow 0$. We also have $A\left(t_{0}\right) \cap B\left(t_{0}\right)=\emptyset$ a.s. As before, let $\Lambda_{n}=A\left(t_{n}\right) \cup B\left(t_{n}\right)$ for $n \in \mathbb{Z}_{+}$and define $\mathcal{F}=\left(\mathcal{F}_{n}\right) \in \mathbb{F}$ by (5). Let $f_{\infty}=x-y$ and let $f=\left(f_{n}\right)$ be the martingale defined by (6). Then $S(f)=\left|f_{\infty}\right|=x+y \geq x$ and therefore $\mathcal{Q} \varphi=x^{*} \leq(S(f))^{*}$ on I. Thus the proof will be complete if we can show that $(S(f))^{*} \in \widehat{X}$.

As observed before, $\mathcal{A} f_{n}=\left(\mathcal{P} x^{*}\right)\left(t_{n}\right) 1_{\Lambda_{n}}+\left|f_{\infty}\right| 1_{\Omega \backslash \Lambda_{n}}$, and therefore

$$
\begin{equation*}
\Delta_{n} \mathcal{A} f=\frac{1_{\Lambda_{n}}}{n}+\left\{\left|f_{\infty}\right|-\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)\right\} 1_{\Lambda_{n-1} \backslash \Lambda_{n}} \quad(n=1,2, \ldots) \tag{12}
\end{equation*}
$$

Since $x^{*}\left(t_{n-1}\right) \leq x \leq x^{*}\left(t_{n}\right)$ on the set $A\left(t_{n-1}\right) \backslash A\left(t_{n}\right)$ by (8 b), we find that

$$
\begin{aligned}
-\frac{1}{n} & \leq\left(\mathcal{P} x^{*}\right)\left(t_{n}\right)-x^{*}\left(t_{n}\right)-\frac{1}{n} \\
& =\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x^{*}\left(t_{n}\right) \\
& \leq\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x \\
& \leq\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x^{*}\left(t_{n-1}\right) \quad \text { on } A\left(t_{n-1}\right) \backslash A\left(t_{n}\right) .
\end{aligned}
$$

As a result,

$$
\left|x-\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)\right| \leq\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x^{*}\left(t_{n-1}\right)+\frac{1}{n} \quad \text { on } A\left(t_{n-1}\right) \backslash A\left(t_{n}\right) .
$$

In the same way, we see that

$$
\left|y-\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)\right| \leq\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x^{*}\left(t_{n-1}\right)+\frac{1}{n} \quad \text { on } B\left(t_{n-1}\right) \backslash B\left(t_{n}\right) .
$$

Since $\mathcal{P} x^{*}-x^{*}=\mathcal{P} \mathcal{Q} \varphi-\mathcal{Q} \varphi=\mathcal{P} \varphi$ by (7a), it follows that

$$
\| f_{\infty}\left|-\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)\right| \leq(\mathcal{P} \varphi)\left(t_{n-1}\right)+\frac{1}{n} \quad \text { on } \Lambda_{n-1} \backslash \Lambda_{n}
$$

Combining this with (12) gives

$$
\left|\Delta_{n} \mathcal{A} f\right| \leq \frac{1}{n}+(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\Lambda_{n-1} \backslash \Lambda_{n}} \quad(n=1,2, \ldots)
$$

Moreover

$$
\left|\Delta_{0} \mathcal{A} f\right|=\left|\mathcal{A} f_{0}\right| \equiv\left(\mathcal{P} x^{*}\right)\left(t_{0}\right)=\frac{1}{t_{0}}\left\|x^{*}\right\|_{1}=\frac{1}{t_{0}}\|\mathcal{Q} \varphi\|_{1}=\frac{1}{t_{0}}\|\varphi\|_{1} .
$$

Therefore

$$
\begin{aligned}
S(\mathcal{A} f) & \leq\left\{\left(\frac{1}{t_{0}}\|\varphi\|_{1}\right)^{2}+\sum_{n=1}^{\infty}\left(\frac{1}{n}+(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\Lambda_{n-1} \backslash \Lambda_{n}}\right)^{2}\right\}^{1 / 2} \\
& \leq \frac{1}{t_{0}}\|\varphi\|_{1}+\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2}+\sum_{n=1}^{\infty}(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\Lambda_{n-1} \backslash \Lambda_{n}} .
\end{aligned}
$$

Because

$$
\left(\sum_{n=1}^{\infty}(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\Lambda_{n-1} \backslash \Lambda_{n}}\right)^{*}(t)=\sum_{n=1}^{\infty}(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\left[2 t_{n}, 2 t_{n-1}\right)}(t) \leq(\mathcal{P} \varphi)(t / 2)=\left(D_{1 / 2} \mathcal{P} \varphi\right)(t)
$$

for all $t \in I$, we obtain

$$
(S(\mathcal{A} f))^{*}(t) \leq \frac{1}{t_{0}}\|\varphi\|_{1}+\frac{\pi}{\sqrt{6}}+\left(D_{1 / 2} \mathcal{P} \varphi\right)(t) \quad(t \in I)
$$

Since $\varphi \in \widehat{X}$ and $\beta_{\widehat{X}}=\beta_{X}<1$, Shimogaki's Theorem yields that $\mathcal{P} \varphi \in \widehat{X}$ and hence $D_{1 / 2} \mathcal{P} \varphi \in \widehat{X}$. Consequently, $(S(\mathcal{A} f))^{*} \in \widehat{X}$, or equivalently $S(\mathcal{A} f) \in X$. The hypothesis implies that $S(f) \in X$ and hence that $(S(f))^{*} \in \widehat{X}$. This completes the proof.

REFERENCES

1. A. Antipa, Doob's inequality for rearrangement-invariant function spaces, Rev. Roumaine Math. Pures Appl. 35 (1990), 101-108.
2. C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics 129 (Academic Press, 1988).
3. D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245-1254.
4. K. M. Chong and N. M. Rice, Equimeasurable rearrangements of functions, Queen's Papers in Pure and Appl. Math. 28 (Queen's Univ., Kingston, Ontario, 1971).
5. W. B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces, Israel J. Math. 64 (1988), 267-275.
6. M. Kikuchi, Averaging operators and martingale inequalities in rearrangement invariant function spaces, Canad. Math. Bull. 42 (1999), 321-334.
7. M. Kikuchi, A classification of martingale Hardy spaces associated with rearrangementinvariant function spaces, Arch. Math. (Basel), to appear.
8. M. Kikuchi, Characterization of Banach function spaces that preserve the Burkholder square-function inequality, Illinois J. Math., to appear.
9. R. L. Long, Martingale spaces and inequalities (Peking Univ. Press, 1993).
10. W. A. J. Luxemburg, Rearrangement-invariant Banach function spaces, in Proc. Sympos. in Analysis, Queen's Papers in Pure and Appl. Math. 10, (Queen's Univ., Kingston, Ontario, 1967), 83-144.
11. I. Novikov, Martingale inequalities in rearrangement invariant function spaces, in Function spaces (Poznań, 1989), Teubner-Texte Math. 120, (Teubner, Stuttgart, 1991), 120 127.
12. N. Popa, Duals of dyadic Hardy spaces generated by a rearrangement invariant function space X, Rev. Roumaine Math. Pures Appl. 33 (1988), 769-778.
13. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics No. 146, (Marcel Dekker, 1991).
14. T. Shimogaki, Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan 17 (1965), 365-373.
