A CHARACTERIZATION OF BANACH FUNCTION SPACES ASSOCIATED WITH MARTINGALES

MASATO KIKUCHI

Department of Mathematics, Toyama University, Gofuku 3190, Toyama 930-8555, Japan e-mail: kikuchi@sci.toyama-u.ac.jp

(Received 21 October, 2002; accepted 18 February, 2003)

Abstract. Let $(\Omega, \Sigma, \mathbb{P})$ be a nonatomic probability space and let $\mathcal{F} = (\mathcal{F}_n)_{n \in \mathbb{Z}_+}$ be a filtration. If $f = (f_n)_{n \in \mathbb{Z}_+}$ is a uniformly integrable \mathcal{F} -martingale, let $\mathcal{A}_{\mathcal{F}}f = (\mathcal{A}_{\mathcal{F}}f_n)_{n \in \mathbb{Z}_+}$ denote the martingale defined by $\mathcal{A}_{\mathcal{F}}f_n = \mathbb{E}[|f_{\infty}||\mathcal{F}_n]$ $(n \in \mathbb{Z}_+)$, where $f_{\infty} = \lim_{n \in \mathbb{Z}_+} f_n$ a.s. Let *X* be a Banach function space over Ω . We give a necessary and sufficient condition for *X* to have the property that $S(f) \in X$ if and only if $S(\mathcal{A}_{\mathcal{F}}f) \in X$, where S(f) stands for the square function of $f = (f_n)$.

2000 Mathematical Subject Classification. 46E30, 60G42.

1. Introduction. Let $(\Omega, \Sigma, \mathbb{P})$ be a nonatomic probability space and let $\mathcal{F} = (\mathcal{F}_n)_{n \in \mathbb{Z}_+}$ be a filtration; i.e., an increasing sequence of sub- σ -algebras of Σ . If $f = (f_n)_{n \in \mathbb{Z}_+}$ is a uniformly integrable \mathcal{F} -martingale, we let $\mathcal{A}f \equiv \mathcal{A}_{\mathcal{F}}f = (\mathcal{A}_{\mathcal{F}}f_n)_{n \in \mathbb{Z}_+}$ denote the \mathcal{F} -martingale defined by

$$\mathcal{A}f_n \equiv \mathcal{A}_{\mathcal{F}}f_n = \mathbb{E}[|f_{\infty}|| \mathcal{F}_n] \qquad (n \in \mathbb{Z}_+),$$

where $f_{\infty} = \lim_{n \to \infty} f_n$ almost surely (a.s.) on Ω . If $f = (f_n)_{n \in \mathbb{Z}_+}$ is a martingale, we denote by S(f) the square function of f. Let us recall Burkholder's inequality: if $1 , then there are positive constants <math>c_p$ and C_p such that

$$c_p \|f_{\infty}\|_p \le \|S(f)\|_p \le C_p \|f_{\infty}\|_p$$

for all uniformly integrable martingales $f = (f_n)$ (with the convention that $||x||_p = \infty$ unless $x \in L_p$). It then follows that $S(f) \in L_p$ if and only if $S(\mathcal{A}f) \in L_p$. There are similar results for other function spaces. For example, let L_{Φ} be the Orlicz space generated by an *N*-function Φ satisfying the Δ_2 - and ∇_2 -conditions. (See e.g. [13, p. 22].) Then $S(f) \in L_{\Phi}$ if and only if $S(\mathcal{A}f) \in L_{\Phi}$. This follows from the Burkholder-Davis-Gundy inequality and the Doob inequality in L_{Φ} ([9, p. 89, p. 96]).

Now let X be a Banach function space over Ω . (See Definition 1 below.) Our aim is to find a necessary and sufficient condition for X to have the property that $S(f) \in X$ if and only if $S(\mathcal{A}f) \in X$. (See Theorem 1.)

Such a problem concerning the maximal function $M(f) = \sup_n |f_n|$ of f has been studied. As in [7], we can prove that the following statements are equivalent.

(i) $M(f) \in X$ if and only if $M(\mathcal{A}f) \in X$.

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research, No. 14540164, 2002.

MASATO KIKUCHI

(ii) X is rearrangement-invariant and can be renormed with a rearrangement-invariant norm for which the upper Boyd index is less than 1.

2. Preliminaries. We shall deal with martingales on a (fixed) *nonatomic* probability space $(\Omega, \Sigma, \mathbb{P})$. Let *I* denote the interval (0, 1] and let μ be Lebesgue measure on the σ -algebra \mathfrak{M} of measurable subsets of *I*. In order to deal with the two probability spaces $(\Omega, \Sigma, \mathbb{P})$ and (I, \mathfrak{M}, μ) at the same time, we shall work with an arbitrary nonatomic probability space $(R, \mathfrak{R}, \lambda)$ throughout this section.

Let X and Y be Banach spaces of (equivalence classes of) random variables on R. We write $X \hookrightarrow Y$ to mean that X is continuously embedded in Y; i.e., $X \subset Y$ and $||x||_Y \le c ||x||_X$, for all $x \in X$ and some positive constant c.

DEFINITION 1. A real Banach space $(X, \|\cdot\|_X)$ of random variables on *R* is called a *Banach function space* if it has the following properties:

(B1) $L_{\infty} \hookrightarrow X \hookrightarrow L_1;$ (B2) $x \in X, |y| \le |x|$ a.s. $\Longrightarrow y \in X, ||y||_X \le ||x||_X;$ (B3) $x_n \in X, \ 0 \le x_n \uparrow x$ a.s., $\sup_n ||x_n||_X < \infty$ $\Longrightarrow x \in X, ||x||_X = \sup_n ||x_n||_X.$

From (B2) it follows that $x \in X$ if and only if $|x| \in X$, and also that $||x||_X = |||x|||_X$ for all $x \in X$.

Let x be a random variable on R. The *nonincreasing rearrangement* of x is the function $x^*(t)$ on I = (0, 1] defined by

$$x^*(t) = \inf\{s > 0 \mid \lambda(|x| > s) \le t\} \qquad (t \in I).$$

Notice that x^* is a unique right-continuous nonincreasing function on *I* that has the same distribution (with respect to μ) as |x|.

Let x and y be random variables on R. The inequality

$$\int_{R} |xy| \, d\lambda \le \int_{0}^{1} x^{*}(s) y^{*}(s) \, ds \tag{1}$$

is fundamental and called the *Hardy-Littlewood inequality*. (See, for example, [2, p. 44].) In particular, if $A \in \Re$, then

$$\int_{A} |x| \, d\lambda \le \int_{0}^{\lambda(A)} x^*(s) \, ds. \tag{2}$$

Again let x and y be random variables on R. We write $y \prec x$ to mean that

$$\int_0^t y^*(s) \, ds \le \int_0^t x^*(s) \, ds \quad \text{for all } t \in I.$$

Note that if $y \prec x$ and $x \prec y$, then $x^* = y^*$ on *I*: in this case, we write $x \simeq_d y$. Thus $x \simeq_d y$ if and only if x and y are identically distributed.

DEFINITION 2. Let X be a Banach function space equipped with the norm $\|\cdot\|_X$. We say that X is *rearrangement-invariant* (r.i.) if

(R1)
$$x \in X, \ x \simeq_d y \Longrightarrow y \in X.$$

We say that X is equipped with a rearrangement-invariant norm (or an r.i. norm) if

(R2)
$$x, y \in X, x \simeq_d y \Longrightarrow ||x||_X = ||y||_X.$$

Using (B2), (B3), and (R2), we can easily verify that if X is equipped with an r.i. norm, then the space X is r.i. The converse is false in general. However, if X is r.i., then there exists an r.i. norm $\||\cdot\||_X$ on X such that $\|\cdot\|_X \approx \||\cdot\||_X$ (i.e., these norms are equivalent). See [10, p. 138] for details.

Since the underlying probability space Ω is nonatomic, we can replace (R1) by

$$(\mathbf{R}1') \qquad \qquad x \in X, \ y \prec x \Longrightarrow y \in X,$$

and (R2) by

$$(\mathbf{R2}') \qquad x, y \in X, y \prec x \Longrightarrow \|y\|_X \le \|x\|_X.$$

For details, see [10, Section 11].

Now let us recall the Luxemburg representation theorem. If X is an r.i. space equipped with an r.i. norm $\|\cdot\|_X$, then there exists a unique r.i. space $(\widehat{X}, \|\cdot\|_{\widehat{X}})$ over I equipped with an r.i. norm such that

- (i) $x \in X \iff x^* \in \widehat{X}$,
- (ii) $||x||_X = ||x^*||_{\widehat{X}}$ for all $x \in X$.

We call \hat{X} the Luxemburg representation of X. See [2, pp. 62–64].

Now we recall the definition of Boyd indices. For each positive number *s*, the *dilation operator* D_s , acting on the space of measurable functions on *I*, is defined as follows: if $t \in I$, then

$$(D_s\varphi)(t) = \begin{cases} \varphi(st) & \text{if } st \in I, \\ 0 & \text{otherwise.} \end{cases}$$

If Y is an r.i. space over I equipped with an r.i. norm, then each D_s is a bounded linear operator from Y into Y and $||D_s||_{B(Y)} \le 1 \lor s^{-1}$, where $||D_s||_{B(Y)}$ denotes the operator norm of D_s : $Y \to Y$. The *lower* and *upper Boyd indices* are defined by

$$\alpha_{Y} = \sup_{0 < s < 1} \frac{\log \|D_{s^{-1}}\|_{B(Y)}}{\log s} = \lim_{s \to 0+} \frac{\log \|D_{s^{-1}}\|_{B(Y)}}{\log s}$$

and

$$\beta_Y = \inf_{1 < s < \infty} \frac{\log \|D_{s^{-1}}\|_{B(Y)}}{\log s} = \lim_{s \to \infty} \frac{\log \|D_{s^{-1}}\|_{B(Y)}}{\log s},$$

respectively. If X is an r.i. space over Ω equipped with an r.i. norm, then the Boyd indices of X are defined as $\alpha_X = \alpha_{\widehat{X}}$ and $\beta_X = \beta_{\widehat{X}}$. Moreover, if X is an arbitrary r.i. space over Ω , then the Boyd indices of X are defined to be those of $(X, ||| \cdot |||_X)$, where $||| \cdot ||_X$ is an r.i. norm such that $|| \cdot || \approx ||| \cdot |||_X$.

For any r.i. space X, we have $0 \le \alpha_X \le \beta_X \le 1$. See [3] or [2, p. 149]. For example, $\alpha_{L_{\infty}} = \beta_{L_{\infty}} = 0$, and $\alpha_{L_p} = \beta_{L_p} = 1/p$ whenever $1 \le p < \infty$.

MASATO KIKUCHI

Let $\mathcal{F} = (\mathcal{F}_n)_{n \in \mathbb{Z}_+}$ be a filtration. If $f = (f_n)_{n \in \mathbb{Z}_+}$ is an \mathcal{F} -martingale, we let

$$\Delta_0 f = f_0, \quad \Delta_n f = f_n - f_{n-1} \quad (n = 1, 2, ...), \quad \text{and} \quad S(f) = \left\{ \sum_{n=0}^{\infty} (\Delta_n f)^2 \right\}^{1/2}$$

Given a Banach function space X over Ω , we denote by $\mathcal{H}_{\mathcal{F}}(X)$ the vector space consisting of all \mathcal{F} -martingales $f = (f_n)$ such that $S(f) \in X$. Since $X \hookrightarrow L_1$, every martingale in $\mathcal{H}_{\mathcal{F}}(X)$ is uniformly integrable. If we set $||f||_{\mathcal{H}_{\mathcal{F}}(X)} = ||S(f)||_X$ for $f \in \mathcal{H}_{\mathcal{F}}(X)$, then $\mathcal{H}_{\mathcal{F}}(X)$ forms a Banach space with this norm; see [12].

3. Main results. From now on we shall consider a fixed Banach function space $(X, \|\cdot\|_X)$ over Ω , and adopt the convention that $\|x\|_X = \infty$ unless $x \in X$. We denote by \mathbb{F} the collection of all filtrations $\mathcal{F} = (\mathcal{F}_n)_{n \in \mathbb{Z}_+}$ such that $\Sigma = \sigma(\bigcup_{n=0}^{\infty} \mathcal{F}_n)$.

THEOREM 1. The following are equivalent.

(i) For any $\mathcal{F} = (\mathcal{F}_n) \in \mathbb{F}$,

$$f = (f_n) \in \mathcal{H}_{\mathcal{F}}(X) \Longleftrightarrow \mathcal{A}_{\mathcal{F}}f = (\mathcal{A}_{\mathcal{F}}f_n) \in \mathcal{H}_{\mathcal{F}}(X).$$

(ii) There are positive constants c and C, depending only on X, such that

$$c \|f_{\infty}\|_{X} \le \|S(f)\|_{X} \le C \|f_{\infty}\|_{X},$$
(3)

for all uniformly integrable martingales f.

(iii) X is rearrangement-invariant and can be renormed with a rearrangement-invariant norm for which $0 < \alpha_X \le \beta_X < 1$.

It was shown by Antipa [1] that (iii) implies (ii). See also [5], [6] and [11]. Furthermore we see from our convention that (ii) implies (i). Indeed if (ii) holds, then

$$S(f) \in X \iff f_{\infty} \in X \iff |f_{\infty}| \in X \iff S(\mathcal{A}_{\mathcal{F}}f) \in X.$$

Thus, to prove Theorem 1, it suffices to show that (i) implies (iii). To this end, we shall prove Propositions 1, 2, and 3 below. Incidentally, we can prove directly that (ii) implies (iii), as in [8].

PROPOSITION 1. If X satisfies the condition that

$$f \in \mathcal{H}_{\mathcal{F}}(X) \Longrightarrow \mathcal{A}_{\mathcal{F}}f \in \mathcal{H}_{\mathcal{F}}(X),\tag{4}$$

for any $\mathcal{F} = (\mathcal{F}_n) \in \mathbb{F}$, then X is rearrangement-invariant.

PROPOSITION 2. Suppose that X is rearrangement-invariant. If X satisfies (4) for any $\mathcal{F} = (\mathcal{F}_n) \in \mathbb{F}$, then $\beta_X < 1$.

PROPOSITION 3. Suppose that X is rearrangement-invariant. If $\beta_X < 1$ and if X satisfies the condition that

$$\mathcal{A}_{\mathcal{F}}f \in \mathcal{H}_{\mathcal{F}}(X) \Longrightarrow f \in \mathcal{H}_{\mathcal{F}}(X),$$

for any $\mathcal{F} = (\mathcal{F}_n) \in \mathbb{F}$, then $\alpha_X > 0$.

146

4. Proof of Proposition 1. We begin with a lemma.

LEMMA 1. The following are equivalent.

(i) X is rearrangement-invariant.

(ii) Let x and y be nonnegative integer-valued random variables such that $x \simeq_d y$ and $x \wedge y = 0$ a.s. If $x \in X$, then $y \in X$.

Proof. It suffices to show that (ii) implies (R1) of Definition 2. Suppose that $x \simeq_d y$ and $x \in X$. We must show that $y \in X$. If $x \in L_{\infty}$, then $y \in L_{\infty} \subset X$. Hence we deal with the case in which $x \notin L_{\infty}$. Choose an integer *n* so large that $\mathbb{P}(x \ge n) \le 1/3$. If we set

$$x' = \sum_{j=n}^{\infty} j \mathbb{1}_{\{j \le x < j+1\}}$$
 and $y' = \sum_{j=n}^{\infty} j \mathbb{1}_{\{j \le y < j+1\}}$,

then $x' \le x \in X$ and $x' \simeq_d y'$. Since $\mathbb{P}(x' = 0, y' = 0) = \mathbb{P}(x < n, y < n) \ge 1/3$ and the set $\{x' = 0, y' = 0\}$ contains no atom, we can find a random variable z such that $z \simeq_d x'$ and $\{z > 0\} \subset \{x' = 0, y' = 0\}$. (See [4, p. 44].) From (ii) we see first that $z \in X$ and then that $y' \in X$. Since $y \le n + 1 + y' \in X$, we conclude that $y \in X$, completing the proof.

Proof of Proposition 1. It suffices to show that (ii) of Lemma 1 holds. Let $\{c_j\}_{j=1}^{\infty}$ be a sequence of integers such that $0 < c_1 < c_2 < \cdots$; let $\{A_j\}_{j=1}^{\infty}$ and $\{B_j\}_{j=1}^{\infty}$ be pairwise disjoint sequences of sets in Σ such that

$$\left(\bigcup_{j=1}^{\infty} A_j\right) \cap \left(\bigcup_{j=1}^{\infty} B_j\right) = \emptyset$$
 and $\mathbb{P}(A_j) = \mathbb{P}(B_j)$ for all $j = 1, 2, ...$

We must show that if $x := \sum_{j=1}^{\infty} c_j \mathbf{1}_{A_j} \in X$, then $y := \sum_{j=1}^{\infty} c_j \mathbf{1}_{B_j} \in X$. Setting $\Lambda_0 = \Omega$ and $\Lambda_n = \bigcup_{j=n}^{\infty} (A_j \cup B_j)$ for $n \ge 1$, we define $\mathcal{F} = (\mathcal{F}_n) \in \mathbb{F}$ by

$$\mathcal{F}_n = \sigma\{\Lambda \setminus \Lambda_n \mid \Lambda \in \Sigma\} \qquad (n \in \mathbb{Z}_+).$$
(5)

For each $j \in \mathbb{Z}_+$ we divide A_j into two parts with the same measure; that is, let A_{j1} and A_{j2} be measurable subsets of A_j such that

$$A_j = A_{j1} \cup A_{j2}, \quad A_{j1} \cap A_{j2} = \emptyset, \text{ and } \mathbb{P}(A_{j1}) = \mathbb{P}(A_{j2}).$$

Let $x_k = \sum_{j=1}^{\infty} c_j \mathbf{1}_{A_{jk}}$ (k = 1, 2), let $f_{\infty} = x_1 - x_2$, and let $f = (f_n)_{n \in \mathbb{Z}_+}$ be the martingale defined by

$$f_n = \mathbb{E}[f_{\infty} \mid \mathcal{F}_n] = f_{\infty} \mathbb{1}_{\Omega \setminus \Lambda_n} \qquad (n \in \mathbb{Z}_+).$$
(6)

Then, since $\Delta_0 f = f_0 \equiv 0$ and $\Delta_n f = f_\infty \mathbb{1}_{\Lambda_{n-1} \setminus \Lambda_n}$ $(n \ge 1)$, we see that $S(f) = |f_\infty| = x \in X$; that is, $f \in \mathcal{H}_{\mathcal{F}}(X)$. Hence $\mathcal{A}f = \mathcal{A}_{\mathcal{F}}f \in \mathcal{H}_{\mathcal{F}}(X)$ or equivalently $S(\mathcal{A}_{\mathcal{F}}f) \in X$, by hypothesis. Observe that

$$\mathcal{A}f_n = \mathbb{E}[x \mid \mathcal{F}_n] = \frac{1_{\Lambda_n}}{\mathbb{P}(\Lambda_n)} \int_{\Lambda_n} x \, d\mathbb{P} + x \mathbf{1}_{\Omega \setminus \Lambda_n} \qquad (n \in \mathbb{Z}_+).$$

Then we have

$$\Delta_{n+1}\mathcal{A}f = \left\{ \frac{1}{\mathbb{P}(\Lambda_{n+1})} \int_{\Lambda_{n+1}} x \, d\mathbb{P} - \frac{1}{\mathbb{P}(\Lambda_n)} \int_{\Lambda_n} x \, d\mathbb{P} \right\} \mathbf{1}_{\Lambda_{n+1}} \\ + \left\{ x - \frac{1}{\mathbb{P}(\Lambda_n)} \int_{\Lambda_n} x \, d\mathbb{P} \right\} \mathbf{1}_{\Lambda_n \setminus \Lambda_{n+1}} \qquad (n \in \mathbb{Z}_+).$$

Since $B_n \subset \Lambda_n \setminus \Lambda_{n+1}$ and x = 0 on B_n , we can deduce that

$$\begin{aligned} |\Delta_{n+1}\mathcal{A}f| \, \mathbf{1}_{B_n} &= \frac{\mathbf{1}_{B_n}}{\mathbb{P}(\Lambda_n)} \left| \int_{\Lambda_n} x \, d\mathbb{P} \right| = \frac{\mathbf{1}_{B_n}}{\mathbb{P}(\Lambda_n)} \, \sum_{j=n}^{\infty} c_j \, \mathbb{P}(A_j) \\ &\geq \frac{c_n \mathbf{1}_{B_n}}{\mathbb{P}(\Lambda_n)} \, \sum_{j=n}^{\infty} \mathbb{P}(A_j) = \frac{c_n}{2} \, \mathbf{1}_{B_n} \qquad (n = 1, 2, \ldots) \end{aligned}$$

Consequently,

$$y = \sum_{n=1}^{\infty} c_n \mathbf{1}_{B_n} \le 2 \sum_{n=1}^{\infty} |\Delta_{n+1}\mathcal{A}f| \mathbf{1}_{B_n} = 2 \left\{ \sum_{n=1}^{\infty} (\Delta_{n+1}\mathcal{A}f)^2 \mathbf{1}_{B_n} \right\}^{1/2} \le 2S(\mathcal{A}f).$$

Since $S(\mathcal{A}_{\mathcal{F}}f) \in X$, we conclude that $y \in X$ as desired.

5. Proofs of Propositions 2 and 3. Let \mathcal{P} and \mathcal{Q} be the linear operators on $L_1(I)$ defined respectively by

$$(\mathcal{P}\varphi)(t) = \frac{1}{t} \int_0^t \varphi(s) \, ds \quad \text{and} \quad (\mathcal{Q}\varphi)(t) = \int_t^1 \frac{\varphi(s)}{s} \, ds \qquad (t \in I)$$

It is easy to verify that

$$\mathcal{P}\mathcal{Q}\varphi = \mathcal{P}\varphi + \mathcal{Q}\varphi \tag{7a}$$

 \square

and

$$\mathcal{QP}\varphi = \mathcal{P}\varphi + \mathcal{Q}\varphi - \int_0^1 \varphi(s) \, ds, \tag{7b}$$

for all $\varphi \in L_1(I)$. Let us recall Shimogaki's Theorem. In terms of Boyd indices, it can be expressed as follows.

SHIMOGAKI'S THEOREM ([14]; cf. [3]). Let Y be a rearrangement-invariant space over I. Then

- (i) $\beta_Y < 1$ if and only if \mathcal{P} is a bounded linear operator from Y into Y;
- (ii) $\alpha_{Y} > 0$ if and only if Q is a bounded linear operator from Y into Y.

The next lemma is a variant of Shimogaki's result. Before stating it, we introduce some notation.

NOTATION. Let Y be an r.i. space over I. We denote by \mathfrak{D}_Y the collection of all nonnegative, nonincreasing, and right-continuous functions $\varphi \in Y$ such that $\mu(\varphi \neq 0) \leq 1/2$.

LEMMA 2. Let Y be a rearrangement-invariant space over I. Then (i) $\beta_Y < 1$ if and only if $\mathcal{P}(\mathfrak{D}_Y) \subset Y$,

(ii) $\alpha_Y > 0$ if and only if $\mathcal{Q}(\mathfrak{D}_Y) \subset Y$.

Proof. (i) If $\mathcal{P}(Y) \subset Y$, then the graph $\{(\varphi, \mathcal{P}\varphi) | \varphi \in Y\}$ is closed in $Y \times Y$, since $Y \hookrightarrow L_1$. Hence \mathcal{P} is a bounded linear operator if and only if $\mathcal{P}(Y) \subset Y$. Therefore, in view of Shimogaki's Theorem, it suffices to show that if $\mathcal{P}(\mathfrak{D}_Y) \subset Y$, then $\mathcal{P}(Y) \subset Y$.

Suppose that $\mathcal{P}(\mathfrak{D}_Y) \subset Y$. Given $\psi \in Y$, we choose $\lambda > 0$ so large that $\mu(|\psi| > \lambda) \le 1/2$, and let $\varphi = \psi^* \mathbb{1}_{\{\psi^* > \lambda\}}$. Then $\varphi \in \mathfrak{D}_Y$ and therefore $\mathcal{P}\varphi \in Y$. On the other hand, by the Hardy-Littlewood inequality (2), we have that

$$\begin{aligned} |(\mathcal{P}\psi)(t)| &\leq \frac{1}{t} \int_0^t |\psi(s)| \, ds \leq \frac{1}{t} \int_0^t \psi^*(s) \, ds \\ &\leq \frac{1}{t} \int_0^t \{\varphi(s) + \lambda\} \, ds = (\mathcal{P}\varphi)(t) + \lambda \qquad (t \in I). \end{aligned}$$

Since $\mathcal{P}\varphi + \lambda \in Y$, we conclude that $\mathcal{P}\psi \in Y$, as desired.

(ii) As in the proof of (i), we see that Q is a bounded linear operator from Y into Y if and only if $Q(Y) \subset Y$. Hence it suffices to show that if $Q(\mathfrak{D}_Y) \subset Y$, then $Q(Y) \subset Y$.

Suppose that $Q(\mathfrak{D}_Y) \subset Y$. Given $\psi \in Y$, we let $\varphi_1 = \psi^* \mathbf{1}_{(0, 1/2)}$ and $\varphi_2 = \psi^* \mathbf{1}_{[1/2, 1]}$. Then $\varphi_1 \in \mathfrak{D}_Y$ and hence $\mathcal{Q}\varphi_1 \in Y$. As for φ_2 , it is easy to see that $\mathcal{Q}\varphi_2 \leq 2 \|\psi\|_1$ on *I*. Therefore $\mathcal{Q}\varphi_2 \in L_{\infty}(I) \subset Y$. Thus $\mathcal{Q}\psi^* = \mathcal{Q}\varphi_1 + \mathcal{Q}\varphi_2 \in Y$. On the other hand, by the Hardy-Littlewood inequality (1), we have that

$$\int_0^t (\mathcal{Q}|\psi|)(s) \, ds = \int_0^1 \frac{t \wedge s}{s} \, |\psi(s)| \, ds \le \int_0^1 \frac{t \wedge s}{s} \, \psi^*(s) \, ds = \int_0^t (\mathcal{Q}\psi^*)(s) \, ds,$$

for all $t \in I$. This can be written as $\mathcal{Q}|\psi| \prec \mathcal{Q}\psi^*$. Since $\mathcal{Q}\psi^* \in Y$, we conclude from (R1') that $|\mathcal{Q}\psi| \leq \mathcal{Q}|\psi| \in Y$. This completes the proof.

In order to prove Propositions 2 and 3, we need one more lemma.

LEMMA 3. If x is a nonnegative integrable random variable on Ω , then there exists a family $\{A(t) | t \in I\}$ of sets in Σ satisfying the following conditions:

- (i) $A(s) \subset A(t)$ whenever $0 < s < t \le 1$;
- (ii) $\mathbb{P}(A(t)) = t$ for all $t \in I$;
- (iii) $\{x > x^*(t)\} \subset A(t) \subset \{x \ge x^*(t)\};$
- (iv) $\int_{A(t)} x d\mathbb{P} = \int_0^t x^*(s) ds$ for all $t \in I$.

See [2, p. 46] for a proof.

Proof of Proposition 2. We may assume that X is equipped with an r.i. norm. In view of Lemma 2, we show that $\mathcal{P}\varphi \in \widehat{X}$ whenever $\varphi \in \mathfrak{D}_{\widehat{X}}$, where \widehat{X} is the Luxemburg representation of X. If $\varphi \in L_{\infty}(I)$, then $\mathcal{P}\varphi \in L_{\infty}(I) \subset \widehat{X}$. Hence we may assume $\varphi \notin L_{\infty}(I)$. Because Ω is nonatomic and $\mu(\varphi \neq 0) \leq 1/2$, there are nonnegative random variables x and y such that $x \wedge y = 0$ a.s. and $x^* = y^* = \varphi$ on I. (See [4, p. 44].) Then x, $y \in X$, since $x^* = y^* \in \widehat{X}$. By Lemma 3, there are increasing families $\{A(t) \mid 0 < t \leq 1/2\}$ and $\{B(t) \mid 0 < t \leq 1/2\}$ of sets in Σ such that

$$\mathbb{P}(A(t)) = \mathbb{P}(B(t)) = t \qquad (0 < t \le 1/2), \tag{8a}$$

$$\{x > x^*(t)\} \subset A(t) \subset \{x \ge x^*(t)\} \quad (0 < t \le 1/2),$$
(8b)

$$\{y > x^*(t)\} \subset B(t) \subset \{y \ge x^*(t)\} \quad (0 < t \le 1/2),$$
(8c)

and

$$\int_{A(t)} x \, d\mathbb{P} = \int_{B(t)} y \, d\mathbb{P} = \int_0^t x^*(s) \, ds \qquad (0 < t \le 1/2).$$
(8d)

We define a sequence of numbers in the interval (0, 1/2] by setting

$$t_0 = \mu(\varphi \neq 0) = \sup\{t \in I \mid x^*(t) > 0\},\$$

$$t_n = \sup\{t \in I \mid (\mathcal{P}x^*)(t) > 2(\mathcal{P}x^*)(t_{n-1})\} \qquad (n = 1, 2, \ldots)$$

Then, since $\mathcal{P}x^*$ is continuous and $(\mathcal{P}x^*)(t) \to \infty$ as $t \to 0+$,

$$(\mathcal{P}x^*)(t_n) = 2(\mathcal{P}x^*)(t_{n-1}) \qquad (n = 1, 2, \ldots).$$
 (9)

This implies that $t_n \downarrow 0$. Note that $A(t_0) \cap B(t_0) = \{x > 0\} \cap \{y > 0\} = \emptyset$ a.s. Setting $\Lambda_n = A(t_n) \cup B(t_n)$ for each $n \in \mathbb{Z}_+$, we define $\mathcal{F} = (\mathcal{F}_n) \in \mathbb{F}$ again by (5). Let $f_\infty = x - y$ and let $f = (f_n)$ be the martingale defined by (6). Then, since $\Delta_n f = f_\infty 1_{\Lambda_{n-1} \setminus \Lambda_n}$ (n = 1, 2, ...), we see that $S(f) = |f_\infty| = x + y \in X$. Therefore $S(\mathcal{A}f) \in X$ by hypothesis. On the other hand, by (8d) we have that

$$\mathcal{A}f_n = \frac{1_{\Lambda_n}}{\mathbb{P}(\Lambda_n)} \int_{\Lambda_n} (x+y) d\mathbb{P} + |f_{\infty}| 1_{\Omega \setminus \Lambda_n}$$
$$= (\mathcal{P}x^*)(t_n) 1_{\Lambda_n} + |f_{\infty}| 1_{\Omega \setminus \Lambda_n} \qquad (n \in \mathbb{Z}_+).$$

Hence by (9),

$$\Delta_n \mathcal{A} f = (\mathcal{P} x^*)(t_{n-1}) \mathbf{1}_{\Lambda_n} + \{ |f_{\infty}| - (\mathcal{P} x^*)(t_{n-1}) \} \mathbf{1}_{\Lambda_{n-1} \setminus \Lambda_n} \qquad (n \in \mathbb{Z}_+).$$

As a result,

$$(\mathcal{P}x^*)(t_{n+1})1_{\Lambda_n} = 4(\mathcal{P}x^*)(t_{n-1})1_{\Lambda_n} \le 4 |\Delta_n \mathcal{A}f| \qquad (n = 1, 2, \ldots).$$
(10)

We also have $(\mathcal{P}x^*)(t_1)1_{\Lambda_0} = 2(\mathcal{P}x^*)(t_0)1_{\Lambda_0} = 2\mathcal{A}f_0$. Thus (10) remains valid for n = 0. Since $(\mathcal{P}x^*)(2t_{n+1}) \leq (\mathcal{P}x^*)(t_{n+1})$, it follows from (10) that

$$\sum_{n=0}^{\infty} (\mathcal{P}x^*)(2t_{n+1}) \mathbf{1}_{\Lambda_n \setminus \Lambda_{n+1}} \le \left\{ \sum_{n=0}^{\infty} (\mathcal{P}x^*)(t_{n+1})^2 \mathbf{1}_{\Lambda_n} \right\}^{1/2} \le 4S(\mathcal{A}f) \in X.$$
(11)

Observe that

$$\left(\sum_{n=0}^{\infty} (\mathcal{P}x^*)(2t_{n+1})\mathbf{1}_{\Lambda_n\setminus\Lambda_{n+1}}\right)^*(t) = \sum_{n=0}^{\infty} (\mathcal{P}x^*)(2t_{n+1})\mathbf{1}_{[2t_{n+1},2t_n)}(t),$$

for all $t \in I$. This, together with (11), implies that

$$\begin{aligned} (\mathcal{P}\varphi)(t) &= (\mathcal{P}x^*)(t) \le (\mathcal{P}x^*)(t \land (2t_0)) \\ &\le \sum_{n=0}^{\infty} (\mathcal{P}x^*)(2t_{n+1}) \mathbf{1}_{[2t_{n+1}, \, 2t_n)}(t) + (\mathcal{P}x^*)(2t_0) \\ &\le 4(S(\mathcal{A}f))^*(t) + \frac{1}{2t_0} \int_0^1 \varphi(s) \, ds, \end{aligned}$$

for all $t \in I$. Since the function on the right-hand side belongs to \widehat{X} , so is $\mathcal{P}\varphi$. This completes the proof.

BANACH FUNCTION SPACES

The proof of Proposition 3 is similar to the proof of Proposition 2.

Proof of Proposition 3. By Lemma 2, it suffices to show that $Q\varphi \in \widehat{X}$ whenever $\varphi \in \mathfrak{D}_{\widehat{X}}$. To this end, we may assume that $\varphi \neq 0$. Since Ω is nonatomic and $\{Q\varphi \neq 0\} \subset (0, 1/2)$, we can find nonnegative random variables x and y such that $x^* = y^* = Q\varphi$ and $x \land y = 0$ a.s. Let $\{A(t) \mid 0 < t \le 1/2\}$ and $\{B(t) \mid 0 < t \le 1/2\}$ be increasing families of sets in Σ satisfying (8a)–(8d). Now we define a sequence in (0, 1/2] by setting

$$t_0 = \mu(\mathcal{Q}\varphi \neq 0) = \sup\{t \in I \mid x^*(t) > 0\};$$

$$t_n = \sup\{t \in I \mid (\mathcal{P}x^*)(t) > (\mathcal{P}x^*)(t_{n-1}) + 1/n\} \qquad (n = 1, 2, ...).$$

Then, since $(\mathcal{P}x^*)(t) \ge x^*(t) \to \infty$ as $t \to 0+$ and $\mathcal{P}x^*$ is continuous,

$$(\mathcal{P}x^*)(t_n) = (\mathcal{P}x^*)(t_{n-1}) + \frac{1}{n} \qquad (n = 1, 2, \ldots).$$

Hence $t_n \downarrow 0$. We also have $A(t_0) \cap B(t_0) = \emptyset$ a.s. As before, let $\Lambda_n = A(t_n) \cup B(t_n)$ for $n \in \mathbb{Z}_+$ and define $\mathcal{F} = (\mathcal{F}_n) \in \mathbb{F}$ by (5). Let $f_{\infty} = x - y$ and let $f = (f_n)$ be the martingale defined by (6). Then $S(f) = |f_{\infty}| = x + y \ge x$ and therefore $\mathcal{Q}\varphi = x^* \le (S(f))^*$ on *I*. Thus the proof will be complete if we can show that $(S(f))^* \in \widehat{X}$.

As observed before, $\mathcal{A}f_n = (\mathcal{P}x^*)(t_n)\mathbf{1}_{\Lambda_n} + |f_{\infty}|\mathbf{1}_{\Omega\setminus\Lambda_n}$, and therefore

$$\Delta_n \mathcal{A} f = \frac{1_{\Lambda_n}}{n} + \{ |f_{\infty}| - (\mathcal{P} x^*)(t_{n-1}) \} \mathbf{1}_{\Lambda_{n-1} \setminus \Lambda_n} \qquad (n = 1, 2, \ldots).$$
(12)

Since $x^*(t_{n-1}) \le x \le x^*(t_n)$ on the set $A(t_{n-1}) \setminus A(t_n)$ by (8b), we find that

$$\begin{aligned} -\frac{1}{n} &\leq (\mathcal{P}x^*)(t_n) - x^*(t_n) - \frac{1}{n} \\ &= (\mathcal{P}x^*)(t_{n-1}) - x^*(t_n) \\ &\leq (\mathcal{P}x^*)(t_{n-1}) - x \\ &\leq (\mathcal{P}x^*)(t_{n-1}) - x^*(t_{n-1}) \qquad \text{on } A(t_{n-1}) \setminus A(t_n). \end{aligned}$$

As a result,

$$|x - (\mathcal{P}x^*)(t_{n-1})| \le (\mathcal{P}x^*)(t_{n-1}) - x^*(t_{n-1}) + \frac{1}{n}$$
 on $A(t_{n-1}) \setminus A(t_n)$.

In the same way, we see that

$$|y - (\mathcal{P}x^*)(t_{n-1})| \le (\mathcal{P}x^*)(t_{n-1}) - x^*(t_{n-1}) + \frac{1}{n}$$
 on $B(t_{n-1}) \setminus B(t_n)$.

Since $\mathcal{P}x^* - x^* = \mathcal{P}\mathcal{Q}\varphi - \mathcal{Q}\varphi = \mathcal{P}\varphi$ by (7a), it follows that

$$||f_{\infty}| - (\mathcal{P}x^*)(t_{n-1})| \le (\mathcal{P}\varphi)(t_{n-1}) + \frac{1}{n} \quad \text{on } \Lambda_{n-1} \setminus \Lambda_n.$$

Combining this with (12) gives

$$|\Delta_n \mathcal{A} f| \leq \frac{1}{n} + (\mathcal{P}\varphi)(t_{n-1}) \mathbf{1}_{\Lambda_{n-1} \setminus \Lambda_n} \qquad (n = 1, 2, \ldots).$$

Moreover

$$|\Delta_0 \mathcal{A} f| = |\mathcal{A} f_0| \equiv (\mathcal{P} x^*)(t_0) = \frac{1}{t_0} \|x^*\|_1 = \frac{1}{t_0} \|\mathcal{Q}\varphi\|_1 = \frac{1}{t_0} \|\varphi\|_1.$$

Therefore

$$S(\mathcal{A}f) \leq \left\{ \left(\frac{1}{t_0} \|\varphi\|_1\right)^2 + \sum_{n=1}^{\infty} \left(\frac{1}{n} + (\mathcal{P}\varphi)(t_{n-1}) \mathbf{1}_{\Lambda_{n-1} \setminus \Lambda_n}\right)^2 \right\}^{1/2} \\ \leq \frac{1}{t_0} \|\varphi\|_1 + \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{1/2} + \sum_{n=1}^{\infty} (\mathcal{P}\varphi)(t_{n-1}) \mathbf{1}_{\Lambda_{n-1} \setminus \Lambda_n}.$$

Because

$$\left(\sum_{n=1}^{\infty} (\mathcal{P}\varphi)(t_{n-1}) \mathbf{1}_{\Lambda_{n-1} \setminus \Lambda_n}\right)^*(t) = \sum_{n=1}^{\infty} (\mathcal{P}\varphi)(t_{n-1}) \mathbf{1}_{[2t_n, 2t_{n-1})}(t) \le (\mathcal{P}\varphi)(t/2) = (D_{1/2}\mathcal{P}\varphi)(t)$$

for all $t \in I$, we obtain

$$(S(\mathcal{A}f))^*(t) \le \frac{1}{t_0} \|\varphi\|_1 + \frac{\pi}{\sqrt{6}} + (D_{1/2}\mathcal{P}\varphi)(t) \qquad (t \in I).$$

Since $\varphi \in \widehat{X}$ and $\beta_{\widehat{X}} = \beta_X < 1$, Shimogaki's Theorem yields that $\mathcal{P}\varphi \in \widehat{X}$ and hence $D_{1/2}\mathcal{P}\varphi \in \widehat{X}$. Consequently, $(S(\mathcal{A}f))^* \in \widehat{X}$, or equivalently $S(\mathcal{A}f) \in X$. The hypothesis implies that $S(f) \in X$ and hence that $(S(f))^* \in \widehat{X}$. This completes the proof.

REFERENCES

1. A. Antipa, Doob's inequality for rearrangement-invariant function spaces, *Rev. Roumaine Math. Pures Appl.* 35 (1990), 101–108.

2. C. Bennett and R. Sharpley, *Interpolation of operators*, Pure and Applied Mathematics 129 (Academic Press, 1988).

3. D. W. Boyd, Indices of function spaces and their relationship to interpolation, *Canad. J. Math.* **21** (1969), 1245–1254.

4. K. M. Chong and N. M. Rice, *Equimeasurable rearrangements of functions*, Queen's Papers in Pure and Appl. Math. 28 (Queen's Univ., Kingston, Ontario, 1971).

5. W. B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces, *Israel J. Math.* 64 (1988), 267–275.

6. M. Kikuchi, Averaging operators and martingale inequalities in rearrangement invariant function spaces, *Canad. Math. Bull.* 42 (1999), 321–334.

7. M. Kikuchi, A classification of martingale Hardy spaces associated with rearrangementinvariant function spaces, *Arch. Math. (Basel)*, to appear.

8. M. Kikuchi, Characterization of Banach function spaces that preserve the Burkholder square-function inequality, *Illinois J. Math.*, to appear.

9. R. L. Long, Martingale spaces and inequalities (Peking Univ. Press, 1993).

10. W. A. J. Luxemburg, Rearrangement-invariant Banach function spaces, in *Proc. Sympos. in Analysis*, Queen's Papers in Pure and Appl. Math. 10, (Queen's Univ., Kingston, Ontario, 1967), 83–144.

11. I. Novikov, Martingale inequalities in rearrangement invariant function spaces, in *Function spaces (Poznań, 1989)*, Teubner-Texte Math. 120, (Teubner, Stuttgart, 1991), 120–127.

12. N. Popa, Duals of dyadic Hardy spaces generated by a rearrangement invariant function space *X*, *Rev. Roumaine Math. Pures Appl.* **33** (1988), 769–778.

13. M. M. Rao and Z. D. Ren, *Theory of Orlicz spaces*, Monographs and Textbooks in Pure and Applied Mathematics No. 146, (Marcel Dekker, 1991).

14. T. Shimogaki, Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan 17 (1965), 365–373.