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AN EULER-TYPE VOLUME IDENTITY

KEVIN CALLAHAN AND KATHY HANN

In this paper we present an elementary proof of a congruence by subtraction relation.
In order to prove congruence by subtraction, we produce a dissection relating equal
sub-polytopes. An immediate consequence of this relation is an Euler-type volume
identity in R® which appeared in the Unsolved Problems section of the December
1996 MAA Monthly.

This Euler-type volume identity relates the volumes of subsets of a polytope called
wedges that correspond to its faces, edges, and vertices. A wedge consists of the
inward normal chords of the polytope emanating from a face, vertex, or edge. This
identity is stated in the theorem below.

EULER VOLUME THEOREM. For any three dimensional convex polytope P

Z volume of the face wedges + Z volume of the vertex wedges

= twice the volume of P + Z volume of the edge wedges.

This identity follows immediately from

Z face wedges + Z vertex wedges ~ 9P + Z edge wedges.

1. INTRODUCTION

In this paper we present an elementary proof of a congruence by subtraction relation.
In order to prove congruence by subtraction, we produce a dissection relating equal sub-
polytopes. An immediate consequence of this relation is an Euler-type volume identity
in R® which appeared in [2]. A proof of this volume identity was published in [3],
though it used powerful tools from integral geometry, such as Federer’s Area Formula.
An elementary result such as this deserves an elementary proof, which is what we provide
in this paper.

This Euler-type volume identity relates the volumes of subsets of a polytope called
wedges that correspond to its faces, edges, and vertices. A wedge consists of the inward
normal chords of the polytope emanating from a face, vertex, or edge. There is an el-
ementary geometric argument, see [3], which shows that for a polygon, the sum of the
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areas of the wedges corresponding to edges equals the sum of the areas of the wedges
corresponding to vertices. This analog of Euler’s identity generalises to R, the alternat-
ing sum is equal to 1 — (—1)" times the volume of the polytope. We call this the Euler
Volume Theorem which is stated below for R3.

EULER VOLUME THEOREM. For any three dimensional convex polytope P

Z volume of the face wedges + Z volume of the vertex wedges
= twice the volume of P + Z volume of the edge wedges.

This identity follows immediately from

z face wedges + Z vertex wedges ~9p 4+ Z edge wedges.

NOTATION AND DEFINITIONS. Let P be a polytope in R3. First we’'ll give the basic
+ —
definitions. The definitions of = and = can be found in Eves [1].

DEFINITION. A normal to P at a point z in the boundary of P, 0P, is a ray with
endpoint at z, perpendicular to a support plane H of P at z, and contained in the
halfspace bounded by H which contains P.

DEFINITION. For each point z € 8P, the normal chords corresponding to z are the
chords of P that lie in a normal to P which emanates from z.

DEFINITION. Given an i-dimensional face G of P, the wedge, WG associated with
G is the subset of P containing all the normal chords of P which are also normal to the
affine hull of G, aff(G).

Pictured below is a dissection of the polytope @Q, a skewed truncated quadrilateral-
based pyramid. Polytope ¢ will be used as an example throughout this paper. The
sub-polytope labelled 1 is a face wedge. The complement of this face wedge is the union
of polytopes 2, 3, and 4. This complement will be used in the proof of the Euler-type
Identity. Examples of edge and vertex wedges can be found in Figures 3 and 4 in Section 3.

Figure 1. A Face Wedge of polytope Q

Before we discuss the proof, we give an elementary example of the Euler Volume Identity.
Consider P a cube. All of the vertex, edge and face wedges of P are the entire cube. The
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reader may verify that the Euler Volume Theorem follows trivially from the classic Euler
identity.

In Section 2 we prove that the Euler Volume Theorem, EVT, follows from the Wedge
Complement Theorem, WCT. The WCT states that given a convex polytope P in R?,
the sum of the face wedge complements plus the sum of the vertex wedge complements
is congruent by addition to the sum of the edge wedge complements. The remainder of
the paper is dedicated to proving the WCT. In Section 3, the wedge complements will
be dissected into “molecules”. In Section 4, we prove that these molecules partition the
wedge complements. Finally, in Section 5, a correspondence is established between the
molecules, which is used to prove the WCT.

2. THE EQUIVALENCE OF THE EULER VOLUME THEOREM AND THE WEDGE
COMPLEMENT THEOREM

In this section, we prove that the Euler Volume Theorem follows from the Wedge
Complement Theorem which we state below.

Given a three dimensional convex polytope P, let v, ¢ and f be the number of
vertices, edges and faces of P. Let WV;, WE; and W F;, be the i** vertex, edge and face
wedge of P.

WEDGE COMPLEMENT THEOREM. Given a convex polytope P in R3 the sum of
the face wedge complements plus the sum of the vertex wedge complements is congruent
by addition to the sum of the edge wedge complements,

f v e
SP-WER)+ S (P-WV) £ S (P-WE).

With this notation, we restate the Euler Volume Theorem and prove that it follows
from the Wedge Complement Theorem.

EULER VOLUME THEOREM. Given a convex polytope P in R® the sum of the
volumes of the face wedges plus the sum of the volumes of the vertex wedges equals twice
the volume of the polytope plus the sum of the volumes of the edge wedges,

f v e
S Vol(WF;) + Y Vol(WV;) = 2Vol(P) + ) _ Vol(WE;).

i=1 i=1

This identity follows immediately from

! v e
STWE+> WV,22P+) WE
i=1 i=1 i=1

Note that the volume result is independent of measure (Euclidean or otherwise).
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ProoF THAT THE WCT IMPLIES THE EVT: We first show that the congruence
by addition given in the Wedge Complement Theorem leads to the congruence by sub-
traction stated in the Euler Volume Theorem. The volume result follows directly from
the congruence result. Using the Wedge Complement Theorem, we have

f e

Y (P-WF)+ i(P— WV,) = Y (P-WE),

i=1 i=1 i=1

R+

thus there are subpolytopes ¢4,...,@, and R,,..., R, such that

f v
SP-WE)+Y (P-WV)=Qi+...+Qn,

i=1 i=1
e

> (P-WE)=Ri+...+R, and
i=1

QiR fori=1,...,n.

Therefore,
f v
STWEAY WVi+Qi+...+Qn
=1 1=1

f v f v
=Y WE+Y WV,+) (P-WF)+Y (P-WV)
=1 i=1 i=1 i=1
=(f+v)P
=(2+¢)P
=2P+> WEi+» (P-WE)

=1 i=1

=2P+» WEi+Ri+...+Rn.

=1

Thus,
f v _ e
S WE+Y WV,22P+ Y WE;
i=1 i=1 i=1

and

f v e
STVOWE) + 3 Vol(WV;) = 2Vol(P) + > Vol(WE).

i=1 i=1 i=1
0

Using the same argument, one can prove that the Wedge Complement Theorem
follows from the Euler Volume Theorem and thus they are equivalent. The remainder of
this paper establishes the Wedge Complement Theorem. We begin by defining terms.
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3. DEFINITIONS

In this section, we establish notation, give definitions and prove that the vertex, edge
and face wedges can be represented using intersections of half-spaces. We also use these
half-spaces in order to partition the wedge complements into “molecules”. We begin by
establishing notation for the faces, edges and vertices.

Given a polytope P, with n faces, label the faces F},... , F,, in any fashion. The face
labels induce a labeling on the edges and vertices. Edge E;; is contained in faces F; and
F;. Vertex V,, x = {4y,45,...,1,}, is contained in F;,, t = 1,...,s where F;,...  Fj,
are all of the faces containing V;. Let fo(R), fi(R) and f,(R) be the number of vertices,
edges and faces of any polytope R. Three faces, Fy, F, and F3, of the polytope @ are
labelled below. This induces the labeling Ey5 and V{; 33} as pictured. Note that with
this labeling, the face wedge found in Figure 1 is W Fj.

Figure 2. Some labels on the polytope @
We now define two different types of cutting hyperplanes which will be used to give
an alternate representation of the wedges and also to define the molecules.
DEFINITION. Given an edge Ey; and face Fj, the cutting hyperplane, Hjj, is the
hyperplane containing this edge and perpendicular to this face.

DEFINITION. Given an edge E;; and one of its vertices V., the cutting hyperplane,
Cijs,, is the hyperplane containing this vertex and perpendicular to this edge.

DEFINITION. H} (Hj) is the half-space containing (not containing) the face F;
which is bounded by the hyperplane H;;.

DEFINITION. Cf, (C7,) is the half-space containing (not containing) the edge E;;
which is bounded by the hyperplane Cj;,.

Note that throughout this paper, the order of indices is only relevant for the cutting
hyperplane H;;. H;; is orthogonal to face F; whereas Hj; is orthogonal to face Fj. Also,
all half-spaces are assumed to be closed. Next we use these cutting hyperplanes to give
an alternate representation of the wedges.

WEDGE REPRESENTATION THEOREM.
N(Fy)
1. WF.=P ( N H,-T:).
s=1

2. WE; = PnH}nHj;nCf, nCY,, where v., and v,, are the distinct
vertices of edge E;;.
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3. wv.=pPn( Ch).

s,tex;VuCEy,

PROOF OF WEDGE REPRESENTATION THEOREM: We provide the proof for the
edge wedge representation. A similar argument holds for the face and vertex wedge
representations.

2. Let pg C WE;; where pq is a normal chord of E;; with p € Ej;. Then p,g € P
since W E;; C P by definition. Let S be the supporting hyperplane of P containing F;;
such that pg L S. We need to show that g is on the same side of H;; as F; and ¢ is on the
same side of Hj; as F;. If not, then without loss of generality pg is on the side opposite to
F; from H;j. Therefore, S intersects the relative interior of P, which is a contradiction.
So, ¢ is on the same side of H;; as F; and ¢ is on the same side of Hj; as Fj. Also, 7q is
on the same side as Ej; for each Cjj. since pg || Cjj, or pg C Cjj. and p € E;;. Therefore,
PEC PNHYNHL;NCE, NCE,,

Let r € PN H N Hj;NCE, NCE,, where V,, and V., are the distinct vertices of
edge E;;. Let p be the point in aff(E;;) such that o7 L aff(E;;). Then p € E;; since r
is on the same side of Cj;, as E;; and the C{j,s are perpendicular to E;;. Let S be the
plane perpendicular to 7. The angle between 7 and F; is less than 7/2 since C lies in
the same halfspace as F; of H;;. Therefore r and F; lie on the same side of S. Similarly,
r and Fj lie on the same side of S. Since E;; € S and all of the facets which contain
E;; are in the same half space of S then P is contained in a halfspace of S. So, S is a
supporting hyperplane of P and therefore r is in W E;;. 0

We now define the molecules, which will be used to partition the complements of
the wedges.

DEFINITION. Given a face F; and edge E;;, the face molecule associated with an
edge is F;E;; = (P—WF,)NH;NCY, NCE,, where V,, and V,, are the distinct vertices
of edge Ej;.

DEFINITION. Given a face F; and one of its incident vertices V., the face molecule
associated with a vertex is ;V, = (P - WF)NCj, NCj, where V, is contained in edges
E;; and Ey such that Ej;, By C F.

DEFINITION. Given an edge Ej; and face F;, the edge molecule associated with a
face is E;;F; = (P — WEy;) N H; N CE, NCY,, where V,,, V., C Ej;.

DEFINITION. Given an edge E;; and one of its incident vertices V,, the edge molecule
associated with a vertex is Ej;V, = (P - WE;) N C,-},.

DEFINITION. Given a vertex V, which is contained in a face Fj}, the vertez molecule
associated with a face is V,F; = (P — WV.) NC;. NCy, where V, C By, By C Fi.

DEFINITION. Given a vertex V, which is contained in an edge E,;, the vertez molecule
associated with an edge is V. Ej; = (P - WV,)NC;;, NC5, NC},, where Ey is the unique
edge such that V. C Ej C F; and Ej; # Ej;. Similarly, Ej; is the unique edge such that
V. C E_-,‘[ C FJ and Ejl # E,-j.
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Pictured below in Figure 3 is an edge wedge and its associated molecules for the
polytope @ (see Figure 2 for labeling). Polytope 1 is WE)},. Polytope 3 is an edge
molecule associated with a vertex and polytopes 2 and 4 are edge molecules associated
with faces. Polytope 3 is E12V]1,2.3}, polytope 2 is E1oF) and polytope 4 is Ey2F5.

Figure 3. An edge wedge and its associated molecules.

Figure 4 below illustrates a vertex wedge and its associated molecules for the poly-
tope Q. Polytope 1 is WV{;23;. Polytopes 3, 5 and 7 are vertex molecules associated
with edges and polytopes 2, 4 and 6 are vertex molecules associated with faces. Polytope
2 is Vj1,2,3) F3, polytope 3 is V{y23) E1 3, polyotpe 4 is V{1,2.3)F1, polytope 5 is V{1 2.3} B2,
polytope 6 is V{y 2.3} F2, and polytope 7 is V[3,2,3;E2,3.

Figure 4. A vertex wedge and its associated molecules.

REDUNDANCY LEMMA. In the six definitions above, the complement of a wedge
(P — wedge) can be replaced by P.

PRrOOF: In each case, except F;V,, this follows immediately by comparing the
wedges in the Wedge Representation Theorem above, with the definitions of the vari-
ous molecules. For the case F;V,, the hyperplane H;; “separates” W F; from (Cj;, NCy,).
Therefore, (C;;, NCx,) NP C P— WE;. Hence (P — WF;) can be replaced by P. 0

The following lemma is crucial in the proof of the Identical Molecule Theorem found
in Section 5 which is subsequently used in the proof of the Wedge Complement Theorem.

SYMMETRY LEMMA E;;F; = F;E;; and V,F; = FiV,.
ProOF: The proof is trivial by applying the Redundancy Lemma to the definitions
of the relevant molecules. 0

For an illustration of the symmetry lemma for polytope @ refer back to Figures 1,
3 and 4. Polytope 2 in Figure 1 (F} E)2) equals polytope 2 in Figure 3 (E),F)). Also,

https://doi.org/10.1017/50004972700033190 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700033190

502 K. Callahan and K. Hann 8]

polytope 3 in Figure 1 (F1V{123)) equals polytope 4 in Figure 4 (V{;23}F;). Next we
use the Wedge Representation Theorem and the definitions of the molecules in order to
partition the complements of the wedges.

4. PARTITION THEOREMS

In this section, we use the molecules to define partitions of the face, edge and vertex
wedge complements. The face and edge partition theorems state that the wedge com-
plements are partitioned by the face and edge molecules. It is also the case that the
vertex wedge complement is the union of the vertex molecules, though this union is not
necessarily disjoint, and thus these molecules do not give us a partition. Since the vertex
molecules associated with faces may have a non-trivial intersection, we subtract these
intersections where needed, thereby creating a partition. We provide the proof of the
Vertex Partition Theorem below. The Face and Edge Partition Theorems follow from
convexity and properties of normals, and therefore can be verified by the reader.

FACE PARTITION THEOREM Given a face F; the face wedge complement is par-
titioned by all of the face molecules associated with the vertices and edges of that face.

fo(Fy) Hi(Fy)
P-WF,=Y FV,+ Y FE;.

s=1 t=1

EDGE PARTITION THEOREM. Given an edge E;; the edge wedge complement is
partitioned by all of the edge molecules associated with the vertices and faces incident
to that edge.

P — WE,'j = E,'J'E + E,'J'F]' + E,,-V.l + Egjv‘z
where 1, ] € *;, *q.

Next we prove the Vertex Partition Theorem. This proof is more complicated than
the proofs of the previous two theorems. The proof entails choosing a vertex and rela-
belling its incident edges and faces. The proof then establishes set equality and disjoint-
ness.

VERTEX PARTITION THEOREM. Given a vertex V., the vertex wedge comple-
ment is the union of all of the vertex molecules associated with the faces and edges
incident to that vertex. Moreover,

P-WV.=) (V.F.-V.L,)+ Y, V.Ey,

TEX s,tes;VuCEgt

where V, I, = V,F, NV, F, and the index y comes from the face F, containing V,, which
is the face to the “left” of F, with respect to the vertex V, as described below in the
proof.
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PROOF OF VERTEX PARTITION THEOREM: In the proof of this theorem we shall
allow the temporary relabelling of a vertex and its incident edges. Given a vertex v label
its incident edges €1,...,e, where these edges are ordered such that ¢; and £;;, share
a face and such that from the position of an outward normal emanating from v, the
labelling is counter-clockwise. In the same manner, relabel the faces ¢, ... , ¢, such that
¢; is to the “right” of g;, so that ¢; N ¢;y) = ;. All arithmetic for the indices in this
proof is modulo n. Hence, €,4+; = €;. Note that with this relabelling, we need to prove

n

n
P-Wy= Z(Vd),- — vljiyy) + Z VE;.
i=1 i=1
Each edge ¢; is associated with a cutting plane C;, perpendicular to ¢; and containing
vertex v. Note that C,,y = C; and Cy = C,,. If p is in the same half-space as ¢;, then
p € C}. If p is in the opposite half-space as ¢;, then p € C;. Note that with the new
notation,

ve; = (P=Wv)NCr,NnC; NCH,
v = (P-Wv)nC_, NCT
vy = (P-Wv)NC_,NC7 NCE,
v$; — vliipy = (P~ Wr)NCZ, NCy NCE,.

PROOF OF SET EQUALITY: Since each v¢; and ve; are by definition a subset of
P — Wy, we have Zn:(ud)i — vliiy) + i ve; C P — Wv. Next we show containment in
the other dilrectionl.=1 =

Let p be a point in P — Wy. Consider each C; and its corresponding edge ¢;. If
p € C}, for all ¢, then p € Wv. Otherwise, there is at least one C; such that p € C; .
Case 1. pe Ci, and p € Cj|. Then p € ve; by the definition of a vertex molecule
associated with an edge.

CAasE 2. pe C_, or p € C,,. Assume p € C;_,, (the same argument is valid for
p € Ci;1)- Then p € v¢; by the definition of a vertex molecule associated with a face.
The point p may also be in the vertex molecule v¢;y, and hence p € vé; — vIiz1). In
fact, p is contained in a consecutive chain of vertex molecules

PEVHNVG 1N ... NVPiim

where this chain may have length 1 and must have length less than n. If the chain were
to have length n, then p € C, for all i. This means that for each of these edges &;, the
point on the edge closest to p is v. Consider the plane G through v perpendicular to 7p.
Since v is the closest point to p, all of the edges ¢; lie in the closed half-space bounded
by G which does not contain p. Since all of the edges for this vertex lie on one side of
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the hyperplane G, then the polytope P lies on one side of G and hence G is a supporting
hyperplane of P. Therefore, p & P. This is a contradiction, therefore this chain has
length less than n. :

By definition of this chain, p € v¢; m41. Therefore p € vd;m — VIiym)itm+1). This
establishes set equality.

PROOF THAT THE COMPONENTS ARE DISJOINT: Consider p € P — Wy and the
vertex v. Let G be the hyperplane through v perpendicular to the chord 7p. Let G* be
the half-space containing p and G, the other half-space. Since each ¢; contains v, each
€i CG*, G~ or G. If an ¢, lies in G, then the point p lies in the hyperplane C; which is
a set of measure zero and therefore can be disregarded in this proof. The hyperplane G
divides the set of ordered edges €4, €3, ... ,€, into two contiguous subsets modulo n. If
g; is in G, then v is the closest point to p on ¢; and thus p € C;. If ¢; is in G, then
the point on the edge closest to p is not v and thus p € C;.

By combining the two above ideas, we have

PeEC;NCILN...NCoLNCHLnNCHLnN...NCHym

where 1 €s<n,0<tg<n-2,0<mgn-1,t+m+1=0 modulo n.
CASE 1. If p € ve; then p & ve,, for all s # ¢ and p € vé; — vij;41y, for all j.

Since p € ve;, p € (P — Wuv)NCr,NC7 NC},. Because the C-hyperplanes which
are adjacent to C; in the chain are both labelled “+”, this means that C is the only
C-hyperplane in the chain which is labelled with a “~”. Since there are no other C~
in the chain, p can not be contained in any other ve,. Likewise, since there are no two
C;_,,C; in the chain, p can not be contained in any vé; — v1j(;i1).

Case 2: If p € vg; — viiiy1) then p & ve,, for all s and p & vé; — vij4y), for all j # 4.

Since p € v; — vIjiy1y, p € (P —Wrv)NC_,NC7 NC},,. Since there are at least

n

two C-hyperplanes which are labelled “—”, in the chain, there are no sequences which

are labelled “+4,—,4+". Therefore, p & ve;, for all s. In the chain of C-hyperplanes, there

is only one sequence labelled “—, —,+” (when the index is considered in increasing order,
modulo n). Therefore, p & vé; — vy, for all § # 4.
Therefore, the components in the union are disjoint. 1]

These three theorems partition the wedge complements and set the stage for proving
the Wedge Complement Theorem.

5. PROOF OF THE WEDGE COMPLEMENT THEOREM

In order to prove the Wedge Complement Theorem, WCT, we shall establish a one
to one correspondence between the edge molecules and particular combinations of the
vertex and face molecules. This correspondence will actually relate equal portions of
the polytope. Each edge molecule associated with a face will be matched with a face
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molecule associated with an edge. The correspondence for the edge molecules associated
with vertices is more complicated. Each edge molecule associated with a vertex will be
matched with a combination of vertex molecules associated with faces, vertex molecules
associated with edges and face molecules associated with vertices. We begin by defining
the correspondence between the molecules and proving that it is one to one and onto.
We then show that this correspondence relates equal pieces in the Correspondence Iden-
tity Theorem. Finally, we combine these two theorems with the face, vertex, and edge
partition theorems to give the proof of the Wedge Complement Theorem.

DEFINITION. Given a polytope P, define the molecule correspondence between the
set of all edge molecules and the set containing all vertex and face molecules by

EiF; & FE;
EijV. & VLE; U(VLF, — V.I;) U RV,

This correspondence is well defined, where s and t are chosen as follows. From the
position of an outward normal emanating from a vertex V,, there is a unique face F; to
the right of E;;. Note that s is one of the two indices ¢ or j. Let ¢ be the other of these
two indices.

Clearly, every EF, FE, EV and VE appear once and only once in the correspon-
dence. Every V F appears in the correspondence exactly once, since given a vertex V and
face F, that face is to the right of exactly one edge containing V. Similarly, every FV
appears in the correspondence exactly once, since given a vertex V and face F', that face
is to the left of exactly one edge containing V. Therefore the molecule correspondence is
one to one and onto.

CORRESPONDENCE IDENTITY THEOREM. The molecule correspondence asso-
ciates identical portions of P arising from different partitions of P.

PRrROOF: We have Ej;F; = F,E;; by the Symmetry Lemma found in Section 3.

It remains to be shown that Ej;V, = V.E;; U (V. F, — V.I;;) U F,V,. Without loss of
generality, assume that Ej;V, < V. E;; U(VLF; — V,I;;) U F;V.. Note that (V. F; — V. I;;) U
F;V, = V.F; U F}V, since F;V, = V,F; and V.I;; = F;V, N F;V,. Therefore, it suffices to
prove that E;V, = VLE; UV F; U F;V..

If p € V,E;; UV,F; U F;V,, then p € Cj;, and hence p € Ej;V..

Consider p € E;;V. = PN Cy,. Given any hyperplane C, p € C* orp € C™. Let
the relevant cutting hyperplanes be Cyj,, Cit. and Cji,. Since p € C,.},, then p is in one
of the following four sets:

1. C;NnCE.NC}

ijs jle
2. C;NCi, NCy,
3. C;.NCq.NC},
4. C; NCR.NCy,.
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In Case 1, p € V,E;;. In Cases 2 and 4, p € F;V,. In Case 3, p € V.F;,. Hence,
pE V,E,'J' UWV,F; U FjV,.

Therefore Ej;V, = V.Ei;j U (VuF;or j — ViI3j) U Fj o ;V. and hence have the same
volume. 0

Below are two examples of corresponding molecules for polytope @. Consider
E\2Fy = F1E);;. The molecule FyE), labelled 2 in Figure 1, corresponds with the
molecule E)3F;, also labelled 2 in Figure 3. Next consider E13V{1233 = Vii231E0
U (Vi3 F2 — Vinsy i) U FiVii2.3). The molecules in this equation can be found in
the following figures: Ej2V{123) is labelled 3 in Figure 3, V{1 23}E1, is labelled 5 in
Figure 4, V{123 F> is labelled 6 in Figure 4 and F1V{; 33 is labelled 3 in Figure 1.

Note that V{1 23)012 = @ since ViesytFi NV s o = { as seen in Figure 4. So far
we have dissected the wedge complements and matched equal polytopes. This matching
connects wedge complements of edge wedges with wedge complements of vertex and face
wedges. We are now ready to prove the Wedge Complement Theorem which completes
the proof of the Euler 7Volume Theorem.

WEDGE COMPLEMENT THEOREM. Given a convex polytope P in R3 the sum of
the face wedge complements plus the sum of the vertex wedge complements is congruent
by addition to the sum of the edge wedge complements,

f e

S (P-WF)+ ZU:(P -wv)E S (P-WE).

i=1 i=1 i=1

PrRooF oF WEDGE COMPLEMENT THEOREM: By the Edge Partition Theorem
found in Section 4, we have for each edge Ej;,

(P - WE,']') = E,'jFi + E,;ij -+ Z E,'jV,..

V.CE;;
So,
>, (P-WE)= > 3 BV
all edges E;; all edges Ei; V.CE;;
(1) + ) (E,-,-I«‘,-+E,-,-Fj). (1)
all edges E.‘j

The Molecule Correspondence and Correspondence Identity Theorem give us

(2) > (EijF}+E,-jF‘,-) = > > FEy

all edges E;; all faces F; E;jCF;
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and

Z ( Z Eij‘/z) = Z ZV‘EU

all edges E;; VL.CE;j all verticesV., ij€=x

+ Y. Y (WE-VI)

all verticesV, F;DV.

(3) + > > FW.

all faces F; VLCF;
Substituting equations (2) and (3) into equation (1), we obtain,

> (P-WEj= > > V.E;

all edges E;; all verticesV, ije+

+ Y Y (WE-V.L)

all verticesV. FiDV.

+Y Y FV.

allF; V.CF;

(4) + Y Y FE;

all faces F; E;;CF;

Applying the Face and Vertex Partition theorems, we obtain,

(5) > P-wR= Y (Y RE;+Y RV.)

all faces F; all facesF; E;;CF; V.CF;
and
(6) > oP-wv)= Y (T VE+ Y (WE- V).
all vertices V., all vertices V. 1i,j€s F;DV.,

Combining equations (4), (5) and (6), we obtain,

S (P-WE)E S (P-wR)+ Y (P-WV),

all edges E;; all faces F; all vertices V.

which completes the proof. 0
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